ml-management 0.4.1__tar.gz → 0.5.1rc0__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
Files changed (106) hide show
  1. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/load_api.py +11 -11
  2. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/sdk/__init__.py +9 -5
  3. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/sdk/dataset_loader.py +63 -21
  4. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/sdk/executor.py +66 -24
  5. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/sdk/job.py +7 -7
  6. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/sdk/model.py +58 -41
  7. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/sdk/parameters.py +6 -6
  8. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/sdk/schema.py +86 -86
  9. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/test_sdk/test_sdk.py +7 -7
  10. {ml-management-0.4.1 → ml-management-0.5.1rc0}/PKG-INFO +1 -1
  11. ml-management-0.5.1rc0/VERSION +1 -0
  12. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ml_management.egg-info/PKG-INFO +1 -1
  13. ml-management-0.4.1/VERSION +0 -1
  14. {ml-management-0.4.1 → ml-management-0.5.1rc0}/MANIFEST.in +0 -0
  15. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/__init__.py +0 -0
  16. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/__init__.py +0 -0
  17. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/collector_pattern.py +0 -0
  18. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/collector_pattern_to_methods_map.py +0 -0
  19. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/collectors.py +0 -0
  20. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/dummy/__init__.py +0 -0
  21. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/dummy/dummy_collector.py +0 -0
  22. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/s3/__init__.py +0 -0
  23. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/s3/s3collector.py +0 -0
  24. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/topic_markers/__init__.py +0 -0
  25. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/topic_markers/api_schema.py +0 -0
  26. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/collectors/topic_markers/topic_markers_collector.py +0 -0
  27. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/dataset_loader/__init__.py +0 -0
  28. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/dataset_loader/base_splits_dataset_loader.py +0 -0
  29. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/dataset_loader/dataset_loader_pattern.py +0 -0
  30. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/dataset_loader/dataset_loader_pattern_to_methods_map.py +0 -0
  31. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/dataset_loader/poisoned_images_dataset_loader.py +0 -0
  32. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/dataset_loader/templates/__init__.py +0 -0
  33. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/dataset_loader/templates/dummy_dataset_loader/__init__.py +0 -0
  34. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/dataset_loader/templates/dummy_dataset_loader/conda.yaml +0 -0
  35. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/dataset_loader/templates/dummy_dataset_loader/dummy_dataset.py +0 -0
  36. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/dataset_loader/templates/upload.py +0 -0
  37. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/__init__.py +0 -0
  38. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/base_executor.py +0 -0
  39. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/executor_pattern.py +0 -0
  40. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/executor_pattern_to_methods_map.py +0 -0
  41. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/no_model_executor_pattern.py +0 -0
  42. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/patterns.py +0 -0
  43. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/__init__.py +0 -0
  44. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/eval/__init__.py +0 -0
  45. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/eval/conda.yaml +0 -0
  46. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/eval/eval_executor.py +0 -0
  47. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/finetune/__init__.py +0 -0
  48. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/finetune/conda.yaml +0 -0
  49. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/finetune/finetune_executor.py +0 -0
  50. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/train/__init__.py +0 -0
  51. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/train/conda.yaml +0 -0
  52. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/train/train_executor.py +0 -0
  53. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/templates/upload.py +0 -0
  54. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/executor/upload_model_mode.py +0 -0
  55. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/loader/__init__.py +0 -0
  56. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/loader/loader.py +0 -0
  57. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/__init__.py +0 -0
  58. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/backend_api.py +0 -0
  59. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/base_exceptions.py +0 -0
  60. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/jsonschema_exceptions.py +0 -0
  61. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/jsonschema_inference.py +0 -0
  62. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/log_api.py +0 -0
  63. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/mlmanager.py +0 -0
  64. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/model_type.py +0 -0
  65. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/module_finder.py +0 -0
  66. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/server_mlmanager_exceptions.py +0 -0
  67. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/session.py +0 -0
  68. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/singleton_pattern.py +0 -0
  69. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/utils.py +0 -0
  70. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/variables.py +0 -0
  71. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/mlmanagement/visibility_options.py +0 -0
  72. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/__init__.py +0 -0
  73. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/model_type_to_methods_map.py +0 -0
  74. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/__init__.py +0 -0
  75. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/evaluatable_model.py +0 -0
  76. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/gradient_model.py +0 -0
  77. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/model_pattern.py +0 -0
  78. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/model_with_losses.py +0 -0
  79. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/model_with_metrics.py +0 -0
  80. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/preprocessor.py +0 -0
  81. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/retrainable_model.py +0 -0
  82. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/rich_python_model.py +0 -0
  83. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/target_layer.py +0 -0
  84. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/torch_model.py +0 -0
  85. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/trainable_model.py +0 -0
  86. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/model/patterns/transformer.py +0 -0
  87. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/registry/__init__.py +0 -0
  88. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/registry/exceptions.py +0 -0
  89. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/s3/__init__.py +0 -0
  90. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/s3/manager.py +0 -0
  91. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/s3/utils.py +0 -0
  92. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/sdk/experiment.py +0 -0
  93. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/sdk/sdk.py +0 -0
  94. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/test_sdk/__init__.py +0 -0
  95. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/tests/__init__.py +0 -0
  96. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/tests/test_jsonschema_inference.py +0 -0
  97. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/uploader_data/__init__.py +0 -0
  98. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/uploader_data/s3_uploader.py +0 -0
  99. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ML_management/uploader_data/utils.py +0 -0
  100. {ml-management-0.4.1 → ml-management-0.5.1rc0}/README.md +0 -0
  101. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ml_management.egg-info/SOURCES.txt +0 -0
  102. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ml_management.egg-info/dependency_links.txt +0 -0
  103. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ml_management.egg-info/requires.txt +0 -0
  104. {ml-management-0.4.1 → ml-management-0.5.1rc0}/ml_management.egg-info/top_level.txt +0 -0
  105. {ml-management-0.4.1 → ml-management-0.5.1rc0}/setup.cfg +0 -0
  106. {ml-management-0.4.1 → ml-management-0.5.1rc0}/setup.py +0 -0
@@ -33,7 +33,7 @@ from mlflow.pyfunc import (
33
33
 
34
34
 
35
35
  def download_artifacts_by_name_version(
36
- name: str, version: int, model_type: ModelType, path: str, dst_path: Optional[str] = None
36
+ name: str, version: Optional[int], model_type: ModelType, path: str, dst_path: Optional[str] = None
37
37
  ) -> str:
38
38
  """Download an artifact by name and version to a local directory, and return a local path for it."""
39
39
  url = get_log_service_url("download_artifacts_by_name_version")
@@ -55,7 +55,7 @@ def download_job_artifacts(job_id: str, path: str = "", dst_path: Optional[str]
55
55
 
56
56
  def _load_model_type(
57
57
  name: str,
58
- version: int,
58
+ version: Optional[int],
59
59
  model_type: ModelType,
60
60
  unwrap: bool = True,
61
61
  install_requirements: bool = False,
@@ -79,7 +79,7 @@ def _load_model_type(
79
79
 
80
80
  def load_dataset(
81
81
  name: str,
82
- version: int,
82
+ version: Optional[int] = None,
83
83
  install_requirements: bool = False,
84
84
  unwrap: bool = True,
85
85
  dst_path: Optional[str] = None,
@@ -91,8 +91,8 @@ def load_dataset(
91
91
  ==========
92
92
  name: str
93
93
  Name of the dataset.
94
- version: int
95
- Version of the dataset.
94
+ version: Optional[int] = None
95
+ Version of the dataset. Default: None, "latest" version is used.
96
96
  install_requirements: bool = False
97
97
  Whether to install dataset requirements. Default: False.
98
98
  unwrap: bool = True
@@ -128,7 +128,7 @@ def _set_model_version_requirements(local_path) -> None:
128
128
 
129
129
  def load_model(
130
130
  name: str,
131
- version: int,
131
+ version: Optional[int] = None,
132
132
  install_requirements: bool = False,
133
133
  unwrap: bool = True,
134
134
  dst_path: Optional[str] = None,
@@ -140,8 +140,8 @@ def load_model(
140
140
  ==========
141
141
  name: str
142
142
  Name of the model.
143
- version: int
144
- Version of the model.
143
+ version: Optional[int] = None
144
+ Version of the model. Default: None, "latest" version is used.
145
145
  install_requirements: bool = False
146
146
  Whether to install model requirements. Default: False.
147
147
  unwrap: bool = True
@@ -160,7 +160,7 @@ def load_model(
160
160
 
161
161
  def load_executor(
162
162
  name: str,
163
- version: int,
163
+ version: Optional[int] = None,
164
164
  install_requirements: bool = False,
165
165
  unwrap: bool = True,
166
166
  dst_path: Optional[str] = None,
@@ -171,8 +171,8 @@ def load_executor(
171
171
  ==========
172
172
  name: str
173
173
  Name of the executor.
174
- version: int
175
- Version of the executor.
174
+ version: Optional[int] = None
175
+ Version of the executor. Default: None, "latest" version is used.
176
176
  install_requirements: bool = False
177
177
  Whether to install executor requirements. Default: False.
178
178
  unwrap: bool = True
@@ -9,7 +9,7 @@ job_metric_by_name = job.job_metric_by_name
9
9
  list_model_version = model.list_model_version
10
10
  list_dataset_loader_version = dataset_loader.list_dataset_loader_version
11
11
  list_executor_version = executor.list_executor_version
12
- model_version_metainfo = model.model_version_metainfo
12
+ get_model_version = model.get_model_version
13
13
  rebuild_model_version_image = model.rebuild_model_version_image
14
14
  print_model_schema_for_executor = executor.print_model_schema_for_executor
15
15
  generate_model_params_for_executor = executor.generate_model_params_for_executor
@@ -43,13 +43,13 @@ get_experiment_by_id = experiment.get_experiment_by_name
43
43
  get_experiment_by_name = experiment.get_experiment_by_name
44
44
  ModelMethodParams = parameters.ModelMethodParams
45
45
  ModelVersionChoice = parameters.ModelVersionChoice
46
- SingleModel = parameters.SingleModel
46
+ ModelForm = parameters.ModelForm
47
47
  ModelWithRole = parameters.ModelWithRole
48
- ArbitraryModels = parameters.ArbitraryModels
48
+ AnyModelForm = parameters.AnyModelForm
49
49
  DatasetLoaderMethodParams = parameters.DatasetLoaderMethodParams
50
- SingleDatasetLoader = parameters.SingleDatasetLoader
50
+ DatasetLoaderForm = parameters.DatasetLoaderForm
51
51
  DatasetLoaderWithRole = parameters.DatasetLoaderWithRole
52
- ArbitraryDatasetLoaders = parameters.ArbitraryDatasetLoaders
52
+ AnyDatasetLoaderForm = parameters.AnyDatasetLoaderForm
53
53
  get_dataset_loader_version_requirements = dataset_loader.get_dataset_loader_version_requirements
54
54
  get_executor_version_requirements = executor.get_executor_version_requirements
55
55
  get_model_version_requirements = model.get_model_version_requirements
@@ -77,4 +77,8 @@ set_dataset_loader_tag = dataset_loader.set_dataset_loader_tag
77
77
  set_executor_tag = executor.set_executor_tag
78
78
  set_model_tag = model.set_model_tag
79
79
  get_latest_model_version = model.get_latest_model_version
80
+ get_latest_executor_version = executor.get_latest_executor_version
81
+ get_latest_dataset_loader_version = dataset_loader.get_latest_dataset_loader_version
80
82
  get_initial_model_version = model.get_initial_model_version
83
+ get_initial_executor_version = executor.get_initial_executor_version
84
+ get_initial_dataset_loader_version = dataset_loader.get_initial_dataset_loader_version
@@ -5,7 +5,7 @@ from sgqlc.operation import Operation
5
5
 
6
6
  from ML_management.dataset_loader.dataset_loader_pattern_to_methods_map import DatasetLoaderMethodName
7
7
  from ML_management.sdk import schema
8
- from ML_management.sdk.schema import DatasetLoader, DatasetLoaderVersion
8
+ from ML_management.sdk.schema import DatasetLoaderInfo, DatasetLoaderVersionInfo
9
9
  from ML_management.sdk.sdk import _print_params_by_schema, _to_datetime, send_graphql_request
10
10
 
11
11
 
@@ -30,7 +30,7 @@ def list_dataset_loader() -> pd.DataFrame:
30
30
  return df
31
31
 
32
32
 
33
- def set_dataset_loader_tag(name: str, key: str, value: str) -> DatasetLoader:
33
+ def set_dataset_loader_tag(name: str, key: str, value: str) -> DatasetLoaderInfo:
34
34
  """
35
35
  Set dataset loader tag.
36
36
 
@@ -45,7 +45,7 @@ def set_dataset_loader_tag(name: str, key: str, value: str) -> DatasetLoader:
45
45
 
46
46
  Returns
47
47
  -------
48
- DatasetLoader
48
+ DatasetLoaderInfo
49
49
  DatasetLoader instance with meta information.
50
50
  """
51
51
  op = Operation(schema.Mutation)
@@ -53,10 +53,10 @@ def set_dataset_loader_tag(name: str, key: str, value: str) -> DatasetLoader:
53
53
  set_tag.name()
54
54
  set_tag.tags()
55
55
  dataset_loader = send_graphql_request(op=op)
56
- return DatasetLoader(dataset_loader)
56
+ return DatasetLoaderInfo(dataset_loader)
57
57
 
58
58
 
59
- def delete_dataset_loader_tag(name: str, key: str) -> DatasetLoader:
59
+ def delete_dataset_loader_tag(name: str, key: str) -> DatasetLoaderInfo:
60
60
  """
61
61
  Delete dataset loader tag.
62
62
 
@@ -69,7 +69,7 @@ def delete_dataset_loader_tag(name: str, key: str) -> DatasetLoader:
69
69
 
70
70
  Returns
71
71
  -------
72
- DatasetLoader
72
+ DatasetLoaderInfo
73
73
  DatasetLoader instance with meta information.
74
74
  """
75
75
  op = Operation(schema.Mutation)
@@ -77,10 +77,10 @@ def delete_dataset_loader_tag(name: str, key: str) -> DatasetLoader:
77
77
  delete_tag.name()
78
78
  delete_tag.tags()
79
79
  dataset_loader = send_graphql_request(op=op)
80
- return DatasetLoader(dataset_loader)
80
+ return DatasetLoaderInfo(dataset_loader)
81
81
 
82
82
 
83
- def set_dataset_loader_description(name: str, description: str) -> DatasetLoader:
83
+ def set_dataset_loader_description(name: str, description: str) -> DatasetLoaderInfo:
84
84
  """
85
85
  Set dataset loader description.
86
86
 
@@ -93,7 +93,7 @@ def set_dataset_loader_description(name: str, description: str) -> DatasetLoader
93
93
 
94
94
  Returns
95
95
  -------
96
- DatasetLoader
96
+ DatasetLoaderInfo
97
97
  DatasetLoader instance with meta information.
98
98
  """
99
99
  op = Operation(schema.Mutation)
@@ -101,7 +101,7 @@ def set_dataset_loader_description(name: str, description: str) -> DatasetLoader
101
101
  set_description.name()
102
102
  set_description.description()
103
103
  dataset_loader = send_graphql_request(op=op)
104
- return DatasetLoader(dataset_loader)
104
+ return DatasetLoaderInfo(dataset_loader)
105
105
 
106
106
 
107
107
  def list_dataset_loader_version(name: str) -> pd.DataFrame:
@@ -194,7 +194,7 @@ def print_dataset_loader_schema(name: str, version: Optional[int] = None) -> Non
194
194
  _print_params_by_schema(json_schema=schema_, schema_type=DatasetLoaderMethodName(method_name).name)
195
195
 
196
196
 
197
- def set_dataset_loader_version_description(name: str, version: int, description: str) -> DatasetLoaderVersion:
197
+ def set_dataset_loader_version_description(name: str, version: int, description: str) -> DatasetLoaderVersionInfo:
198
198
  """
199
199
  Set dataset loader version description.
200
200
 
@@ -209,7 +209,7 @@ def set_dataset_loader_version_description(name: str, version: int, description:
209
209
 
210
210
  Returns
211
211
  -------
212
- DatasetLoaderVersion
212
+ DatasetLoaderVersionInfo
213
213
  Dataset loader version instance with meta information.
214
214
  """
215
215
  op = Operation(schema.Mutation)
@@ -220,10 +220,10 @@ def set_dataset_loader_version_description(name: str, version: int, description:
220
220
  set_description.description()
221
221
 
222
222
  dataset_loader = send_graphql_request(op=op)
223
- return DatasetLoaderVersion(dataset_loader)
223
+ return DatasetLoaderVersionInfo(dataset_loader)
224
224
 
225
225
 
226
- def set_dataset_loader_version_tag(name: str, version: int, key: str, value: str) -> DatasetLoaderVersion:
226
+ def set_dataset_loader_version_tag(name: str, version: int, key: str, value: str) -> DatasetLoaderVersionInfo:
227
227
  """
228
228
  Set dataset loader version tag.
229
229
 
@@ -240,7 +240,7 @@ def set_dataset_loader_version_tag(name: str, version: int, key: str, value: str
240
240
 
241
241
  Returns
242
242
  -------
243
- DatasetLoaderVersion
243
+ DatasetLoaderVersionInfo
244
244
  Dataset loader version instance with meta information.
245
245
  """
246
246
  op = Operation(schema.Mutation)
@@ -250,10 +250,10 @@ def set_dataset_loader_version_tag(name: str, version: int, key: str, value: str
250
250
  set_tag.version()
251
251
  set_tag.tags()
252
252
  dataset_loader = send_graphql_request(op=op)
253
- return DatasetLoaderVersion(dataset_loader)
253
+ return DatasetLoaderVersionInfo(dataset_loader)
254
254
 
255
255
 
256
- def delete_dataset_loader_version_tag(name: str, version: int, key: str) -> DatasetLoaderVersion:
256
+ def delete_dataset_loader_version_tag(name: str, version: int, key: str) -> DatasetLoaderVersionInfo:
257
257
  """
258
258
  Delete dataset loader version tag.
259
259
 
@@ -268,7 +268,7 @@ def delete_dataset_loader_version_tag(name: str, version: int, key: str) -> Data
268
268
 
269
269
  Returns
270
270
  -------
271
- DatasetLoaderVersion
271
+ DatasetLoaderVersionInfo
272
272
  Dataset loader version instance with meta information.
273
273
  """
274
274
  op = Operation(schema.Mutation)
@@ -278,10 +278,10 @@ def delete_dataset_loader_version_tag(name: str, version: int, key: str) -> Data
278
278
  delete_tag.version()
279
279
  delete_tag.tags()
280
280
  dataset_loader = send_graphql_request(op=op)
281
- return DatasetLoaderVersion(dataset_loader)
281
+ return DatasetLoaderVersionInfo(dataset_loader)
282
282
 
283
283
 
284
- def get_dataset_loader_version(name: str, version: Optional[int] = None) -> DatasetLoaderVersion:
284
+ def get_dataset_loader_version(name: str, version: Optional[int] = None) -> DatasetLoaderVersionInfo:
285
285
  """
286
286
  Meta information about the dataset loader version by the dataset loader name and version.
287
287
 
@@ -294,7 +294,7 @@ def get_dataset_loader_version(name: str, version: Optional[int] = None) -> Data
294
294
 
295
295
  Returns
296
296
  -------
297
- DatasetLoaderVersion
297
+ DatasetLoaderVersionInfo
298
298
  DatasetLoaderVersion instance with meta information.
299
299
  """
300
300
  op = Operation(schema.Query)
@@ -356,3 +356,45 @@ def get_dataset_loader_version_requirements(name: str, version: int) -> list:
356
356
  base_query.list_requirements()
357
357
  model_version = send_graphql_request(op, json_response=False)
358
358
  return model_version.dataset_loader_version_from_name_version.list_requirements
359
+
360
+
361
+ def get_latest_dataset_loader_version(name) -> DatasetLoaderVersionInfo:
362
+ """
363
+ Latest dataset loader version by the dataset loader name.
364
+
365
+ Parameters
366
+ ----------
367
+ name: str
368
+ Name of the dataset loader.
369
+
370
+ Returns
371
+ -------
372
+ DatasetLoaderVersionInfo
373
+ DatasetLoaderVersion instance with meta information.
374
+ """
375
+ return get_dataset_loader_version(name)
376
+
377
+
378
+ def get_initial_dataset_loader_version(name) -> DatasetLoaderVersionInfo:
379
+ """
380
+ Initial dataset loader version by the dataset loader name.
381
+
382
+ Parameters
383
+ ----------
384
+ name: str
385
+ Name of the dataset loader.
386
+
387
+ Returns
388
+ -------
389
+ DatasetLoaderVersionInfo
390
+ DatasetLoaderVersion instance with meta information.
391
+ """
392
+ op = Operation(schema.Query)
393
+ version = op.dataset_loader_from_name(name=name).init_dataset_loader_version()
394
+ version.name()
395
+ version.version()
396
+ version.tags()
397
+ version.description()
398
+ version.run.run_id()
399
+ dataset_loader_version = send_graphql_request(op, json_response=False)
400
+ return dataset_loader_version.dataset_loader_version_from_name_version
@@ -7,8 +7,8 @@ from ML_management.executor import BaseExecutor
7
7
  from ML_management.model.model_type_to_methods_map import ModelMethodName
8
8
  from ML_management.sdk import schema
9
9
  from ML_management.sdk.model import get_latest_model_version
10
- from ML_management.sdk.parameters import ArbitraryModels, ModelMethodParams, ModelVersionChoice, ModelWithRole
11
- from ML_management.sdk.schema import Executor, ExecutorVersion
10
+ from ML_management.sdk.parameters import AnyModelForm, ModelMethodParams, ModelVersionChoice, ModelWithRole
11
+ from ML_management.sdk.schema import ExecutorInfo, ExecutorVersionInfo
12
12
  from ML_management.sdk.sdk import _generate_fake_schema, _print_params_by_schema, _to_datetime, send_graphql_request
13
13
 
14
14
 
@@ -33,7 +33,7 @@ def list_executor() -> pd.DataFrame:
33
33
  return df
34
34
 
35
35
 
36
- def set_executor_tag(name: str, key: str, value: str) -> Executor:
36
+ def set_executor_tag(name: str, key: str, value: str) -> ExecutorInfo:
37
37
  """
38
38
  Set executor tag.
39
39
 
@@ -48,7 +48,7 @@ def set_executor_tag(name: str, key: str, value: str) -> Executor:
48
48
 
49
49
  Returns
50
50
  -------
51
- Executor
51
+ ExecutorInfo
52
52
  Executor instance with meta information.
53
53
  """
54
54
  op = Operation(schema.Mutation)
@@ -56,10 +56,10 @@ def set_executor_tag(name: str, key: str, value: str) -> Executor:
56
56
  set_tag.name()
57
57
  set_tag.tags()
58
58
  executor = send_graphql_request(op=op)
59
- return Executor(executor)
59
+ return ExecutorInfo(executor)
60
60
 
61
61
 
62
- def delete_executor_tag(name: str, key: str) -> Executor:
62
+ def delete_executor_tag(name: str, key: str) -> ExecutorInfo:
63
63
  """
64
64
  Delete executor tag.
65
65
 
@@ -72,7 +72,7 @@ def delete_executor_tag(name: str, key: str) -> Executor:
72
72
 
73
73
  Returns
74
74
  -------
75
- Executor
75
+ ExecutorInfo
76
76
  Executor instance with meta information.
77
77
  """
78
78
  op = Operation(schema.Mutation)
@@ -80,10 +80,10 @@ def delete_executor_tag(name: str, key: str) -> Executor:
80
80
  delete_tag.name()
81
81
  delete_tag.tags()
82
82
  executor = send_graphql_request(op=op)
83
- return Executor(executor)
83
+ return ExecutorInfo(executor)
84
84
 
85
85
 
86
- def set_executor_description(name: str, description: str) -> Executor:
86
+ def set_executor_description(name: str, description: str) -> ExecutorInfo:
87
87
  """
88
88
  Set executor description.
89
89
 
@@ -96,7 +96,7 @@ def set_executor_description(name: str, description: str) -> Executor:
96
96
 
97
97
  Returns
98
98
  -------
99
- Executor
99
+ ExecutorInfo
100
100
  Executor instance with meta information.
101
101
  """
102
102
  op = Operation(schema.Mutation)
@@ -104,7 +104,7 @@ def set_executor_description(name: str, description: str) -> Executor:
104
104
  set_description.name()
105
105
  set_description.description()
106
106
  executor = send_graphql_request(op=op)
107
- return Executor(executor)
107
+ return ExecutorInfo(executor)
108
108
 
109
109
 
110
110
  def delete_executor(executor_name: str) -> bool:
@@ -285,7 +285,7 @@ def _get_model_schema_for_executor(executor_name: str, executor_version: Optiona
285
285
 
286
286
  def generate_model_params_for_executor(
287
287
  executor_name: str, models: List[dict], executor_version: Optional[int] = None
288
- ) -> Union[List[ModelMethodParams], ArbitraryModels]:
288
+ ) -> Union[List[ModelMethodParams], AnyModelForm]:
289
289
  """
290
290
  Return example of model's methods parameters for executor.
291
291
 
@@ -410,7 +410,7 @@ def generate_model_params_for_executor(
410
410
 
411
411
  sdk_models.append(current_model)
412
412
 
413
- return ArbitraryModels(models=sdk_models)
413
+ return AnyModelForm(models=sdk_models)
414
414
 
415
415
 
416
416
  def print_executor_schema(name: str, version: Optional[int] = None) -> None:
@@ -479,7 +479,7 @@ def get_required_classes_by_executor(name: str, version: Optional[int] = None) -
479
479
  return json_data["executorVersionFromNameVersion"]["desiredModelPatterns"]
480
480
 
481
481
 
482
- def set_executor_version_description(name: str, version: int, description: str) -> ExecutorVersion:
482
+ def set_executor_version_description(name: str, version: int, description: str) -> ExecutorVersionInfo:
483
483
  """
484
484
  Set executor version description.
485
485
 
@@ -494,7 +494,7 @@ def set_executor_version_description(name: str, version: int, description: str)
494
494
 
495
495
  Returns
496
496
  -------
497
- ExecutorVersion
497
+ ExecutorVersionInfo
498
498
  Executor version instance with meta information.
499
499
  """
500
500
  op = Operation(schema.Mutation)
@@ -505,10 +505,10 @@ def set_executor_version_description(name: str, version: int, description: str)
505
505
  set_description.description()
506
506
 
507
507
  executor = send_graphql_request(op=op)
508
- return ExecutorVersion(executor)
508
+ return ExecutorVersionInfo(executor)
509
509
 
510
510
 
511
- def set_executor_version_tag(name: str, version: int, key: str, value: str) -> ExecutorVersion:
511
+ def set_executor_version_tag(name: str, version: int, key: str, value: str) -> ExecutorVersionInfo:
512
512
  """
513
513
  Set executor version tag.
514
514
 
@@ -525,7 +525,7 @@ def set_executor_version_tag(name: str, version: int, key: str, value: str) -> E
525
525
 
526
526
  Returns
527
527
  -------
528
- ExecutorVersion
528
+ ExecutorVersionInfo
529
529
  Executor version instance with meta information.
530
530
  """
531
531
  op = Operation(schema.Mutation)
@@ -535,10 +535,10 @@ def set_executor_version_tag(name: str, version: int, key: str, value: str) -> E
535
535
  set_tag.version()
536
536
  set_tag.tags()
537
537
  executor = send_graphql_request(op=op)
538
- return ExecutorVersion(executor)
538
+ return ExecutorVersionInfo(executor)
539
539
 
540
540
 
541
- def delete_executor_version_tag(name: str, version: int, key: str) -> ExecutorVersion:
541
+ def delete_executor_version_tag(name: str, version: int, key: str) -> ExecutorVersionInfo:
542
542
  """
543
543
  Delete executor version tag.
544
544
 
@@ -553,7 +553,7 @@ def delete_executor_version_tag(name: str, version: int, key: str) -> ExecutorVe
553
553
 
554
554
  Returns
555
555
  -------
556
- ExecutorVersion
556
+ ExecutorVersionInfo
557
557
  Executor version instance with meta information.
558
558
  """
559
559
  op = Operation(schema.Mutation)
@@ -563,10 +563,10 @@ def delete_executor_version_tag(name: str, version: int, key: str) -> ExecutorVe
563
563
  delete_tag.version()
564
564
  delete_tag.tags()
565
565
  executor = send_graphql_request(op=op)
566
- return ExecutorVersion(executor)
566
+ return ExecutorVersionInfo(executor)
567
567
 
568
568
 
569
- def get_executor_version(name: str, version: Optional[int] = None) -> ExecutorVersion:
569
+ def get_executor_version(name: str, version: Optional[int] = None) -> ExecutorVersionInfo:
570
570
  """
571
571
  Meta information about the executor version by the executor name and version.
572
572
 
@@ -579,7 +579,7 @@ def get_executor_version(name: str, version: Optional[int] = None) -> ExecutorVe
579
579
 
580
580
  Returns
581
581
  -------
582
- ExecutorVersion
582
+ ExecutorVersionInfo
583
583
  ExecutorVersion instance with meta information.
584
584
  """
585
585
  op = Operation(schema.Query)
@@ -641,3 +641,45 @@ def get_executor_version_requirements(name: str, version: int) -> list:
641
641
  base_query.list_requirements()
642
642
  model_version = send_graphql_request(op, json_response=False)
643
643
  return model_version.executor_version_from_name_version.list_requirements
644
+
645
+
646
+ def get_latest_executor_version(name) -> ExecutorVersionInfo:
647
+ """
648
+ Latest executor version by the executor name.
649
+
650
+ Parameters
651
+ ----------
652
+ name: str
653
+ Name of the executor.
654
+
655
+ Returns
656
+ -------
657
+ ExecutorVersionInfo
658
+ ExecutorVersion instance with meta information.
659
+ """
660
+ return get_executor_version(name)
661
+
662
+
663
+ def get_initial_executor_version(name) -> ExecutorVersionInfo:
664
+ """
665
+ Initial executor version by the executor name.
666
+
667
+ Parameters
668
+ ----------
669
+ name: str
670
+ Name of the executor.
671
+
672
+ Returns
673
+ -------
674
+ ExecutorVersionInfo
675
+ ExecutorVersion instance with meta information.
676
+ """
677
+ op = Operation(schema.Query)
678
+ version = op.executor_from_name(name=name).init_executor_version()
679
+ version.name()
680
+ version.version()
681
+ version.tags()
682
+ version.description()
683
+ version.run.run_id()
684
+ executor_version = send_graphql_request(op, json_response=False)
685
+ return executor_version.executor_version_from_name_version
@@ -16,7 +16,7 @@ from ML_management.mlmanagement.session import AuthSession
16
16
  from ML_management.mlmanagement.variables import get_server_websocket_url
17
17
  from ML_management.sdk import schema
18
18
  from ML_management.sdk.model import get_latest_model_version
19
- from ML_management.sdk.parameters import ArbitraryDatasetLoaders, ArbitraryModels, SingleDatasetLoader, SingleModel
19
+ from ML_management.sdk.parameters import AnyDatasetLoaderForm, AnyModelForm, DatasetLoaderForm, ModelForm
20
20
  from ML_management.sdk.schema import ExecutionJob, Param
21
21
  from ML_management.sdk.sdk import send_graphql_request
22
22
 
@@ -334,8 +334,8 @@ def _get_logs_url(params: Dict[str, Any], job_type: JobType, stream: bool = True
334
334
  def add_ml_job(
335
335
  job_executor_name: str,
336
336
  executor_params: dict,
337
- models_pattern: Union[SingleModel, ArbitraryModels],
338
- data_pattern: Union[SingleDatasetLoader, ArbitraryDatasetLoaders],
337
+ models_pattern: Union[ModelForm, AnyModelForm],
338
+ data_pattern: Union[DatasetLoaderForm, AnyDatasetLoaderForm],
339
339
  gpu: bool = False,
340
340
  job_executor_version: Optional[int] = None,
341
341
  experiment_name: str = "Default",
@@ -361,9 +361,9 @@ def add_ml_job(
361
361
  ...
362
362
  }
363
363
 
364
- models_pattern: Union[SingleModel, ArbitraryModels]
364
+ models_pattern: Union[ModelForm, AnyModelForm]
365
365
  Necessary information for using the models.
366
- data_pattern: Union[SingleDatasetLoader, ArbitraryDatasetLoaders]
366
+ data_pattern: Union[DatasetLoaderForm, AnyDatasetLoaderForm]
367
367
  Necessary information for using the datasets.
368
368
  gpu: bool = False
369
369
  Whether to use GPU for this job or not. Default: False
@@ -383,9 +383,9 @@ def add_ml_job(
383
383
  str
384
384
  Name of the Job.
385
385
  """
386
- if not isinstance(models_pattern, SingleModel) and not isinstance(models_pattern, ArbitraryModels):
386
+ if not isinstance(models_pattern, ModelForm) and not isinstance(models_pattern, AnyModelForm):
387
387
  raise TypeError("Parameter models must have type SingleModel or ArbitraryModels.")
388
- if not isinstance(data_pattern, SingleDatasetLoader) and not isinstance(data_pattern, ArbitraryDatasetLoaders):
388
+ if not isinstance(data_pattern, DatasetLoaderForm) and not isinstance(data_pattern, AnyDatasetLoaderForm):
389
389
  raise TypeError("Parameter data_pattern must have type SingleDatasetLoader or ArbitraryDatasetLoaders.")
390
390
  models = models_pattern.serialize()
391
391
  data_params = data_pattern.serialize()