ml-dash 0.6.3__tar.gz → 0.6.10__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {ml_dash-0.6.3 → ml_dash-0.6.10}/PKG-INFO +81 -5
- {ml_dash-0.6.3 → ml_dash-0.6.10}/README.md +80 -4
- {ml_dash-0.6.3 → ml_dash-0.6.10}/pyproject.toml +4 -1
- ml_dash-0.6.10/src/ml_dash/__init__.py +105 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/auth/token_storage.py +0 -9
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/auto_start.py +19 -7
- ml_dash-0.6.10/src/ml_dash/buffer.py +735 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/cli.py +7 -1
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/cli_commands/api.py +10 -1
- ml_dash-0.6.10/src/ml_dash/cli_commands/create.py +145 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/cli_commands/download.py +196 -2
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/cli_commands/list.py +164 -1
- ml_dash-0.6.10/src/ml_dash/cli_commands/profile.py +219 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/cli_commands/upload.py +171 -6
- ml_dash-0.6.10/src/ml_dash/client.py +1988 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/experiment.py +526 -432
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/files.py +228 -70
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/run.py +93 -4
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/storage.py +403 -2
- ml_dash-0.6.10/src/ml_dash/track.py +263 -0
- ml_dash-0.6.3/src/ml_dash/__init__.py +0 -59
- ml_dash-0.6.3/src/ml_dash/cli_commands/profile.py +0 -92
- ml_dash-0.6.3/src/ml_dash/client.py +0 -1076
- {ml_dash-0.6.3 → ml_dash-0.6.10}/LICENSE +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/auth/__init__.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/auth/constants.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/auth/device_flow.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/auth/device_secret.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/auth/exceptions.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/cli_commands/__init__.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/cli_commands/login.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/cli_commands/logout.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/config.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/log.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/metric.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/params.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/py.typed +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/remote_auto_start.py +0 -0
- {ml_dash-0.6.3 → ml_dash-0.6.10}/src/ml_dash/snowflake.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.3
|
|
2
2
|
Name: ml-dash
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.10
|
|
4
4
|
Summary: ML experiment tracking and data storage
|
|
5
5
|
Keywords: machine-learning,experiment-tracking,mlops,data-storage
|
|
6
6
|
Author: Ge Yang, Tom Tao
|
|
@@ -68,10 +68,11 @@ Description-Content-Type: text/markdown
|
|
|
68
68
|
|
|
69
69
|
# ML-Dash
|
|
70
70
|
|
|
71
|
-
A simple and flexible SDK for ML experiment tracking and data storage.
|
|
71
|
+
A simple and flexible SDK for ML experiment tracking and data storage with background buffering for high-performance training.
|
|
72
72
|
|
|
73
73
|
## Features
|
|
74
74
|
|
|
75
|
+
### Core Features
|
|
75
76
|
- **Three Usage Styles**: Pre-configured singleton (dxp), context manager, or direct instantiation
|
|
76
77
|
- **Dual Operation Modes**: Remote (API server) or local (filesystem)
|
|
77
78
|
- **OAuth2 Authentication**: Secure device flow authentication for CLI and SDK
|
|
@@ -82,6 +83,13 @@ A simple and flexible SDK for ML experiment tracking and data storage.
|
|
|
82
83
|
- **Rich Metadata**: Tags, bindrs, descriptions, and custom metadata support
|
|
83
84
|
- **Simple API**: Minimal configuration, maximum flexibility
|
|
84
85
|
|
|
86
|
+
### Performance Features (New in 0.6.7)
|
|
87
|
+
- **Background Buffering**: Non-blocking I/O operations eliminate training interruptions
|
|
88
|
+
- **Automatic Batching**: Time-based (5s) and size-based (100 items) flush triggers
|
|
89
|
+
- **Track API**: Time-series data tracking for robotics, RL, and sequential experiments
|
|
90
|
+
- **Numpy Image Support**: Direct saving of numpy arrays as PNG/JPEG images
|
|
91
|
+
- **Parallel Uploads**: ThreadPoolExecutor for efficient file uploads
|
|
92
|
+
|
|
85
93
|
## Installation
|
|
86
94
|
|
|
87
95
|
<table>
|
|
@@ -93,14 +101,14 @@ A simple and flexible SDK for ML experiment tracking and data storage.
|
|
|
93
101
|
<td>
|
|
94
102
|
|
|
95
103
|
```bash
|
|
96
|
-
uv add ml-dash
|
|
104
|
+
uv add ml-dash
|
|
97
105
|
```
|
|
98
106
|
|
|
99
107
|
</td>
|
|
100
108
|
<td>
|
|
101
109
|
|
|
102
110
|
```bash
|
|
103
|
-
pip install ml-dash
|
|
111
|
+
pip install ml-dash
|
|
104
112
|
```
|
|
105
113
|
|
|
106
114
|
</td>
|
|
@@ -159,7 +167,75 @@ with Experiment(
|
|
|
159
167
|
|
|
160
168
|
```
|
|
161
169
|
|
|
162
|
-
|
|
170
|
+
## New Features in 0.6.7
|
|
171
|
+
|
|
172
|
+
### 🚀 Background Buffering (Non-blocking I/O)
|
|
173
|
+
|
|
174
|
+
All write operations are now buffered and executed in background threads:
|
|
175
|
+
|
|
176
|
+
```python
|
|
177
|
+
with Experiment("my-project/exp").run as experiment:
|
|
178
|
+
for i in range(10000):
|
|
179
|
+
# Non-blocking! Returns immediately
|
|
180
|
+
experiment.log(f"Step {i}")
|
|
181
|
+
experiment.metrics("train").log(loss=loss, accuracy=acc)
|
|
182
|
+
experiment.files("frames").save_image(frame, to=f"frame_{i}.jpg")
|
|
183
|
+
|
|
184
|
+
# All data automatically flushed when context exits
|
|
185
|
+
```
|
|
186
|
+
|
|
187
|
+
Configure buffering via environment variables:
|
|
188
|
+
```bash
|
|
189
|
+
export ML_DASH_BUFFER_ENABLED=true
|
|
190
|
+
export ML_DASH_FLUSH_INTERVAL=5.0
|
|
191
|
+
export ML_DASH_LOG_BATCH_SIZE=100
|
|
192
|
+
```
|
|
193
|
+
|
|
194
|
+
### 📊 Track API (Time-Series Data)
|
|
195
|
+
|
|
196
|
+
Perfect for robotics, RL, and sequential experiments:
|
|
197
|
+
|
|
198
|
+
```python
|
|
199
|
+
with Experiment("robotics/training").run as experiment:
|
|
200
|
+
for step in range(1000):
|
|
201
|
+
# Track robot position over time
|
|
202
|
+
experiment.track("robot/position").append({
|
|
203
|
+
"step": step,
|
|
204
|
+
"x": position[0],
|
|
205
|
+
"y": position[1],
|
|
206
|
+
"z": position[2]
|
|
207
|
+
})
|
|
208
|
+
|
|
209
|
+
# Track control signals
|
|
210
|
+
experiment.track("robot/control").append({
|
|
211
|
+
"step": step,
|
|
212
|
+
"motor1": ctrl[0],
|
|
213
|
+
"motor2": ctrl[1]
|
|
214
|
+
})
|
|
215
|
+
```
|
|
216
|
+
|
|
217
|
+
### 🖼️ Numpy Image Support
|
|
218
|
+
|
|
219
|
+
Save numpy arrays directly as images (PNG/JPEG):
|
|
220
|
+
|
|
221
|
+
```python
|
|
222
|
+
import numpy as np
|
|
223
|
+
|
|
224
|
+
with Experiment("vision/training").run as experiment:
|
|
225
|
+
# From MuJoCo, OpenCV, PIL, etc.
|
|
226
|
+
pixels = renderer.render() # numpy array
|
|
227
|
+
|
|
228
|
+
# Save as PNG (lossless)
|
|
229
|
+
experiment.files("frames").save_image(pixels, to="frame.png")
|
|
230
|
+
|
|
231
|
+
# Save as JPEG with quality control
|
|
232
|
+
experiment.files("frames").save_image(pixels, to="frame.jpg", quality=85)
|
|
233
|
+
|
|
234
|
+
# Auto-detection also works
|
|
235
|
+
experiment.files("frames").save(pixels, to="frame.jpg")
|
|
236
|
+
```
|
|
237
|
+
|
|
238
|
+
See [CHANGELOG.md](CHANGELOG.md) for complete release notes.
|
|
163
239
|
|
|
164
240
|
## Development Setup
|
|
165
241
|
|
|
@@ -1,9 +1,10 @@
|
|
|
1
1
|
# ML-Dash
|
|
2
2
|
|
|
3
|
-
A simple and flexible SDK for ML experiment tracking and data storage.
|
|
3
|
+
A simple and flexible SDK for ML experiment tracking and data storage with background buffering for high-performance training.
|
|
4
4
|
|
|
5
5
|
## Features
|
|
6
6
|
|
|
7
|
+
### Core Features
|
|
7
8
|
- **Three Usage Styles**: Pre-configured singleton (dxp), context manager, or direct instantiation
|
|
8
9
|
- **Dual Operation Modes**: Remote (API server) or local (filesystem)
|
|
9
10
|
- **OAuth2 Authentication**: Secure device flow authentication for CLI and SDK
|
|
@@ -14,6 +15,13 @@ A simple and flexible SDK for ML experiment tracking and data storage.
|
|
|
14
15
|
- **Rich Metadata**: Tags, bindrs, descriptions, and custom metadata support
|
|
15
16
|
- **Simple API**: Minimal configuration, maximum flexibility
|
|
16
17
|
|
|
18
|
+
### Performance Features (New in 0.6.7)
|
|
19
|
+
- **Background Buffering**: Non-blocking I/O operations eliminate training interruptions
|
|
20
|
+
- **Automatic Batching**: Time-based (5s) and size-based (100 items) flush triggers
|
|
21
|
+
- **Track API**: Time-series data tracking for robotics, RL, and sequential experiments
|
|
22
|
+
- **Numpy Image Support**: Direct saving of numpy arrays as PNG/JPEG images
|
|
23
|
+
- **Parallel Uploads**: ThreadPoolExecutor for efficient file uploads
|
|
24
|
+
|
|
17
25
|
## Installation
|
|
18
26
|
|
|
19
27
|
<table>
|
|
@@ -25,14 +33,14 @@ A simple and flexible SDK for ML experiment tracking and data storage.
|
|
|
25
33
|
<td>
|
|
26
34
|
|
|
27
35
|
```bash
|
|
28
|
-
uv add ml-dash
|
|
36
|
+
uv add ml-dash
|
|
29
37
|
```
|
|
30
38
|
|
|
31
39
|
</td>
|
|
32
40
|
<td>
|
|
33
41
|
|
|
34
42
|
```bash
|
|
35
|
-
pip install ml-dash
|
|
43
|
+
pip install ml-dash
|
|
36
44
|
```
|
|
37
45
|
|
|
38
46
|
</td>
|
|
@@ -91,7 +99,75 @@ with Experiment(
|
|
|
91
99
|
|
|
92
100
|
```
|
|
93
101
|
|
|
94
|
-
|
|
102
|
+
## New Features in 0.6.7
|
|
103
|
+
|
|
104
|
+
### 🚀 Background Buffering (Non-blocking I/O)
|
|
105
|
+
|
|
106
|
+
All write operations are now buffered and executed in background threads:
|
|
107
|
+
|
|
108
|
+
```python
|
|
109
|
+
with Experiment("my-project/exp").run as experiment:
|
|
110
|
+
for i in range(10000):
|
|
111
|
+
# Non-blocking! Returns immediately
|
|
112
|
+
experiment.log(f"Step {i}")
|
|
113
|
+
experiment.metrics("train").log(loss=loss, accuracy=acc)
|
|
114
|
+
experiment.files("frames").save_image(frame, to=f"frame_{i}.jpg")
|
|
115
|
+
|
|
116
|
+
# All data automatically flushed when context exits
|
|
117
|
+
```
|
|
118
|
+
|
|
119
|
+
Configure buffering via environment variables:
|
|
120
|
+
```bash
|
|
121
|
+
export ML_DASH_BUFFER_ENABLED=true
|
|
122
|
+
export ML_DASH_FLUSH_INTERVAL=5.0
|
|
123
|
+
export ML_DASH_LOG_BATCH_SIZE=100
|
|
124
|
+
```
|
|
125
|
+
|
|
126
|
+
### 📊 Track API (Time-Series Data)
|
|
127
|
+
|
|
128
|
+
Perfect for robotics, RL, and sequential experiments:
|
|
129
|
+
|
|
130
|
+
```python
|
|
131
|
+
with Experiment("robotics/training").run as experiment:
|
|
132
|
+
for step in range(1000):
|
|
133
|
+
# Track robot position over time
|
|
134
|
+
experiment.track("robot/position").append({
|
|
135
|
+
"step": step,
|
|
136
|
+
"x": position[0],
|
|
137
|
+
"y": position[1],
|
|
138
|
+
"z": position[2]
|
|
139
|
+
})
|
|
140
|
+
|
|
141
|
+
# Track control signals
|
|
142
|
+
experiment.track("robot/control").append({
|
|
143
|
+
"step": step,
|
|
144
|
+
"motor1": ctrl[0],
|
|
145
|
+
"motor2": ctrl[1]
|
|
146
|
+
})
|
|
147
|
+
```
|
|
148
|
+
|
|
149
|
+
### 🖼️ Numpy Image Support
|
|
150
|
+
|
|
151
|
+
Save numpy arrays directly as images (PNG/JPEG):
|
|
152
|
+
|
|
153
|
+
```python
|
|
154
|
+
import numpy as np
|
|
155
|
+
|
|
156
|
+
with Experiment("vision/training").run as experiment:
|
|
157
|
+
# From MuJoCo, OpenCV, PIL, etc.
|
|
158
|
+
pixels = renderer.render() # numpy array
|
|
159
|
+
|
|
160
|
+
# Save as PNG (lossless)
|
|
161
|
+
experiment.files("frames").save_image(pixels, to="frame.png")
|
|
162
|
+
|
|
163
|
+
# Save as JPEG with quality control
|
|
164
|
+
experiment.files("frames").save_image(pixels, to="frame.jpg", quality=85)
|
|
165
|
+
|
|
166
|
+
# Auto-detection also works
|
|
167
|
+
experiment.files("frames").save(pixels, to="frame.jpg")
|
|
168
|
+
```
|
|
169
|
+
|
|
170
|
+
See [CHANGELOG.md](CHANGELOG.md) for complete release notes.
|
|
95
171
|
|
|
96
172
|
## Development Setup
|
|
97
173
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
[project]
|
|
2
2
|
name = "ml-dash"
|
|
3
|
-
version = "0.6.
|
|
3
|
+
version = "0.6.10"
|
|
4
4
|
description = "ML experiment tracking and data storage"
|
|
5
5
|
readme = "README.md"
|
|
6
6
|
requires-python = ">=3.9"
|
|
@@ -60,6 +60,9 @@ dev = [
|
|
|
60
60
|
"mypy>=1.9.0",
|
|
61
61
|
]
|
|
62
62
|
|
|
63
|
+
[tool.ruff]
|
|
64
|
+
indent-width = 2
|
|
65
|
+
|
|
63
66
|
[tool.uv]
|
|
64
67
|
|
|
65
68
|
[build-system]
|
|
@@ -0,0 +1,105 @@
|
|
|
1
|
+
"""
|
|
2
|
+
ML-Dash Python SDK
|
|
3
|
+
|
|
4
|
+
A simple and flexible SDK for ML experiment metricing and data storage.
|
|
5
|
+
|
|
6
|
+
Prefix format: {owner}/{project}/path.../[name]
|
|
7
|
+
- owner: First segment (e.g., your username)
|
|
8
|
+
- project: Second segment (e.g., project name)
|
|
9
|
+
- path: Remaining segments form the folder structure
|
|
10
|
+
- name: Derived from last segment (may be a seed/id)
|
|
11
|
+
|
|
12
|
+
Usage:
|
|
13
|
+
|
|
14
|
+
from ml_dash import Experiment
|
|
15
|
+
|
|
16
|
+
# Local mode - explicit configuration
|
|
17
|
+
with Experiment(
|
|
18
|
+
prefix="ge/my-project/experiments/exp1",
|
|
19
|
+
dash_root=".dash"
|
|
20
|
+
).run as exp:
|
|
21
|
+
exp.log("Training started")
|
|
22
|
+
exp.params.set(lr=0.001)
|
|
23
|
+
exp.metrics("train").log(loss=0.5, step=0)
|
|
24
|
+
|
|
25
|
+
# Default: Remote mode (defaults to https://api.dash.ml)
|
|
26
|
+
with Experiment(prefix="ge/my-project/experiments/exp1").run as exp:
|
|
27
|
+
exp.log("Training started")
|
|
28
|
+
exp.params.set(lr=0.001)
|
|
29
|
+
exp.metrics("train").log(loss=0.5, step=0)
|
|
30
|
+
|
|
31
|
+
# Decorator style
|
|
32
|
+
from ml_dash import ml_dash_experiment
|
|
33
|
+
|
|
34
|
+
@ml_dash_experiment(prefix="ge/my-project/experiments/exp1")
|
|
35
|
+
def train_model(exp):
|
|
36
|
+
exp.log("Training started")
|
|
37
|
+
"""
|
|
38
|
+
|
|
39
|
+
from .client import RemoteClient, userinfo
|
|
40
|
+
from .experiment import Experiment, OperationMode, ml_dash_experiment
|
|
41
|
+
from .log import LogBuilder, LogLevel
|
|
42
|
+
from .params import ParametersBuilder
|
|
43
|
+
from .run import RUN
|
|
44
|
+
from .storage import LocalStorage
|
|
45
|
+
|
|
46
|
+
__version__ = "0.6.10"
|
|
47
|
+
|
|
48
|
+
# Minimum version required - blocks older versions
|
|
49
|
+
MINIMUM_REQUIRED_VERSION = "0.6.10"
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def _check_version_compatibility():
|
|
53
|
+
"""
|
|
54
|
+
Enforce minimum version requirement.
|
|
55
|
+
|
|
56
|
+
Raises ImportError if installed version is below minimum required version.
|
|
57
|
+
This ensures users have the latest features (userinfo, namespace auto-detection, etc.)
|
|
58
|
+
"""
|
|
59
|
+
try:
|
|
60
|
+
from packaging import version
|
|
61
|
+
except ImportError:
|
|
62
|
+
# If packaging is not available, skip check
|
|
63
|
+
# (unlikely since it's a common dependency)
|
|
64
|
+
return
|
|
65
|
+
|
|
66
|
+
current = version.parse(__version__)
|
|
67
|
+
minimum = version.parse(MINIMUM_REQUIRED_VERSION)
|
|
68
|
+
|
|
69
|
+
if current < minimum:
|
|
70
|
+
raise ImportError(
|
|
71
|
+
f"\n"
|
|
72
|
+
f"{'=' * 80}\n"
|
|
73
|
+
f"ERROR: ml-dash version {__version__} is too old!\n"
|
|
74
|
+
f"{'=' * 80}\n"
|
|
75
|
+
f"\n"
|
|
76
|
+
f"This version of ml-dash ({__version__}) is no longer supported.\n"
|
|
77
|
+
f"Minimum required version: {MINIMUM_REQUIRED_VERSION}\n"
|
|
78
|
+
f"\n"
|
|
79
|
+
f"Please upgrade to the latest version:\n"
|
|
80
|
+
f"\n"
|
|
81
|
+
f" pip install --upgrade ml-dash\n"
|
|
82
|
+
f"\n"
|
|
83
|
+
f"Or install specific version:\n"
|
|
84
|
+
f"\n"
|
|
85
|
+
f" pip install ml-dash>={MINIMUM_REQUIRED_VERSION}\n"
|
|
86
|
+
f"\n"
|
|
87
|
+
f"{'=' * 80}\n"
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
# Enforce version check on import
|
|
92
|
+
_check_version_compatibility()
|
|
93
|
+
|
|
94
|
+
__all__ = [
|
|
95
|
+
"Experiment",
|
|
96
|
+
"ml_dash_experiment",
|
|
97
|
+
"OperationMode",
|
|
98
|
+
"RemoteClient",
|
|
99
|
+
"LocalStorage",
|
|
100
|
+
"LogLevel",
|
|
101
|
+
"LogBuilder",
|
|
102
|
+
"ParametersBuilder",
|
|
103
|
+
"RUN",
|
|
104
|
+
"userinfo",
|
|
105
|
+
]
|
|
@@ -292,12 +292,3 @@ def decode_jwt_payload(token: str) -> dict:
|
|
|
292
292
|
return {}
|
|
293
293
|
|
|
294
294
|
|
|
295
|
-
def get_jwt_user():
|
|
296
|
-
# Load token
|
|
297
|
-
storage = get_token_storage()
|
|
298
|
-
token = storage.load("ml-dash-token")
|
|
299
|
-
|
|
300
|
-
if token:
|
|
301
|
-
user = decode_jwt_payload(token)
|
|
302
|
-
return user
|
|
303
|
-
return None
|
|
@@ -31,21 +31,33 @@ import atexit
|
|
|
31
31
|
# Token is auto-loaded from storage when first used
|
|
32
32
|
# If not authenticated, operations will fail with AuthenticationError
|
|
33
33
|
# Prefix format: {owner}/{project}/path...
|
|
34
|
-
# Using getpass to get current user as owner for local convenience
|
|
35
34
|
import getpass
|
|
36
35
|
from datetime import datetime
|
|
37
36
|
|
|
38
|
-
from .auth.token_storage import get_jwt_user
|
|
39
37
|
from .experiment import Experiment
|
|
40
38
|
|
|
41
|
-
|
|
42
|
-
#
|
|
43
|
-
|
|
39
|
+
# Get username for dxp namespace
|
|
40
|
+
# Note: We use userinfo for fresh data (recommended approach)
|
|
41
|
+
# Falls back to system username if not authenticated
|
|
42
|
+
try:
|
|
43
|
+
from .client import userinfo
|
|
44
|
+
_username = userinfo.username or getpass.getuser()
|
|
45
|
+
except Exception:
|
|
46
|
+
# If userinfo fails (e.g., no network), fall back to system user
|
|
47
|
+
_username = getpass.getuser()
|
|
48
|
+
|
|
44
49
|
_now = datetime.now()
|
|
45
50
|
|
|
51
|
+
# Create pre-configured singleton experiment in REMOTE mode
|
|
52
|
+
# - dash_url=True: Use default remote server (https://api.dash.ml)
|
|
53
|
+
# - dash_root=None: Remote-only mode (no local storage)
|
|
54
|
+
# - user: Uses authenticated username from userinfo (fresh from server)
|
|
55
|
+
# - Token is auto-loaded from storage when first used
|
|
56
|
+
# - If not authenticated, operations will fail with AuthenticationError
|
|
46
57
|
dxp = Experiment(
|
|
47
|
-
|
|
48
|
-
|
|
58
|
+
user=_username, # Use authenticated username for namespace
|
|
59
|
+
dash_url=True, # Use remote API (https://api.dash.ml)
|
|
60
|
+
dash_root=None, # Remote-only mode (no local .dash/)
|
|
49
61
|
)
|
|
50
62
|
|
|
51
63
|
|