mimical 0.1.1__tar.gz → 0.1.3__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mimical-0.1.1 → mimical-0.1.3}/PKG-INFO +5 -3
- mimical-0.1.3/README.rst +6 -0
- {mimical-0.1.1 → mimical-0.1.3}/mimical/fitting/fitter.py +33 -0
- {mimical-0.1.1 → mimical-0.1.3}/mimical/plotting/plotting.py +0 -3
- {mimical-0.1.1 → mimical-0.1.3}/mimical.egg-info/PKG-INFO +5 -3
- {mimical-0.1.1 → mimical-0.1.3}/mimical.egg-info/SOURCES.txt +1 -1
- {mimical-0.1.1 → mimical-0.1.3}/setup.py +10 -5
- mimical-0.1.1/README.md +0 -4
- {mimical-0.1.1 → mimical-0.1.3}/mimical/__init__.py +0 -0
- {mimical-0.1.1 → mimical-0.1.3}/mimical/fitting/__init__.py +0 -0
- {mimical-0.1.1 → mimical-0.1.3}/mimical/fitting/prior_handler.py +0 -0
- {mimical-0.1.1 → mimical-0.1.3}/mimical/plotting/__init__.py +0 -0
- {mimical-0.1.1 → mimical-0.1.3}/mimical/utils/__init__.py +0 -0
- {mimical-0.1.1 → mimical-0.1.3}/mimical/utils/filter_set.py +0 -0
- {mimical-0.1.1 → mimical-0.1.3}/mimical.egg-info/dependency_links.txt +0 -0
- {mimical-0.1.1 → mimical-0.1.3}/mimical.egg-info/requires.txt +0 -0
- {mimical-0.1.1 → mimical-0.1.3}/mimical.egg-info/top_level.txt +0 -0
- {mimical-0.1.1 → mimical-0.1.3}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mimical
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.3
|
|
4
4
|
Summary: Intesity modelling of multiply-imaged objects
|
|
5
5
|
Author: Struan Stevenson
|
|
6
6
|
Author-email: struan.stevenson@ed.ac.uk
|
|
@@ -17,7 +17,9 @@ Dynamic: description-content-type
|
|
|
17
17
|
Dynamic: requires-dist
|
|
18
18
|
Dynamic: summary
|
|
19
19
|
|
|
20
|
-
|
|
20
|
+
** Mimical (Modelling the Intensity of Multiply-Imaged Celestial Ancient Light)
|
|
21
21
|
|
|
22
22
|
|
|
23
|
-
|
|
23
|
+
Mimical is an intensity modelling code for multiply-imaged objects, performing simultaenous Bayseian inference of model parameters via the nested sampling algorithm. Mimical supports any astropy model, and supports user defined parameter polynomial depenency with image wavelength.
|
|
24
|
+
|
|
25
|
+
.. image:: docs/mimical_workflow.pdf
|
mimical-0.1.3/README.rst
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
1
|
+
** Mimical (Modelling the Intensity of Multiply-Imaged Celestial Ancient Light)
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
Mimical is an intensity modelling code for multiply-imaged objects, performing simultaenous Bayseian inference of model parameters via the nested sampling algorithm. Mimical supports any astropy model, and supports user defined parameter polynomial depenency with image wavelength.
|
|
5
|
+
|
|
6
|
+
.. image:: docs/mimical_workflow.pdf
|
|
@@ -14,11 +14,15 @@ from ..plotting import Plotter
|
|
|
14
14
|
|
|
15
15
|
from ..utils import filter_set
|
|
16
16
|
|
|
17
|
+
from tqdm import tqdm
|
|
18
|
+
|
|
19
|
+
|
|
17
20
|
dir_path = os.getcwd()
|
|
18
21
|
if not os.path.isdir(dir_path + "/mimical"):
|
|
19
22
|
os.system('mkdir ' + dir_path + "/mimical")
|
|
20
23
|
os.system('mkdir ' + dir_path + "/mimical/plots")
|
|
21
24
|
os.system('mkdir ' + dir_path + "/mimical/posteriors")
|
|
25
|
+
os.system('mkdir ' + dir_path + "/mimical/cats")
|
|
22
26
|
|
|
23
27
|
|
|
24
28
|
|
|
@@ -162,6 +166,7 @@ class mimical(object):
|
|
|
162
166
|
self.samples = pd.read_csv(dir_path+'/mimical/posteriors' + f'/{self.id}.txt', delimiter=' ').to_numpy()
|
|
163
167
|
fit_dic = dict(zip((np.array((list(self.fitter_prior.keys)))+"_50").tolist(), np.median(self.samples, axis=0).tolist()))
|
|
164
168
|
print(f"Loading existing posterior at " + dir_path + '/mimical/posteriors' + f'/{self.id}.txt')
|
|
169
|
+
self.save_cat()
|
|
165
170
|
print(" ")
|
|
166
171
|
return fit_dic
|
|
167
172
|
|
|
@@ -200,7 +205,35 @@ class mimical(object):
|
|
|
200
205
|
print("Sampling finished successfully.")
|
|
201
206
|
print(" ")
|
|
202
207
|
|
|
208
|
+
self.save_cat()
|
|
209
|
+
|
|
203
210
|
return fit_dic
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def save_cat(self):
|
|
214
|
+
|
|
215
|
+
user_samples = np.zeros((self.samples.shape[0], len(self.wavs), len(self.user_prior.keys())))
|
|
216
|
+
# Get median Nautilus parameters and transalte into median model parameters.
|
|
217
|
+
for j in tqdm(range(self.samples.shape[0])):
|
|
218
|
+
# Get median Nautilus parameters and transalte into median model parameters.
|
|
219
|
+
param_dict = dict(zip(list(self.fitter_prior.keys), self.samples[j]))
|
|
220
|
+
pars = self.prior_handler.revert(param_dict, self.wavs)
|
|
221
|
+
user_samples[j] = pars
|
|
222
|
+
|
|
223
|
+
quantiles = np.percentile(user_samples, q=(16, 50, 84), axis=0)
|
|
224
|
+
|
|
225
|
+
dic = {}
|
|
226
|
+
for j in range(len(self.filter_names)):
|
|
227
|
+
for i in range(len(self.user_prior.keys())):
|
|
228
|
+
key = list(self.user_prior.keys())[i]
|
|
229
|
+
dic[key + "_" + self.filter_names[j] + "_16"] = [quantiles[0, j, i]]
|
|
230
|
+
dic[key + "_" + self.filter_names[j] + "_50"] = [quantiles[1, j, i]]
|
|
231
|
+
dic[key + "_" + self.filter_names[j] + "_84"] = [quantiles[2, j, i]]
|
|
232
|
+
|
|
233
|
+
df = pd.DataFrame(dic)
|
|
234
|
+
df.to_csv(dir_path+'/mimical/cats' + f'/{self.id}.csv', index=False)
|
|
235
|
+
|
|
236
|
+
|
|
204
237
|
|
|
205
238
|
|
|
206
239
|
def plot_model(self, type='median'):
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mimical
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.3
|
|
4
4
|
Summary: Intesity modelling of multiply-imaged objects
|
|
5
5
|
Author: Struan Stevenson
|
|
6
6
|
Author-email: struan.stevenson@ed.ac.uk
|
|
@@ -17,7 +17,9 @@ Dynamic: description-content-type
|
|
|
17
17
|
Dynamic: requires-dist
|
|
18
18
|
Dynamic: summary
|
|
19
19
|
|
|
20
|
-
|
|
20
|
+
** Mimical (Modelling the Intensity of Multiply-Imaged Celestial Ancient Light)
|
|
21
21
|
|
|
22
22
|
|
|
23
|
-
|
|
23
|
+
Mimical is an intensity modelling code for multiply-imaged objects, performing simultaenous Bayseian inference of model parameters via the nested sampling algorithm. Mimical supports any astropy model, and supports user defined parameter polynomial depenency with image wavelength.
|
|
24
|
+
|
|
25
|
+
.. image:: docs/mimical_workflow.pdf
|
|
@@ -1,14 +1,16 @@
|
|
|
1
1
|
import setuptools
|
|
2
2
|
from setuptools import setup
|
|
3
|
-
from
|
|
3
|
+
from os import path
|
|
4
4
|
|
|
5
|
-
|
|
6
|
-
|
|
5
|
+
here = path.abspath(path.dirname(__file__))
|
|
6
|
+
# Get the long description from the README file
|
|
7
|
+
with open(path.join(here, 'README.rst'), encoding='utf-8') as f:
|
|
8
|
+
long_description = f.read()
|
|
7
9
|
|
|
8
10
|
setup(
|
|
9
11
|
name='mimical',
|
|
10
12
|
|
|
11
|
-
version='0.1.
|
|
13
|
+
version='0.1.3',
|
|
12
14
|
|
|
13
15
|
description='Intesity modelling of multiply-imaged objects',
|
|
14
16
|
|
|
@@ -22,7 +24,10 @@ setup(
|
|
|
22
24
|
|
|
23
25
|
packages= setuptools.find_packages(),
|
|
24
26
|
|
|
25
|
-
package_data = {'': ['*.txt', '*.fits'],},
|
|
27
|
+
package_data = {'': ['*.txt', '*.fits', '*.pdf'],},
|
|
28
|
+
|
|
29
|
+
include_package_data=True,
|
|
30
|
+
|
|
26
31
|
|
|
27
32
|
install_requires=["numpy", "astropy", "matplotlib", "nautilus-sampler", "petrofit"],
|
|
28
33
|
|
mimical-0.1.1/README.md
DELETED
|
@@ -1,4 +0,0 @@
|
|
|
1
|
-
# Mimical (Modelling the Intensity of Multiply-Imaged Celestial Ancient Light)
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
#### Mimical is an intensity modelling code for multiply-imaged objects, performing simultaenous Bayseian inference of model parameters via the nested sampling algorithm. Mimical supports any astropy model, and supports user defined parameter polynomial depenency with image wavelength.
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|