mimical 0.1.0__tar.gz → 0.1.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mimical-0.1.0 → mimical-0.1.1}/PKG-INFO +2 -2
- {mimical-0.1.0 → mimical-0.1.1}/README.md +1 -1
- {mimical-0.1.0 → mimical-0.1.1}/mimical/fitting/fitter.py +10 -5
- mimical-0.1.1/mimical/plotting/plotting.py +165 -0
- {mimical-0.1.0 → mimical-0.1.1}/mimical.egg-info/PKG-INFO +2 -2
- {mimical-0.1.0 → mimical-0.1.1}/setup.py +1 -1
- mimical-0.1.0/mimical/plotting/plotting.py +0 -87
- {mimical-0.1.0 → mimical-0.1.1}/mimical/__init__.py +0 -0
- {mimical-0.1.0 → mimical-0.1.1}/mimical/fitting/__init__.py +0 -0
- {mimical-0.1.0 → mimical-0.1.1}/mimical/fitting/prior_handler.py +0 -0
- {mimical-0.1.0 → mimical-0.1.1}/mimical/plotting/__init__.py +0 -0
- {mimical-0.1.0 → mimical-0.1.1}/mimical/utils/__init__.py +0 -0
- {mimical-0.1.0 → mimical-0.1.1}/mimical/utils/filter_set.py +0 -0
- {mimical-0.1.0 → mimical-0.1.1}/mimical.egg-info/SOURCES.txt +0 -0
- {mimical-0.1.0 → mimical-0.1.1}/mimical.egg-info/dependency_links.txt +0 -0
- {mimical-0.1.0 → mimical-0.1.1}/mimical.egg-info/requires.txt +0 -0
- {mimical-0.1.0 → mimical-0.1.1}/mimical.egg-info/top_level.txt +0 -0
- {mimical-0.1.0 → mimical-0.1.1}/setup.cfg +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mimical
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.1
|
|
4
4
|
Summary: Intesity modelling of multiply-imaged objects
|
|
5
5
|
Author: Struan Stevenson
|
|
6
6
|
Author-email: struan.stevenson@ed.ac.uk
|
|
@@ -17,7 +17,7 @@ Dynamic: description-content-type
|
|
|
17
17
|
Dynamic: requires-dist
|
|
18
18
|
Dynamic: summary
|
|
19
19
|
|
|
20
|
-
# Mimical (Modelling the Intensity of Multiply-Imaged
|
|
20
|
+
# Mimical (Modelling the Intensity of Multiply-Imaged Celestial Ancient Light)
|
|
21
21
|
|
|
22
22
|
|
|
23
23
|
#### Mimical is an intensity modelling code for multiply-imaged objects, performing simultaenous Bayseian inference of model parameters via the nested sampling algorithm. Mimical supports any astropy model, and supports user defined parameter polynomial depenency with image wavelength.
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Mimical (Modelling the Intensity of Multiply-Imaged
|
|
1
|
+
# Mimical (Modelling the Intensity of Multiply-Imaged Celestial Ancient Light)
|
|
2
2
|
|
|
3
3
|
|
|
4
4
|
#### Mimical is an intensity modelling code for multiply-imaged objects, performing simultaenous Bayseian inference of model parameters via the nested sampling algorithm. Mimical supports any astropy model, and supports user defined parameter polynomial depenency with image wavelength.
|
|
@@ -185,7 +185,7 @@ class mimical(object):
|
|
|
185
185
|
|
|
186
186
|
# Plot and save the corner plot
|
|
187
187
|
corner.corner(points, weights=np.exp(log_w), bins=20, labels=np.array(self.fitter_prior.keys), color='purple', plot_datapoints=False, range=np.repeat(0.999, len(self.fitter_prior.keys)))
|
|
188
|
-
plt.savefig(dir_path+'/mimical/plots' + f'/
|
|
188
|
+
plt.savefig(dir_path+'/mimical/plots' + f'/{self.id}_corner.pdf', bbox_inches='tight')
|
|
189
189
|
|
|
190
190
|
# Sample an appropriately weighted posterior for representative samples.
|
|
191
191
|
n_post = 10000
|
|
@@ -203,12 +203,17 @@ class mimical(object):
|
|
|
203
203
|
return fit_dic
|
|
204
204
|
|
|
205
205
|
|
|
206
|
-
def plot_model(self):
|
|
206
|
+
def plot_model(self, type='median'):
|
|
207
207
|
if self.success != True:
|
|
208
208
|
print(f'Sampling failed, cannot plot model for {self.id}.')
|
|
209
209
|
else:
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
210
|
+
if type=='median':
|
|
211
|
+
# Plot and save the median-parameter fit
|
|
212
|
+
Plotter().plot_median(self.images, self.wavs, self.convolved_models, self.samples, list(self.fitter_prior.keys), self.prior_handler, self.filter_names)
|
|
213
|
+
plt.savefig(dir_path+'/mimical/plots' + f'/{self.id}_median_model.pdf', bbox_inches='tight')
|
|
214
|
+
elif type=='median-param':
|
|
215
|
+
# Plot and save the median-parameter fit
|
|
216
|
+
Plotter().plot_median_param(self.images, self.wavs, self.convolved_models, self.samples, list(self.fitter_prior.keys), self.prior_handler, self.filter_names)
|
|
217
|
+
plt.savefig(dir_path+'/mimical/plots' + f'/{self.id}_median_param_model.pdf', bbox_inches='tight')
|
|
213
218
|
|
|
214
219
|
|
|
@@ -0,0 +1,165 @@
|
|
|
1
|
+
import matplotlib.pyplot as plt
|
|
2
|
+
import numpy as np
|
|
3
|
+
from astropy.convolution.utils import discretize_model
|
|
4
|
+
from tqdm import tqdm
|
|
5
|
+
from matplotlib import ticker
|
|
6
|
+
|
|
7
|
+
class Plotter(object):
|
|
8
|
+
|
|
9
|
+
def plot_median_param(self, images, wavs, convolved_models, samples, fitter_keys, prior_handler, filter_names):
|
|
10
|
+
|
|
11
|
+
fig = plt.figure()
|
|
12
|
+
gs = fig.add_gridspec(nrows=4, ncols=images.shape[0]+1, width_ratios=np.append(np.ones(images.shape[0]), 0.25))
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
# Get median Nautilus parameters and transalte into median model parameters.
|
|
16
|
+
param_dict = dict(zip(fitter_keys, np.median(samples, axis=0)))
|
|
17
|
+
pars = prior_handler.revert(param_dict, wavs)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
models = np.zeros_like(images)
|
|
21
|
+
for i in range(len(wavs)):
|
|
22
|
+
convolved_models[i].parameters = pars[i]
|
|
23
|
+
model = discretize_model(model=convolved_models[i],
|
|
24
|
+
x_range=[0,images[i].shape[1]],
|
|
25
|
+
y_range=[0,images[i].shape[0]],
|
|
26
|
+
mode='center')
|
|
27
|
+
models[i]=model
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
residuals = images - models
|
|
31
|
+
|
|
32
|
+
vmins = [-np.percentile(images.flatten(), q=95), -np.percentile(images.flatten(), q=95), -np.percentile(images.flatten(), q=95), min(np.percentile(residuals.flatten(), q=5), -np.percentile(residuals.flatten(), q=95))]
|
|
33
|
+
vmaxs = [np.percentile(images.flatten(), q=95), np.percentile(images.flatten(), q=95), np.percentile(images.flatten(), q=95), max(-np.percentile(residuals.flatten(), q=5), np.percentile(residuals.flatten(), q=95))]
|
|
34
|
+
cmaps = ['binary', 'binary', 'RdGy']
|
|
35
|
+
|
|
36
|
+
ax = fig.add_subplot(gs[0, 0])
|
|
37
|
+
ax.set_axis_off()
|
|
38
|
+
im1 = ax.pcolormesh(np.zeros_like(images[0]), vmax=vmaxs[0], vmin=vmins[0], cmap='RdGy')
|
|
39
|
+
cbarax1 = fig.add_subplot(gs[:3, -1])
|
|
40
|
+
cbarax1.set_yticks([])
|
|
41
|
+
cbarax1.set_xticks([])
|
|
42
|
+
cbar1 = plt.colorbar(im1, cax=cbarax1, fraction=1)
|
|
43
|
+
tick_locator = ticker.MaxNLocator(nbins=5)
|
|
44
|
+
cbar1.locator = tick_locator
|
|
45
|
+
cbar1.update_ticks()
|
|
46
|
+
|
|
47
|
+
im2 = ax.pcolormesh(np.zeros_like(images[0]), vmax=vmaxs[-1], vmin=vmins[-1], cmap='RdGy')
|
|
48
|
+
cbarax2 = fig.add_subplot(gs[3, -1])
|
|
49
|
+
cbarax2.set_yticks([])
|
|
50
|
+
cbarax2.set_xticks([])
|
|
51
|
+
cbar2 = plt.colorbar(im2, cax=cbarax2, fraction=1)
|
|
52
|
+
tick_locator = ticker.MaxNLocator(nbins=3)
|
|
53
|
+
cbar2.locator = tick_locator
|
|
54
|
+
cbar2.update_ticks()
|
|
55
|
+
|
|
56
|
+
for i in range(len(wavs)):
|
|
57
|
+
|
|
58
|
+
plotims = [images[i], models[i], residuals[i], residuals[i]]
|
|
59
|
+
|
|
60
|
+
for j in range(4):
|
|
61
|
+
|
|
62
|
+
ax = fig.add_subplot(gs[j, i])
|
|
63
|
+
im = ax.pcolormesh(plotims[j], vmax=vmaxs[j], vmin=vmins[j], cmap='RdGy')
|
|
64
|
+
ax.set_yticks([])
|
|
65
|
+
ax.set_xticks([])
|
|
66
|
+
|
|
67
|
+
if j==0:
|
|
68
|
+
ax.set_title(filter_names[i].upper())
|
|
69
|
+
|
|
70
|
+
if i==0:
|
|
71
|
+
if j==0:
|
|
72
|
+
ax.set_ylabel('Data')
|
|
73
|
+
if j==1:
|
|
74
|
+
ax.set_ylabel('Best\nModel')
|
|
75
|
+
if j==2:
|
|
76
|
+
ax.set_ylabel('Residual')
|
|
77
|
+
if j==3:
|
|
78
|
+
ax.set_ylabel('Residual\nZoom')
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
|
82
|
+
fig.set_size_inches(images.shape[0],4, forward=True)
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def plot_median(self, images, wavs, convolved_models, samples, fitter_keys, prior_handler, filter_names):
|
|
89
|
+
|
|
90
|
+
fig = plt.figure()
|
|
91
|
+
gs = fig.add_gridspec(nrows=4, ncols=images.shape[0]+1, width_ratios=np.append(np.ones(images.shape[0]), 0.25))
|
|
92
|
+
|
|
93
|
+
models = np.zeros((samples.shape[0], *images.shape))
|
|
94
|
+
|
|
95
|
+
print("Computing median model image...")
|
|
96
|
+
for j in tqdm(range(samples.shape[0])):
|
|
97
|
+
# Get median Nautilus parameters and transalte into median model parameters.
|
|
98
|
+
param_dict = dict(zip(fitter_keys, samples[j]))
|
|
99
|
+
pars = prior_handler.revert(param_dict, wavs)
|
|
100
|
+
|
|
101
|
+
for k in range(len(wavs)):
|
|
102
|
+
convolved_models[k].parameters = pars[k]
|
|
103
|
+
model = discretize_model(model=convolved_models[k],
|
|
104
|
+
x_range=[0,images[k].shape[1]],
|
|
105
|
+
y_range=[0,images[k].shape[0]],
|
|
106
|
+
mode='center')
|
|
107
|
+
models[j,k] = model
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
models = np.median(models, axis=0)
|
|
111
|
+
residuals = images - models
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
vmins = [-np.percentile(images.flatten(), q=95), -np.percentile(images.flatten(), q=95), -np.percentile(images.flatten(), q=95), min(np.percentile(residuals.flatten(), q=5), -np.percentile(residuals.flatten(), q=95))]
|
|
115
|
+
vmaxs = [np.percentile(images.flatten(), q=95), np.percentile(images.flatten(), q=95), np.percentile(images.flatten(), q=95), max(-np.percentile(residuals.flatten(), q=5), np.percentile(residuals.flatten(), q=95))]
|
|
116
|
+
cmaps = ['binary', 'binary', 'RdGy']
|
|
117
|
+
|
|
118
|
+
ax = fig.add_subplot(gs[0, 0])
|
|
119
|
+
ax.set_axis_off()
|
|
120
|
+
im1 = ax.pcolormesh(np.zeros_like(images[0]), vmax=vmaxs[0], vmin=vmins[0], cmap='RdGy')
|
|
121
|
+
cbarax1 = fig.add_subplot(gs[:3, -1])
|
|
122
|
+
cbarax1.set_yticks([])
|
|
123
|
+
cbarax1.set_xticks([])
|
|
124
|
+
cbar1 = plt.colorbar(im1, cax=cbarax1, fraction=1)
|
|
125
|
+
tick_locator = ticker.MaxNLocator(nbins=5)
|
|
126
|
+
cbar1.locator = tick_locator
|
|
127
|
+
cbar1.update_ticks()
|
|
128
|
+
|
|
129
|
+
im2 = ax.pcolormesh(np.zeros_like(images[0]), vmax=vmaxs[-1], vmin=vmins[-1], cmap='RdGy')
|
|
130
|
+
cbarax2 = fig.add_subplot(gs[3, -1])
|
|
131
|
+
cbarax2.set_yticks([])
|
|
132
|
+
cbarax2.set_xticks([])
|
|
133
|
+
cbar2 = plt.colorbar(im2, cax=cbarax2, fraction=1)
|
|
134
|
+
tick_locator = ticker.MaxNLocator(nbins=3)
|
|
135
|
+
cbar2.locator = tick_locator
|
|
136
|
+
cbar2.update_ticks()
|
|
137
|
+
|
|
138
|
+
for i in range(len(wavs)):
|
|
139
|
+
|
|
140
|
+
plotims = [images[i], models[i], residuals[i], residuals[i]]
|
|
141
|
+
|
|
142
|
+
for j in range(4):
|
|
143
|
+
|
|
144
|
+
ax = fig.add_subplot(gs[j, i])
|
|
145
|
+
im = ax.pcolormesh(plotims[j], vmax=vmaxs[j], vmin=vmins[j], cmap='RdGy')
|
|
146
|
+
ax.set_yticks([])
|
|
147
|
+
ax.set_xticks([])
|
|
148
|
+
|
|
149
|
+
if j==0:
|
|
150
|
+
ax.set_title(filter_names[i].upper())
|
|
151
|
+
|
|
152
|
+
if i==0:
|
|
153
|
+
if j==0:
|
|
154
|
+
ax.set_ylabel('Data')
|
|
155
|
+
if j==1:
|
|
156
|
+
ax.set_ylabel('Median\nModel')
|
|
157
|
+
if j==2:
|
|
158
|
+
ax.set_ylabel('Residual')
|
|
159
|
+
if j==3:
|
|
160
|
+
ax.set_ylabel('Residual\nZoom')
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
plt.subplots_adjust(hspace=0.1, wspace=0.1)
|
|
164
|
+
fig.set_size_inches(images.shape[0],4, forward=True)
|
|
165
|
+
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mimical
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.1
|
|
4
4
|
Summary: Intesity modelling of multiply-imaged objects
|
|
5
5
|
Author: Struan Stevenson
|
|
6
6
|
Author-email: struan.stevenson@ed.ac.uk
|
|
@@ -17,7 +17,7 @@ Dynamic: description-content-type
|
|
|
17
17
|
Dynamic: requires-dist
|
|
18
18
|
Dynamic: summary
|
|
19
19
|
|
|
20
|
-
# Mimical (Modelling the Intensity of Multiply-Imaged
|
|
20
|
+
# Mimical (Modelling the Intensity of Multiply-Imaged Celestial Ancient Light)
|
|
21
21
|
|
|
22
22
|
|
|
23
23
|
#### Mimical is an intensity modelling code for multiply-imaged objects, performing simultaenous Bayseian inference of model parameters via the nested sampling algorithm. Mimical supports any astropy model, and supports user defined parameter polynomial depenency with image wavelength.
|
|
@@ -1,87 +0,0 @@
|
|
|
1
|
-
import matplotlib.pyplot as plt
|
|
2
|
-
import numpy as np
|
|
3
|
-
from astropy.convolution.utils import discretize_model
|
|
4
|
-
from tqdm import tqdm
|
|
5
|
-
|
|
6
|
-
class Plotter(object):
|
|
7
|
-
|
|
8
|
-
def plot_best(self, images, wavs, convolved_models, samples, fitter_keys, prior_handler):
|
|
9
|
-
|
|
10
|
-
fig,axes=plt.subplots(3, images.shape[0], figsize=(images.shape[0],3))
|
|
11
|
-
|
|
12
|
-
# Get median Nautilus parameters and transalte into median model parameters.
|
|
13
|
-
param_dict = dict(zip(fitter_keys, np.median(samples, axis=0)))
|
|
14
|
-
pars = prior_handler.revert(param_dict, wavs)
|
|
15
|
-
|
|
16
|
-
for i in range(len(wavs)):
|
|
17
|
-
convolved_models[i].parameters = pars[i]
|
|
18
|
-
model = discretize_model(model=convolved_models[i],
|
|
19
|
-
x_range=[0,images[i].shape[1]],
|
|
20
|
-
y_range=[0,images[i].shape[0]],
|
|
21
|
-
mode='center')
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
v = np.percentile(images[-1], 99.9)
|
|
25
|
-
|
|
26
|
-
axes[0,i].imshow(images[i], vmax=v, vmin=-v)
|
|
27
|
-
axes[0,i].set_axis_off()
|
|
28
|
-
|
|
29
|
-
axes[1,i].imshow(model, vmax=v, vmin=-v)
|
|
30
|
-
axes[1,i].set_axis_off()
|
|
31
|
-
|
|
32
|
-
axes[2,i].imshow(images[i]-model, vmax=v, vmin=-v)
|
|
33
|
-
axes[2,i].set_axis_off()
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
def plot_median(self, images, wavs, convolved_models, samples, fitter_keys, prior_handler):
|
|
37
|
-
|
|
38
|
-
fig,axes=plt.subplots(3, images.shape[0], figsize=(images.shape[0],3))
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
models = np.zeros((samples.shape[0], *images.shape))
|
|
42
|
-
|
|
43
|
-
print("Computing median model image...")
|
|
44
|
-
for j in tqdm(range(samples.shape[0])):
|
|
45
|
-
# Get median Nautilus parameters and transalte into median model parameters.
|
|
46
|
-
param_dict = dict(zip(fitter_keys, samples[j]))
|
|
47
|
-
pars = prior_handler.revert(param_dict, wavs)
|
|
48
|
-
|
|
49
|
-
for k in range(len(wavs)):
|
|
50
|
-
convolved_models[k].parameters = pars[k]
|
|
51
|
-
model = discretize_model(model=convolved_models[k],
|
|
52
|
-
x_range=[0,images[k].shape[1]],
|
|
53
|
-
y_range=[0,images[k].shape[0]],
|
|
54
|
-
mode='center')
|
|
55
|
-
models[j,k] = model
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
median_models = np.median(models, axis=0)
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
if len(wavs)==1:
|
|
62
|
-
for i in range(len(wavs)):
|
|
63
|
-
v = np.percentile(images[-1], 99.9)
|
|
64
|
-
|
|
65
|
-
axes[0].imshow(images[i], vmax=v, vmin=-v)
|
|
66
|
-
axes[0].set_axis_off()
|
|
67
|
-
|
|
68
|
-
axes[1].imshow(median_models[i], vmax=v, vmin=-v)
|
|
69
|
-
axes[1].set_axis_off()
|
|
70
|
-
|
|
71
|
-
axes[2].imshow(images[i]-median_models[i], vmax=v, vmin=-v)
|
|
72
|
-
axes[2].set_axis_off()
|
|
73
|
-
|
|
74
|
-
else:
|
|
75
|
-
for i in range(len(wavs)):
|
|
76
|
-
|
|
77
|
-
v = np.percentile(images[-1], 99.9)
|
|
78
|
-
|
|
79
|
-
axes[0,i].imshow(images[i], vmax=v, vmin=-v)
|
|
80
|
-
axes[0,i].set_axis_off()
|
|
81
|
-
|
|
82
|
-
axes[1,i].imshow(median_models[i], vmax=v, vmin=-v)
|
|
83
|
-
axes[1,i].set_axis_off()
|
|
84
|
-
|
|
85
|
-
axes[2,i].imshow(images[i]-median_models[i], vmax=v, vmin=-v)
|
|
86
|
-
axes[2,i].set_axis_off()
|
|
87
|
-
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|