mimical 0.0.2__tar.gz → 0.0.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mimical
3
- Version: 0.0.2
4
- Summary: Intesity modelling of multiply-imaged objects.
3
+ Version: 0.0.4
4
+ Summary: Intesity modelling of multiply-imaged objects
5
5
  Author: Struan Stevenson
6
6
  Author-email: struan.stevenson@ed.ac.uk
7
7
  Description-Content-Type: text/markdown
@@ -2,4 +2,4 @@ from . import fitting
2
2
  from . import plotting
3
3
 
4
4
 
5
- from .fitting import BOGfit
5
+ from .fitting import mimical
@@ -1,3 +1,3 @@
1
- from .fitter import BOGfit
1
+ from .fitter import mimical
2
2
  from .prior_handler import priorHandler
3
3
 
@@ -15,14 +15,14 @@ from ..plotting import Plotter
15
15
  from ..utils import filter_set
16
16
 
17
17
  dir_path = os.getcwd()
18
- if not os.path.isdir(dir_path + "/bogout"):
19
- os.system('mkdir ' + dir_path + "/bogout")
20
- os.system('mkdir ' + dir_path + "/bogout/plots")
21
- os.system('mkdir ' + dir_path + "/bogout/posteriors")
18
+ if not os.path.isdir(dir_path + "/mimical"):
19
+ os.system('mkdir ' + dir_path + "/mimical")
20
+ os.system('mkdir ' + dir_path + "/mimical/plots")
21
+ os.system('mkdir ' + dir_path + "/mimical/posteriors")
22
22
 
23
23
 
24
24
 
25
- class BOGfit(object):
25
+ class mimical(object):
26
26
  """ Bayesian Observer of Galaxies - Fit.
27
27
  Fits multi-filter images of galaxies simultaeneously using Petrofit and Nautilus
28
28
  by specifying either an individual filter dependency for model parameters or
@@ -147,8 +147,8 @@ class BOGfit(object):
147
147
  raise Exception("Prior labels do not match model parameters.")
148
148
 
149
149
 
150
- if os.path.isfile(dir_path+'/bogout/posteriors' + f'/{self.id}.txt'):
151
- samples = pd.read_csv(dir_path+'/bogout/posteriors' + f'/{self.id}.txt', delimiter=' ').to_numpy()
150
+ if os.path.isfile(dir_path+'/mimical/posteriors' + f'/{self.id}.txt'):
151
+ samples = pd.read_csv(dir_path+'/mimical/posteriors' + f'/{self.id}.txt', delimiter=' ').to_numpy()
152
152
 
153
153
  else:
154
154
  # Run sampler
@@ -163,19 +163,19 @@ class BOGfit(object):
163
163
 
164
164
  # Plot and save the corner plot
165
165
  corner.corner(points, weights=np.exp(log_w), bins=20, labels=np.array(self.fitter_prior.keys), color='purple', plot_datapoints=False, range=np.repeat(0.999, len(self.fitter_prior.keys)))
166
- plt.savefig(dir_path+'/bogout/plots' + f'/corner_{self.id}.pdf', bbox_inches='tight')
166
+ plt.savefig(dir_path+'/mimical/plots' + f'/corner_{self.id}.pdf', bbox_inches='tight')
167
167
 
168
168
  # Sample an appropriately weighted posterior for representative samples.
169
169
  n_post = 10000
170
170
  indices = np.random.choice(np.arange(points.shape[0]), size = n_post, p=np.exp(log_w))
171
171
  samples = points[indices]
172
172
  samples_df = pd.DataFrame(data=samples, columns=self.fitter_prior.keys)
173
- samples_df.to_csv(dir_path+'/bogout/posteriors' + f'/{self.id}.txt', sep=' ', index=False)
173
+ samples_df.to_csv(dir_path+'/mimical/posteriors' + f'/{self.id}.txt', sep=' ', index=False)
174
174
 
175
175
 
176
176
  # Plot and save the median-parameter fit
177
177
  Plotter().plot_median(self.images, self.wavs, self.convolved_models, samples, list(self.fitter_prior.keys), self.prior_handler)
178
- plt.savefig(dir_path+'/bogout/plots' + f'/{self.id}_best_model.pdf', bbox_inches='tight')
178
+ plt.savefig(dir_path+'/mimical/plots' + f'/{self.id}_best_model.pdf', bbox_inches='tight')
179
179
 
180
180
  # Return the median-parameter model
181
181
  fit_dic = dict(zip((np.array((list(self.fitter_prior.keys)))+"_50").tolist(), np.median(samples, axis=0).tolist()))
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mimical
3
- Version: 0.0.2
4
- Summary: Intesity modelling of multiply-imaged objects.
3
+ Version: 0.0.4
4
+ Summary: Intesity modelling of multiply-imaged objects
5
5
  Author: Struan Stevenson
6
6
  Author-email: struan.stevenson@ed.ac.uk
7
7
  Description-Content-Type: text/markdown
@@ -8,9 +8,9 @@ long_description = (this_directory / "README.md").read_text()
8
8
  setup(
9
9
  name='mimical',
10
10
 
11
- version='0.0.2',
11
+ version='0.0.4',
12
12
 
13
- description='Intesity modelling of multiply-imaged objects.',
13
+ description='Intesity modelling of multiply-imaged objects',
14
14
 
15
15
  long_description=long_description,
16
16
 
File without changes
File without changes