miblab-ssa 0.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,34 @@
1
+ Metadata-Version: 2.4
2
+ Name: miblab-ssa
3
+ Version: 0.0.0
4
+ Summary: Statistical shape analysis for medical imaging
5
+ Author-email: Steven Sourbron <s.sourbron@sheffield.ac.uk>
6
+ License-Expression: Apache-2.0
7
+ Project-URL: Homepage, https://miblab.org/
8
+ Project-URL: Source Code, https://github.com/openmiblab/pckg-miblab-ssa
9
+ Keywords: python,medical imaging,MRI
10
+ Classifier: Development Status :: 3 - Alpha
11
+ Classifier: Intended Audience :: Developers
12
+ Classifier: Intended Audience :: Science/Research
13
+ Classifier: Topic :: Scientific/Engineering
14
+ Classifier: Operating System :: OS Independent
15
+ Classifier: Programming Language :: Python
16
+ Classifier: Programming Language :: Python :: 3
17
+ Description-Content-Type: text/markdown
18
+ License-File: LICENSE
19
+ Requires-Dist: tqdm
20
+ Requires-Dist: numpy
21
+ Requires-Dist: scipy
22
+ Requires-Dist: scikit-learn
23
+ Requires-Dist: scikit-image
24
+ Requires-Dist: trimesh
25
+ Requires-Dist: dask
26
+ Requires-Dist: dask-ml
27
+ Requires-Dist: zarr
28
+ Requires-Dist: pyshtools
29
+ Requires-Dist: psutil
30
+ Requires-Dist: vreg
31
+ Dynamic: license-file
32
+
33
+ # miblab-ssa
34
+ Statistical shape analysis for medical imaging data
@@ -0,0 +1,2 @@
1
+ # miblab-ssa
2
+ Statistical shape analysis for medical imaging data
@@ -0,0 +1,59 @@
1
+ # https://packaging.python.org/en/latest/specifications/pyproject-toml/#pyproject-toml-spec
2
+
3
+ [build-system]
4
+ build-backend = 'setuptools.build_meta'
5
+ requires = ['setuptools>=61.2']
6
+
7
+ [project]
8
+ name = "miblab-ssa"
9
+ version = "0.0.0"
10
+ dependencies = [
11
+ 'tqdm',
12
+ 'numpy',
13
+ 'scipy',
14
+ 'scikit-learn',
15
+ 'scikit-image',
16
+ 'trimesh',
17
+ 'dask',
18
+ 'dask-ml',
19
+ 'zarr',
20
+ 'pyshtools',
21
+ 'psutil',
22
+ 'vreg',
23
+ ]
24
+ # optional information
25
+ description = "Statistical shape analysis for medical imaging"
26
+ readme = "README.md"
27
+ authors = [
28
+ { name = "Steven Sourbron", email = "s.sourbron@sheffield.ac.uk" },
29
+ ]
30
+ license = "Apache-2.0"
31
+ classifiers = [
32
+ # How mature is this project? Common values are
33
+ # 3 - Alpha
34
+ # 4 - Beta
35
+ # 5 - Production/Stable
36
+ 'Development Status :: 3 - Alpha',
37
+
38
+ # Indicate who your project is intended for
39
+ 'Intended Audience :: Developers',
40
+ 'Intended Audience :: Science/Research',
41
+ 'Topic :: Scientific/Engineering',
42
+ 'Operating System :: OS Independent',
43
+ "Programming Language :: Python",
44
+ "Programming Language :: Python :: 3"
45
+ ]
46
+ keywords = [
47
+ 'python',
48
+ "medical imaging",
49
+ "MRI",
50
+ ]
51
+
52
+
53
+ [project.urls]
54
+ "Homepage" = "https://miblab.org/"
55
+ "Source Code" = "https://github.com/openmiblab/pckg-miblab-ssa"
56
+
57
+
58
+ [tool.setuptools.packages.find]
59
+ where = ["src"]
@@ -0,0 +1,4 @@
1
+ [egg_info]
2
+ tag_build =
3
+ tag_date = 0
4
+
@@ -0,0 +1,14 @@
1
+ from .normalize import (
2
+ normalize_kidney_mask
3
+ )
4
+ from .ssa import (
5
+ features_from_dataset_zarr,
6
+ pca_from_features_zarr,
7
+ coefficients_from_features_zarr,
8
+ modes_from_pca_zarr,
9
+ )
10
+ from .metrics import (
11
+ hausdorff_matrix_zarr,
12
+ dice_matrix_zarr
13
+ )
14
+ from . import sdf_ft, sdf_cheby, lb, zernike
@@ -0,0 +1,260 @@
1
+ import numpy as np
2
+ from skimage import measure
3
+ import trimesh
4
+ from scipy.sparse import coo_matrix, diags
5
+ from scipy.sparse.linalg import eigsh
6
+
7
+ # -------------------------------
8
+ # Helper: convert trimesh to mask
9
+ # -------------------------------
10
+ def mesh_to_mask(mesh, shape):
11
+ """
12
+ Rasterize mesh into 3D binary mask
13
+ """
14
+ mask = np.zeros(shape, dtype=bool)
15
+ # Use trimesh voxelization
16
+ vox = mesh.voxelized(pitch=1.0)
17
+ indices = vox.sparse_indices
18
+ mask[indices[:,0], indices[:,1], indices[:,2]] = True
19
+ return mask
20
+
21
+ # -------------------------------
22
+ # 1️⃣ Mask → Mesh
23
+ # -------------------------------
24
+ def mask_to_mesh(mask, spacing=(1.0,1.0,1.0)):
25
+ """
26
+ Convert 3D binary mask to triangular mesh.
27
+ """
28
+ verts, faces, normals, values = measure.marching_cubes(mask.astype(float), level=0.5, spacing=spacing)
29
+ mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False)
30
+ return mesh
31
+
32
+
33
+ def mask_to_mesh_fixed_vertices(mask: np.ndarray, spacing: np.ndarray, target_vertices: int = 5000) -> trimesh.Trimesh:
34
+ """
35
+ Convert a 3D binary mask to a mesh with a fixed number of vertices.
36
+
37
+ Parameters
38
+ ----------
39
+ center : bool
40
+ If True, center the mesh at the origin.
41
+ spacing : np.ndarray
42
+ Voxel size
43
+
44
+ Returns
45
+ -------
46
+ mesh_simplified : trimesh.Trimesh
47
+ Mesh object with approximately target_vertices vertices.
48
+ """
49
+ # Step 1: extract surface using marching cubes
50
+ verts, faces, normals, _ = measure.marching_cubes(mask.astype(float), level=0.5, spacing=spacing)
51
+
52
+ mesh = trimesh.Trimesh(vertices=verts, faces=faces, vertex_normals=normals, process=True)
53
+
54
+ # Step 2: simplify / resample to target number of vertices
55
+ # Needs testing
56
+ mesh_simplified = mesh.simplify_quadratic_decimation(target_vertices)
57
+
58
+ return mesh_simplified
59
+
60
+
61
+ # -------------------------------
62
+ # 2️⃣ Preprocessing for invariance (FIXED)
63
+ # -------------------------------
64
+ def preprocess_mesh(mesh):
65
+ """
66
+ Apply translation, scaling, and PCA alignment.
67
+ Returns processed mesh and preprocessing parameters for inverse mapping.
68
+ """
69
+ # Center
70
+ centroid = mesh.vertices.mean(axis=0)
71
+ mesh_c = mesh.copy()
72
+ mesh_c.vertices = mesh.vertices - centroid
73
+
74
+ # Scale
75
+ scale = np.sqrt((mesh_c.vertices**2).sum(axis=1).mean())
76
+ mesh_s = mesh_c.copy()
77
+ mesh_s.vertices = mesh_c.vertices / scale
78
+
79
+ # PCA alignment
80
+ cov = np.cov(mesh_s.vertices.T)
81
+ eigvals, eigvecs = np.linalg.eigh(cov)
82
+ idx = np.argsort(eigvals)[::-1]
83
+ eigvecs = eigvecs[:, idx]
84
+ mesh_aligned = mesh_s.copy()
85
+ mesh_aligned.vertices = mesh_s.vertices @ eigvecs
86
+
87
+ # Save parameters for inverse transformation
88
+ params = {"centroid": centroid, "scale": scale, "pca_eigvecs": eigvecs}
89
+ return mesh_aligned, params
90
+
91
+ def inverse_preprocess_mesh(vertices, params):
92
+ """
93
+ Map reconstructed vertices back to original coordinates.
94
+ """
95
+ v = vertices @ params["pca_eigvecs"].T # undo PCA
96
+ v = v * params["scale"] # undo scaling
97
+ v = v + params["centroid"] # undo translation
98
+ return v
99
+
100
+ # -------------------------------
101
+ # 3️⃣ Laplace-Beltrami Eigenfunctions
102
+ # -------------------------------
103
+ def cotangent_laplacian(mesh):
104
+ vertices = mesh.vertices
105
+ faces = mesh.faces
106
+
107
+ def cotangent(a, b, c):
108
+ ba = b - a
109
+ ca = c - a
110
+ cos_angle = np.dot(ba, ca)
111
+ sin_angle = np.linalg.norm(np.cross(ba, ca))
112
+ return cos_angle / (sin_angle + 1e-10)
113
+
114
+ I, J, V = [], [], []
115
+ n = len(vertices)
116
+ for face in faces:
117
+ i, j, k = face
118
+ vi, vj, vk = vertices[i], vertices[j], vertices[k]
119
+ cot_alpha = cotangent(vj, vi, vk)
120
+ cot_beta = cotangent(vk, vj, vi)
121
+ cot_gamma = cotangent(vi, vk, vj)
122
+ for (p, q, w) in [(i,j,cot_gamma),(j,i,cot_gamma),
123
+ (j,k,cot_alpha),(k,j,cot_alpha),
124
+ (k,i,cot_beta),(i,k,cot_beta)]:
125
+ I.append(p)
126
+ J.append(q)
127
+ V.append(w/2)
128
+
129
+ L = coo_matrix((V, (I, J)), shape=(n, n))
130
+ L = diags(L.sum(axis=1).A1) - L
131
+ return L
132
+
133
+ def lb_eigen_decomposition(mesh, k=50):
134
+ L = cotangent_laplacian(mesh)
135
+ M = diags(np.ones(mesh.vertices.shape[0]))
136
+ eigvals, eigvecs = eigsh(L, k=k, M=M, sigma=1e-8, which='LM')
137
+ return eigvals, eigvecs
138
+
139
+ def surface_to_coefficients(mesh, k=50):
140
+ eigvals, eigvecs = lb_eigen_decomposition(mesh, k=k)
141
+ coords = mesh.vertices
142
+ coeffs = eigvecs.T @ coords # shape (k,3)
143
+ return coeffs, eigvecs, eigvals
144
+
145
+
146
+ def rotationally_invariant_lb_coeffs(coeffs, eigvals, k=100):
147
+ """
148
+ Compute rotationally invariant Laplace–Beltrami spectral coefficients.
149
+
150
+ Parameters
151
+ ----------
152
+ mesh : trimesh.Trimesh or similar
153
+ Input surface mesh with vertices (N, 3)
154
+ k : int
155
+ Number of eigenmodes to use
156
+
157
+ Returns
158
+ -------
159
+ eigvals : (k,) array
160
+ Laplace–Beltrami eigenvalues
161
+ invariants : (k,) array
162
+ Rotationally invariant spectral coefficients
163
+ """
164
+ invariants = np.linalg.norm(coeffs, axis=1) # sqrt(sum over x,y,z)
165
+ invariants /= np.linalg.norm(invariants)
166
+
167
+ # Optional: normalize eigenvalues by first non-zero eigenvalue
168
+ eigvals = eigvals / eigvals[1] if eigvals[1] != 0 else eigvals
169
+
170
+ # Optionally drop the first eigenvalue (zero mode) from descriptor since it's trivial
171
+ eigvals = eigvals[1:] # length k-1
172
+ invariants = invariants[1:] # skip first mode as it may be trivial
173
+
174
+ descriptor = np.concatenate([eigvals[:k], invariants[:k]])
175
+ descriptor /= np.linalg.norm(descriptor) # normalize final vector
176
+
177
+ return invariants, eigvals
178
+
179
+
180
+ # def coefficients_to_surface(coeffs, eigvecs):
181
+ # reconstructed = eigvecs @ coeffs
182
+ # return reconstructed
183
+
184
+ def coefficients_to_surface(coeffs, eigvecs, threshold=None):
185
+ """
186
+ Reconstruct surface vertices from coefficients and eigenvectors.
187
+
188
+ Args:
189
+ coeffs (np.ndarray): shape (k, 3), coefficients from surface_to_coefficients
190
+ eigvecs (np.ndarray): shape (n, k), eigenvectors of Laplace-Beltrami
191
+ threshold (float, optional): percentage (0-100).
192
+ If given, only the top threshold% dominant modes (by coefficient norm)
193
+ are kept in the reconstruction.
194
+
195
+ Returns:
196
+ np.ndarray: reconstructed vertices, shape (n, 3)
197
+ """
198
+ if threshold is not None:
199
+ # Compute importance of each eigenfunction
200
+ norms = np.linalg.norm(coeffs, axis=1)
201
+ k = len(norms)
202
+
203
+ # How many to keep
204
+ keep = max(1, int(np.ceil(k * threshold / 100.0)))
205
+
206
+ # Select indices of the most important modes
207
+ idx_sorted = np.argsort(norms)[::-1]
208
+ idx_keep = idx_sorted[:keep]
209
+
210
+ # Zero out the others
211
+ coeffs_filtered = np.zeros_like(coeffs)
212
+ coeffs_filtered[idx_keep] = coeffs[idx_keep]
213
+
214
+ reconstructed = eigvecs @ coeffs_filtered
215
+ else:
216
+ reconstructed = eigvecs @ coeffs
217
+
218
+ return reconstructed
219
+
220
+
221
+ def pipeline(mask, k=50):
222
+ # mesh = mask_to_mesh(mask)
223
+ # Fixed number of vertices is necessary to achieve comparable coefficients
224
+ mesh = mask_to_mesh_fixed_vertices(mask)
225
+ mesh_proc, params = preprocess_mesh(mesh)
226
+ coeffs, eigvecs, eigvals = surface_to_coefficients(mesh_proc, k=k)
227
+ return coeffs, eigvecs, mesh_proc, params
228
+
229
+ def eigvals(mask, k=100, normalize=False):
230
+ mesh = mask_to_mesh(mask)
231
+ coeffs, eigvecs, eigvals = surface_to_coefficients(mesh, k=k)
232
+ if normalize:
233
+ # Normalize eigenvalues by first non-zero eigenvalue
234
+ # eigvals = eigvals / eigvals[1] if eigvals[1] != 0 else eigvals
235
+ eigvals = eigvals / np.max(eigvals)
236
+ # Drop the first eigenvalue (zero mode) from descriptor since it's trivial
237
+ eigvals = eigvals[1:] # length k-1
238
+ return eigvals
239
+
240
+
241
+ def process(mesh, k=10, threshold=None):
242
+ mesh_proc, params = preprocess_mesh(mesh)
243
+
244
+ # Compute LB coefficients (invariant)
245
+ coeffs, eigvecs, eigvals = surface_to_coefficients(mesh_proc, k=k)
246
+
247
+ # Reconstruct in normalized/aligned space
248
+ reconstructed_vertices_proc = coefficients_to_surface(coeffs, eigvecs, threshold=threshold)
249
+
250
+ # Map reconstruction back to original coordinates
251
+ reconstructed_vertices_orig = inverse_preprocess_mesh(reconstructed_vertices_proc, params)
252
+
253
+ # Build reconstructed mesh
254
+ reconstructed_mesh = mesh.copy()
255
+ reconstructed_mesh.vertices = reconstructed_vertices_orig
256
+
257
+ return coeffs, eigvals, reconstructed_mesh
258
+
259
+
260
+