mgnify-pipelines-toolkit 1.2.5__tar.gz → 1.2.7__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mgnify-pipelines-toolkit might be problematic. Click here for more details.
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/PKG-INFO +1 -1
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/amplicon/classify_var_regions.py +1 -1
- mgnify_pipelines_toolkit-1.2.7/mgnify_pipelines_toolkit/analysis/rawreads/study_summary_generator.py +446 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/constants/db_labels.py +6 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/constants/tax_ranks.py +10 -1
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/schemas/schemas.py +152 -3
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit.egg-info/PKG-INFO +1 -1
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit.egg-info/SOURCES.txt +1 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit.egg-info/entry_points.txt +1 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/pyproject.toml +5 -2
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/LICENSE +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/README.md +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/__init__.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/__init__.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/amplicon/make_asv_count_table.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/amplicon/mapseq_to_asv_table.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/amplicon/permute_primers.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/amplicon/primer_val_classification.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/amplicon/remove_ambiguous_reads.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/amplicon/rev_comp_se_primers.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/amplicon/study_summary_generator.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/add_rhea_chebi_annotation.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/antismash_gff_builder.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/combined_gene_caller_merge.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/generate_gaf.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/gff_annotation_utils.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/gff_file_utils.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/gff_toolkit.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/go_utils.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/krona_txt_from_cat_classification.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/process_dbcan_result_cazys.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/process_dbcan_result_clusters.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/study_summary_generator.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/summarise_antismash_bgcs.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/summarise_goslims.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/assembly/summarise_sanntis_bgcs.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/genomes/__init__.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/shared/__init__.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/shared/convert_cmscan_to_cmsearch_tblout.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/shared/dwc_summary_generator.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/shared/fastq_suffix_header_check.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/shared/get_subunits.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/shared/get_subunits_coords.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/shared/library_strategy_check.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/shared/mapseq2biom.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/analysis/shared/markergene_study_summary.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/constants/ncrna.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/constants/regex_fasta_header.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/constants/thresholds.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/constants/var_region_coordinates.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/utils/__init__.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/utils/fasta_to_delimited.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit/utils/get_mpt_version.py +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit.egg-info/dependency_links.txt +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit.egg-info/requires.txt +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/mgnify_pipelines_toolkit.egg-info/top_level.txt +0 -0
- {mgnify_pipelines_toolkit-1.2.5 → mgnify_pipelines_toolkit-1.2.7}/setup.cfg +0 -0
|
@@ -454,7 +454,7 @@ def retrieve_regions(
|
|
|
454
454
|
temp_seq_counter[determine_domain(model) + " " + reg] = (
|
|
455
455
|
len(model_regions) * freq
|
|
456
456
|
)
|
|
457
|
-
if total_useful_sequences / len(data) < 0.
|
|
457
|
+
if total_useful_sequences / len(data) < 0.75 and run_status != "ambiguous":
|
|
458
458
|
failed_run_counter += 1
|
|
459
459
|
logging.info("No output will be produced - too few useful sequences")
|
|
460
460
|
continue
|
mgnify_pipelines_toolkit-1.2.7/mgnify_pipelines_toolkit/analysis/rawreads/study_summary_generator.py
ADDED
|
@@ -0,0 +1,446 @@
|
|
|
1
|
+
#!/usr/bin/env python
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
|
|
4
|
+
# Copyright 2024-2025 EMBL - European Bioinformatics Institute
|
|
5
|
+
#
|
|
6
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
7
|
+
# you may not use this file except in compliance with the License.
|
|
8
|
+
# You may obtain a copy of the License at
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
|
|
17
|
+
import shutil
|
|
18
|
+
from shutil import SameFileError
|
|
19
|
+
|
|
20
|
+
import click
|
|
21
|
+
from collections import defaultdict
|
|
22
|
+
import glob
|
|
23
|
+
import logging
|
|
24
|
+
from pathlib import Path
|
|
25
|
+
from typing import Union, List
|
|
26
|
+
|
|
27
|
+
import pandas as pd
|
|
28
|
+
|
|
29
|
+
from mgnify_pipelines_toolkit.constants.db_labels import (
|
|
30
|
+
RRAP_TAXDB_LABELS,
|
|
31
|
+
RRAP_FUNCDB_LABELS,
|
|
32
|
+
)
|
|
33
|
+
from mgnify_pipelines_toolkit.constants.tax_ranks import (
|
|
34
|
+
_SILVA_TAX_RANKS,
|
|
35
|
+
_MOTUS_TAX_RANKS,
|
|
36
|
+
)
|
|
37
|
+
from mgnify_pipelines_toolkit.schemas.schemas import (
|
|
38
|
+
RawReadsPassedRunsSchema,
|
|
39
|
+
RawReadsNonINSDCPassedRunsSchema,
|
|
40
|
+
TaxonSchema,
|
|
41
|
+
MotusTaxonSchema,
|
|
42
|
+
FunctionProfileSchema,
|
|
43
|
+
validate_dataframe,
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
logging.basicConfig(level=logging.DEBUG)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
@click.group()
|
|
50
|
+
def cli():
|
|
51
|
+
pass
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def get_file(
|
|
55
|
+
run_acc: str, analyses_dir: Path, db_label: str
|
|
56
|
+
) -> Union[Path, List[Path]]:
|
|
57
|
+
"""Takes path information for a particular analysis and db_label combo, and returns any existing files.
|
|
58
|
+
|
|
59
|
+
:param run_acc: Run accession for the tax file that should be retrieved.
|
|
60
|
+
:type run_acc: str
|
|
61
|
+
:param analyses_dir: The path to the directory containing all of the analyses,
|
|
62
|
+
including the tax file corresponding to :param:`run_acc`.
|
|
63
|
+
:type analyses_dir: Path
|
|
64
|
+
:param db_label: One of the database labels that results might exist for,
|
|
65
|
+
values of which come from the imported constants ``RRAP_TAXDB_LABELS`` and ``RRAP_FUNCDB_LABELS``.
|
|
66
|
+
:type db_label: str
|
|
67
|
+
:return: A :class:`Path` object if :param:`db_label` comes from ``RRAP_TAXDB_LABELS`` or ``RRAP_FUNCDB_LABELS``.
|
|
68
|
+
:rtype: Union[Path, List[Path]]
|
|
69
|
+
"""
|
|
70
|
+
|
|
71
|
+
if db_label not in RRAP_TAXDB_LABELS + RRAP_FUNCDB_LABELS:
|
|
72
|
+
return
|
|
73
|
+
|
|
74
|
+
if db_label in RRAP_TAXDB_LABELS:
|
|
75
|
+
db_dir = "taxonomy-summary"
|
|
76
|
+
else:
|
|
77
|
+
db_dir = "function-summary"
|
|
78
|
+
db_path = Path(f"{analyses_dir}/{run_acc}/{db_dir}/{db_label}")
|
|
79
|
+
|
|
80
|
+
if not db_path.exists():
|
|
81
|
+
logging.debug(
|
|
82
|
+
f"DB {db_path} doesn't exist for {run_acc}. Skipping"
|
|
83
|
+
) # or error?
|
|
84
|
+
return
|
|
85
|
+
|
|
86
|
+
analysis_file = Path(
|
|
87
|
+
f"{analyses_dir}/{run_acc}/{db_dir}/{db_label}/{run_acc}_{db_label}.txt"
|
|
88
|
+
)
|
|
89
|
+
if not analysis_file.exists():
|
|
90
|
+
logging.error(
|
|
91
|
+
f"DB path exists but file doesn't - exiting. Path: {analysis_file}"
|
|
92
|
+
)
|
|
93
|
+
exit(1)
|
|
94
|
+
|
|
95
|
+
file_size = analysis_file.stat().st_size
|
|
96
|
+
if (
|
|
97
|
+
file_size == 0
|
|
98
|
+
): # Pipeline can generate files that are empty for ITS DBs (UNITE and ITSoneDB),
|
|
99
|
+
# so need to skip those. Should probably fix that at some point
|
|
100
|
+
logging.debug(
|
|
101
|
+
f"File {analysis_file} exists but is empty, so will be skipping it."
|
|
102
|
+
)
|
|
103
|
+
analysis_file = None
|
|
104
|
+
|
|
105
|
+
return analysis_file
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def parse_one_tax_file(run_acc: str, tax_file: Path, db_label: str) -> pd.DataFrame:
|
|
109
|
+
"""Parses a taxonomy file, and returns it as a pandas DataFrame object.
|
|
110
|
+
|
|
111
|
+
:param run_acc: Run accession of the taxonomy file that will be parsed.
|
|
112
|
+
:type run_acc: str
|
|
113
|
+
:param tax_file: Taxonomy file that will be parsed.
|
|
114
|
+
:type tax_file: Path
|
|
115
|
+
:param db_label: One of the database labels that results might exist for,
|
|
116
|
+
values of which come from the imported constants ``RRAP_TAXDB_LABELS` and `RRAP_FUNCDB_LABELS``.
|
|
117
|
+
:type db_label: str
|
|
118
|
+
:return: The parsed :param:`tax_file` as a :class:`pd.DataFrame` object
|
|
119
|
+
:rtype: pd.DataFrame
|
|
120
|
+
"""
|
|
121
|
+
|
|
122
|
+
tax_ranks = _MOTUS_TAX_RANKS if db_label == "mOTUs" else _SILVA_TAX_RANKS
|
|
123
|
+
res_df = pd.read_csv(tax_file, sep="\t", skiprows=1, names=["Count"] + tax_ranks)
|
|
124
|
+
res_df = res_df.fillna("")
|
|
125
|
+
|
|
126
|
+
validate_dataframe(
|
|
127
|
+
res_df, MotusTaxonSchema if db_label == "mOTUs" else TaxonSchema, str(tax_file)
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
res_df["full_taxon"] = res_df.iloc[:, 1:].apply(
|
|
131
|
+
lambda x: ";".join(x).strip(";"), axis=1
|
|
132
|
+
)
|
|
133
|
+
final_df = res_df.iloc[:, [0, -1]]
|
|
134
|
+
final_df = final_df.set_index("full_taxon")
|
|
135
|
+
final_df.columns = [run_acc]
|
|
136
|
+
|
|
137
|
+
return final_df
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
def parse_one_func_file(
|
|
141
|
+
run_acc: str, func_file: Path, db_label: str
|
|
142
|
+
) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
|
|
143
|
+
"""Parses a functional profile file, and returns it as a pandas DataFrame object.
|
|
144
|
+
|
|
145
|
+
:param run_acc: Run accession of the taxonomy file that will be parsed.
|
|
146
|
+
:type run_acc: str
|
|
147
|
+
:param func_file: Functional profile file that will be parsed.
|
|
148
|
+
:type func_file: Path
|
|
149
|
+
:param db_label: One of the database labels that results might exist for,
|
|
150
|
+
values of which come from the imported constants ``RRAP_TAXDB_LABELS` and `RRAP_FUNCDB_LABELS``.
|
|
151
|
+
:type db_label: str
|
|
152
|
+
:return: The parsed :param:`func_file` as a :class:`pd.DataFrame` object
|
|
153
|
+
:rtype: pd.DataFrame
|
|
154
|
+
"""
|
|
155
|
+
|
|
156
|
+
res_df = pd.read_csv(
|
|
157
|
+
func_file,
|
|
158
|
+
sep="\t",
|
|
159
|
+
names=["function", "read_count", "coverage_depth", "coverage_breadth"],
|
|
160
|
+
skiprows=1,
|
|
161
|
+
dtype={"read_count": int, "coverage_depth": float, "coverage_breadth": float},
|
|
162
|
+
).set_index("function")
|
|
163
|
+
res_df = res_df.fillna(0)
|
|
164
|
+
|
|
165
|
+
validate_dataframe(res_df, FunctionProfileSchema, str(func_file))
|
|
166
|
+
|
|
167
|
+
count_df = res_df[["read_count"]]
|
|
168
|
+
count_df.columns = [run_acc]
|
|
169
|
+
|
|
170
|
+
depth_df = res_df[["coverage_depth"]]
|
|
171
|
+
depth_df.columns = [run_acc]
|
|
172
|
+
|
|
173
|
+
breadth_df = res_df[["coverage_breadth"]]
|
|
174
|
+
breadth_df.columns = [run_acc]
|
|
175
|
+
|
|
176
|
+
return count_df, depth_df, breadth_df
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
def generate_db_summary(
|
|
180
|
+
db_label: str, analysis_dfs: dict[str, Path], output_prefix: str
|
|
181
|
+
) -> None:
|
|
182
|
+
"""Takes paired run accessions taxonomy dataframes in the form of a dictionary,
|
|
183
|
+
and respective db_label, joins them together, and generates a study-wide summary
|
|
184
|
+
in the form of a .tsv file.
|
|
185
|
+
|
|
186
|
+
:param db_label: One of the database labels that results might exist for,
|
|
187
|
+
values of which come from the imported constants ``RRAP_TAXDB_LABELS` and `RRAP_FUNCDB_LABELS``.
|
|
188
|
+
:param tax_dfs: Dictionary where the key is a run accession,
|
|
189
|
+
and values are one parsed taxonomy dataframe if the :param:db_label comes from ``RRAP_TAXDB_LABELS` or `RRAP_FUNCDB_LABELS``.
|
|
190
|
+
These dataframes are parsed by :func:`parse_one_tax_file` or `parse_one_func_file`.
|
|
191
|
+
:type tax_dfs: defaultdict[Path]
|
|
192
|
+
:param output_prefix: Prefix to be added to the generated summary file.
|
|
193
|
+
:type output_prefix: str
|
|
194
|
+
"""
|
|
195
|
+
|
|
196
|
+
if db_label in RRAP_TAXDB_LABELS:
|
|
197
|
+
df_list = []
|
|
198
|
+
|
|
199
|
+
for run_acc, analysis_df in analysis_dfs.items():
|
|
200
|
+
res_df = parse_one_tax_file(run_acc, analysis_df, db_label)
|
|
201
|
+
df_list.append(res_df)
|
|
202
|
+
|
|
203
|
+
res_df = pd.concat(df_list, axis=1).fillna(0)
|
|
204
|
+
res_df = res_df.sort_index()
|
|
205
|
+
res_df = res_df.astype(int)
|
|
206
|
+
|
|
207
|
+
res_df.to_csv(
|
|
208
|
+
f"{output_prefix}_{db_label}_study_summary.tsv",
|
|
209
|
+
sep="\t",
|
|
210
|
+
index_label="taxonomy",
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
if db_label in RRAP_FUNCDB_LABELS:
|
|
214
|
+
count_df_list = []
|
|
215
|
+
depth_df_list = []
|
|
216
|
+
breadth_df_list = []
|
|
217
|
+
|
|
218
|
+
for run_acc, analysis_df in analysis_dfs.items():
|
|
219
|
+
count_df, depth_df, breadth_df = parse_one_func_file(
|
|
220
|
+
run_acc, analysis_df, db_label
|
|
221
|
+
)
|
|
222
|
+
count_df_list.append(count_df)
|
|
223
|
+
depth_df_list.append(depth_df)
|
|
224
|
+
breadth_df_list.append(breadth_df)
|
|
225
|
+
|
|
226
|
+
count_df = pd.concat(count_df_list, axis=1).fillna(0)
|
|
227
|
+
count_df = count_df.sort_index()
|
|
228
|
+
count_df = count_df.astype(int)
|
|
229
|
+
|
|
230
|
+
count_df.to_csv(
|
|
231
|
+
f"{output_prefix}_{db_label}_read-count_study_summary.tsv",
|
|
232
|
+
sep="\t",
|
|
233
|
+
index_label="function",
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
depth_df = pd.concat(depth_df_list, axis=1).fillna(0)
|
|
237
|
+
depth_df = depth_df.sort_index()
|
|
238
|
+
depth_df = depth_df.astype(float)
|
|
239
|
+
|
|
240
|
+
depth_df.to_csv(
|
|
241
|
+
f"{output_prefix}_{db_label}_coverage-depth_study_summary.tsv",
|
|
242
|
+
sep="\t",
|
|
243
|
+
index_label="function",
|
|
244
|
+
float_format="%.6g",
|
|
245
|
+
)
|
|
246
|
+
|
|
247
|
+
breadth_df = pd.concat(breadth_df_list, axis=1).fillna(0)
|
|
248
|
+
breadth_df = breadth_df.sort_index()
|
|
249
|
+
breadth_df = breadth_df.astype(float)
|
|
250
|
+
|
|
251
|
+
breadth_df.to_csv(
|
|
252
|
+
f"{output_prefix}_{db_label}_coverage-breadth_study_summary.tsv",
|
|
253
|
+
sep="\t",
|
|
254
|
+
index_label="function",
|
|
255
|
+
float_format="%.6g",
|
|
256
|
+
)
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
def organise_study_summaries(all_study_summaries: List[str]) -> defaultdict[str, List]:
|
|
260
|
+
"""Matches different summary files of the same database label and analysis
|
|
261
|
+
type into a dictionary to help merge
|
|
262
|
+
the correct summaries.
|
|
263
|
+
|
|
264
|
+
:param all_study_summaries: List of file paths to different summary files
|
|
265
|
+
:type all_study_summaries: List[str]
|
|
266
|
+
:return: Organised dictionary where each summary is paired to a specific
|
|
267
|
+
database label key to be merged together.
|
|
268
|
+
:rtype: defaultdict[List]
|
|
269
|
+
"""
|
|
270
|
+
summaries_dict = defaultdict(list)
|
|
271
|
+
|
|
272
|
+
for summary in all_study_summaries:
|
|
273
|
+
summary_path = Path(summary)
|
|
274
|
+
summary_filename = summary_path.stem
|
|
275
|
+
|
|
276
|
+
summary_db_label = summary_filename.split("_")[1]
|
|
277
|
+
|
|
278
|
+
summaries_dict[summary_db_label].append(summary_path)
|
|
279
|
+
|
|
280
|
+
return summaries_dict
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
@cli.command(
|
|
284
|
+
"summarise",
|
|
285
|
+
options_metavar="-r <runs> -a <analyses_dir> -p <output_prefix>",
|
|
286
|
+
short_help="Generate study-level summaries of raw-read analysis results.",
|
|
287
|
+
)
|
|
288
|
+
@click.option(
|
|
289
|
+
"-r",
|
|
290
|
+
"--runs",
|
|
291
|
+
required=True,
|
|
292
|
+
help="CSV file containing successful analyses generated by the pipeline",
|
|
293
|
+
type=click.Path(exists=True, path_type=Path, dir_okay=False),
|
|
294
|
+
)
|
|
295
|
+
@click.option(
|
|
296
|
+
"-a",
|
|
297
|
+
"--analyses_dir",
|
|
298
|
+
required=True,
|
|
299
|
+
help="Input directory to where all the individual analyses subdirectories for summarising",
|
|
300
|
+
type=click.Path(exists=True, path_type=Path, file_okay=False),
|
|
301
|
+
)
|
|
302
|
+
@click.option(
|
|
303
|
+
"-p", "--output_prefix", required=True, help="Prefix to summary files", type=str
|
|
304
|
+
)
|
|
305
|
+
@click.option(
|
|
306
|
+
"--non_insdc",
|
|
307
|
+
default=False,
|
|
308
|
+
is_flag=True,
|
|
309
|
+
help="If run accessions aren't INSDC-formatted",
|
|
310
|
+
)
|
|
311
|
+
def summarise_analyses(
|
|
312
|
+
runs: Path, analyses_dir: Path, output_prefix: str, non_insdc: bool
|
|
313
|
+
) -> None:
|
|
314
|
+
"""Function that will take a file of pipeline-successful run accessions
|
|
315
|
+
that should be used for the generation of the relevant db-specific
|
|
316
|
+
study-level summary files.
|
|
317
|
+
\f
|
|
318
|
+
|
|
319
|
+
:param runs: Path to a qc_passed_runs file from the pipeline execution.
|
|
320
|
+
Contains the accessions of runs that should therefore be included in the generated
|
|
321
|
+
summaries.
|
|
322
|
+
:type runs: Path
|
|
323
|
+
:param analyses_dir: The path to the directory containing all of the analyses.
|
|
324
|
+
:type analyses_dir: Path
|
|
325
|
+
:param output_prefix: Prefix to be added to the generated summary file.
|
|
326
|
+
:type output_prefix: str
|
|
327
|
+
"""
|
|
328
|
+
runs_df = pd.read_csv(runs, names=["run", "status"])
|
|
329
|
+
|
|
330
|
+
if not non_insdc:
|
|
331
|
+
RawReadsPassedRunsSchema(
|
|
332
|
+
runs_df
|
|
333
|
+
) # Run validation on the successful_runs .csv file
|
|
334
|
+
else:
|
|
335
|
+
RawReadsNonINSDCPassedRunsSchema(runs_df)
|
|
336
|
+
|
|
337
|
+
all_db_labels = RRAP_TAXDB_LABELS + RRAP_FUNCDB_LABELS
|
|
338
|
+
for db_label in all_db_labels:
|
|
339
|
+
|
|
340
|
+
analysis_files = {}
|
|
341
|
+
for run_acc in runs_df["run"]:
|
|
342
|
+
analysis_file = get_file(run_acc, analyses_dir, db_label)
|
|
343
|
+
|
|
344
|
+
if analysis_file:
|
|
345
|
+
analysis_files[run_acc] = analysis_file
|
|
346
|
+
|
|
347
|
+
if analysis_files:
|
|
348
|
+
generate_db_summary(db_label, analysis_files, output_prefix)
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
@cli.command(
|
|
352
|
+
"merge",
|
|
353
|
+
options_metavar="-a <analyses_dir> -p <output_prefix>",
|
|
354
|
+
short_help="Merge multiple study-level summaries of raw-read analysis.",
|
|
355
|
+
)
|
|
356
|
+
@click.option(
|
|
357
|
+
"-a",
|
|
358
|
+
"--analyses_dir",
|
|
359
|
+
required=True,
|
|
360
|
+
help="Input directory to where all the individual analyses subdirectories for merging",
|
|
361
|
+
type=click.Path(exists=True, file_okay=False),
|
|
362
|
+
)
|
|
363
|
+
@click.option(
|
|
364
|
+
"-p",
|
|
365
|
+
"--output_prefix",
|
|
366
|
+
required=True,
|
|
367
|
+
help="Prefix to merged summary files",
|
|
368
|
+
type=str,
|
|
369
|
+
)
|
|
370
|
+
def merge_summaries(analyses_dir: str, output_prefix: str) -> None:
|
|
371
|
+
"""Function that will take a file path containing study-level
|
|
372
|
+
summaries that should be merged together on a per-db
|
|
373
|
+
basis.
|
|
374
|
+
\f
|
|
375
|
+
|
|
376
|
+
:param analyses_dir: The filepath to the directory containing all of the analyses.
|
|
377
|
+
:type analyses_dir: str
|
|
378
|
+
:param output_prefix: Prefix to be added to the generated summary file.
|
|
379
|
+
:type output_prefix: str
|
|
380
|
+
"""
|
|
381
|
+
|
|
382
|
+
all_study_summaries = glob.glob(f"{analyses_dir}/*_study_summary.tsv")
|
|
383
|
+
|
|
384
|
+
summaries_dict = organise_study_summaries(all_study_summaries)
|
|
385
|
+
|
|
386
|
+
for db_label, summaries in summaries_dict.items():
|
|
387
|
+
if db_label in RRAP_TAXDB_LABELS:
|
|
388
|
+
merged_summary_name = f"{output_prefix}_{db_label}_study_summary.tsv"
|
|
389
|
+
if len(summaries) > 1:
|
|
390
|
+
res_df = pd.read_csv(summaries[0], sep="\t", index_col=0)
|
|
391
|
+
for summary in summaries[1:]:
|
|
392
|
+
curr_df = pd.read_csv(summary, sep="\t", index_col=0)
|
|
393
|
+
res_df = res_df.join(curr_df, how="outer")
|
|
394
|
+
res_df = res_df.fillna(0)
|
|
395
|
+
res_df = res_df.astype(int)
|
|
396
|
+
|
|
397
|
+
res_df = res_df.reindex(sorted(res_df.columns), axis=1)
|
|
398
|
+
res_df.to_csv(
|
|
399
|
+
merged_summary_name,
|
|
400
|
+
sep="\t",
|
|
401
|
+
index_label="taxonomy",
|
|
402
|
+
)
|
|
403
|
+
elif len(summaries) == 1:
|
|
404
|
+
logging.info(
|
|
405
|
+
f"Only one summary ({summaries[0]}) so will use that as {merged_summary_name}"
|
|
406
|
+
)
|
|
407
|
+
try:
|
|
408
|
+
shutil.copyfile(summaries[0], merged_summary_name)
|
|
409
|
+
except SameFileError:
|
|
410
|
+
pass
|
|
411
|
+
|
|
412
|
+
if db_label in RRAP_FUNCDB_LABELS:
|
|
413
|
+
for table_type in ["read-count", "coverage-depth", "coverage-breadth"]:
|
|
414
|
+
merged_summary_name = (
|
|
415
|
+
f"{output_prefix}_{db_label}_{table_type}_study_summary.tsv"
|
|
416
|
+
)
|
|
417
|
+
summaries_ = [
|
|
418
|
+
v for v in summaries if Path(v).stem.split("_")[2] == table_type
|
|
419
|
+
]
|
|
420
|
+
if len(summaries_) > 1:
|
|
421
|
+
res_df = pd.read_csv(summaries_[0], sep="\t", index_col=0)
|
|
422
|
+
for summary in summaries_[1:]:
|
|
423
|
+
curr_df = pd.read_csv(summary, sep="\t", index_col=0)
|
|
424
|
+
res_df = res_df.join(curr_df, how="outer")
|
|
425
|
+
res_df = res_df.fillna(0)
|
|
426
|
+
res_df = res_df.astype(int if table_type == "count" else float)
|
|
427
|
+
|
|
428
|
+
res_df = res_df.reindex(sorted(res_df.columns), axis=1)
|
|
429
|
+
res_df.to_csv(
|
|
430
|
+
merged_summary_name,
|
|
431
|
+
sep="\t",
|
|
432
|
+
index_label="function",
|
|
433
|
+
float_format="%.6g",
|
|
434
|
+
)
|
|
435
|
+
elif len(summaries_) == 1:
|
|
436
|
+
logging.info(
|
|
437
|
+
f"Only one summary ({summaries_[0]}) so will use that as {merged_summary_name}"
|
|
438
|
+
)
|
|
439
|
+
try:
|
|
440
|
+
shutil.copyfile(summaries_[0], merged_summary_name)
|
|
441
|
+
except SameFileError:
|
|
442
|
+
pass
|
|
443
|
+
|
|
444
|
+
|
|
445
|
+
if __name__ == "__main__":
|
|
446
|
+
cli()
|
|
@@ -19,3 +19,9 @@ TAXDB_LABELS = ["SILVA-SSU", "SILVA-LSU", "PR2", "UNITE", "ITSoneDB"]
|
|
|
19
19
|
|
|
20
20
|
# taxonomy_summary for ASV method
|
|
21
21
|
ASV_TAXDB_LABELS = ["DADA2-SILVA", "DADA2-PR2"]
|
|
22
|
+
|
|
23
|
+
# taxonomy_summary labels for Raw Reads Analysis Pipeline
|
|
24
|
+
RRAP_TAXDB_LABELS = ['SILVA-SSU', 'SILVA-LSU', 'mOTUs']
|
|
25
|
+
|
|
26
|
+
# function_summary labels for Raw Reads Analysis Pipeline
|
|
27
|
+
RRAP_FUNCDB_LABELS = ['Pfam-A']
|
|
@@ -35,7 +35,16 @@ _PR2_TAX_RANKS = [
|
|
|
35
35
|
"Genus",
|
|
36
36
|
"Species",
|
|
37
37
|
]
|
|
38
|
+
_MOTUS_TAX_RANKS = [
|
|
39
|
+
'Kingdom',
|
|
40
|
+
'Phylum',
|
|
41
|
+
'Class',
|
|
42
|
+
'Order',
|
|
43
|
+
'Family',
|
|
44
|
+
'Genus',
|
|
45
|
+
'Species'
|
|
46
|
+
]
|
|
38
47
|
|
|
39
48
|
SHORT_TAX_RANKS = ["sk", "k", "p", "c", "o", "f", "g", "s"]
|
|
40
|
-
|
|
49
|
+
SHORT_MOTUS_TAX_RANKS = ["k", "p", "c", "o", "f", "g", "s"]
|
|
41
50
|
SHORT_PR2_TAX_RANKS = ["d", "sg", "dv", "sdv", "c", "o", "f", "g", "s"]
|
|
@@ -16,7 +16,7 @@
|
|
|
16
16
|
import logging
|
|
17
17
|
import re
|
|
18
18
|
|
|
19
|
-
from enum import
|
|
19
|
+
from enum import StrEnum
|
|
20
20
|
from typing import ClassVar, Optional, Type, Literal
|
|
21
21
|
|
|
22
22
|
import pandas as pd
|
|
@@ -35,6 +35,7 @@ from pandera.engines.pandas_engine import PydanticModel
|
|
|
35
35
|
from mgnify_pipelines_toolkit.constants.tax_ranks import (
|
|
36
36
|
SHORT_TAX_RANKS,
|
|
37
37
|
SHORT_PR2_TAX_RANKS,
|
|
38
|
+
SHORT_MOTUS_TAX_RANKS,
|
|
38
39
|
)
|
|
39
40
|
|
|
40
41
|
|
|
@@ -70,7 +71,7 @@ class INSDCRunAccession(RootModel):
|
|
|
70
71
|
return run
|
|
71
72
|
|
|
72
73
|
|
|
73
|
-
class AmpliconResultTypes(
|
|
74
|
+
class AmpliconResultTypes(StrEnum):
|
|
74
75
|
"""Class that models the two allowed statuses for successful amplicon analysis runs.
|
|
75
76
|
Pydantic validates Enums very simply without needing to declare a new function.
|
|
76
77
|
"""
|
|
@@ -545,7 +546,7 @@ class TaxonRecord(Taxon):
|
|
|
545
546
|
class PR2TaxonRecord(PR2Taxon):
|
|
546
547
|
"""Class for modelling the same thing as the preceding class, but for PR2 ranks."""
|
|
547
548
|
|
|
548
|
-
|
|
549
|
+
count: int = Field(alias="Count")
|
|
549
550
|
|
|
550
551
|
|
|
551
552
|
# This is the schema for the whole DF
|
|
@@ -573,6 +574,154 @@ class PR2TaxonSchema(pa.DataFrameModel):
|
|
|
573
574
|
coerce = True
|
|
574
575
|
|
|
575
576
|
|
|
577
|
+
class RawReadsStatusTypes(StrEnum):
|
|
578
|
+
"""Class that models the four allowed statuses for successful raw reads analysis runs.
|
|
579
|
+
Pydantic validates Enums very simply without needing to declare a new function.
|
|
580
|
+
"""
|
|
581
|
+
|
|
582
|
+
all_results = "all_results"
|
|
583
|
+
no_reads = "no_reads"
|
|
584
|
+
no_results = "no_results"
|
|
585
|
+
missing_results = "missing_results"
|
|
586
|
+
|
|
587
|
+
|
|
588
|
+
class RawReadsPassedRunsRecord(BaseModel):
|
|
589
|
+
"""Class defining a Pydantic model for a single "row" of a raw-reads pipeline passed runs file.
|
|
590
|
+
Uses the previous nine classes.
|
|
591
|
+
"""
|
|
592
|
+
|
|
593
|
+
run: INSDCRunAccession
|
|
594
|
+
status: RawReadsStatusTypes
|
|
595
|
+
|
|
596
|
+
|
|
597
|
+
class RawReadsNonINSDCSPassedRunsRecord(RawReadsPassedRunsRecord):
|
|
598
|
+
"""Class modeling a very similar model as the preceding one, but with no INSDC-validation.
|
|
599
|
+
This is achieved by replacing the type of the runs with just a simple string so no validation
|
|
600
|
+
happens.
|
|
601
|
+
"""
|
|
602
|
+
|
|
603
|
+
run: str
|
|
604
|
+
|
|
605
|
+
|
|
606
|
+
# This is the schema for the whole DF
|
|
607
|
+
class RawReadsPassedRunsSchema(pa.DataFrameModel):
|
|
608
|
+
"""Class modelling a Pandera dataframe schema that uses the RawReadsPassedRunsRecord class as dtype.
|
|
609
|
+
This is what actually validates the generated dataframe when read by pandas.read_csv.
|
|
610
|
+
"""
|
|
611
|
+
|
|
612
|
+
class Config:
|
|
613
|
+
"""Config with dataframe-level data type."""
|
|
614
|
+
|
|
615
|
+
dtype = PydanticModel(RawReadsPassedRunsRecord)
|
|
616
|
+
coerce = True
|
|
617
|
+
|
|
618
|
+
|
|
619
|
+
class RawReadsNonINSDCPassedRunsSchema(pa.DataFrameModel):
|
|
620
|
+
"""Class modelling the same dataframe schema as the preceding one, except with no INSDC validation.
|
|
621
|
+
Uses the RawReadsNonINSDCSPassedRunsRecord as a dtype to achieve this.
|
|
622
|
+
"""
|
|
623
|
+
|
|
624
|
+
class Config:
|
|
625
|
+
"""Config with dataframe-level data type."""
|
|
626
|
+
|
|
627
|
+
dtype = PydanticModel(RawReadsNonINSDCSPassedRunsRecord)
|
|
628
|
+
coerce = True
|
|
629
|
+
|
|
630
|
+
|
|
631
|
+
class MotusTaxRank(RootModel):
|
|
632
|
+
"""Class for modelling a single Taxonomic Rank in mOTUs output.
|
|
633
|
+
Essentially is just a special string with validation of the structure:
|
|
634
|
+
`${rank}__${taxon}`
|
|
635
|
+
Where `${rank}` is one of the allowed short ranks defined by the imported
|
|
636
|
+
`SHORT_MOTUS_TAX_RANKS` variables.
|
|
637
|
+
And `${taxon}` is the actual taxon for that rank (this isn't validated).
|
|
638
|
+
It will also validate if the whole string is the permitted "unassigned" or "unclassified".
|
|
639
|
+
"""
|
|
640
|
+
|
|
641
|
+
valid_tax_ranks: ClassVar = SHORT_MOTUS_TAX_RANKS
|
|
642
|
+
|
|
643
|
+
root: str = Field(
|
|
644
|
+
unique=True,
|
|
645
|
+
description="A single taxon in a taxonomy record",
|
|
646
|
+
examples=["sk__Bacteria", "p__Bacillota", "g__Tundrisphaera"],
|
|
647
|
+
)
|
|
648
|
+
|
|
649
|
+
@field_validator("root", mode="after")
|
|
650
|
+
@classmethod
|
|
651
|
+
def rank_structure_validity_check(cls, taxrank: str) -> bool:
|
|
652
|
+
taxrank_list = taxrank.split("__")
|
|
653
|
+
rank = taxrank_list[0]
|
|
654
|
+
if (
|
|
655
|
+
rank != ""
|
|
656
|
+
and not rank.capitalize() in {"Unclassified", "Unassigned"}
|
|
657
|
+
and rank not in cls.valid_tax_ranks
|
|
658
|
+
):
|
|
659
|
+
raise ValueError(f"Invalid taxonomy rank {rank}.")
|
|
660
|
+
|
|
661
|
+
return taxrank
|
|
662
|
+
|
|
663
|
+
|
|
664
|
+
class MotusTaxon(BaseModel):
|
|
665
|
+
"""Class for modelling an entire MotusTaxon or mOTUs taxonomic assignment.
|
|
666
|
+
All of the ranks are optional, to model for the taxon being "Unclassified" or "Unassigned".
|
|
667
|
+
"""
|
|
668
|
+
|
|
669
|
+
Kingdom: Optional[MotusTaxRank] = None
|
|
670
|
+
Phylum: Optional[MotusTaxRank] = None
|
|
671
|
+
Class: Optional[MotusTaxRank] = None
|
|
672
|
+
Order: Optional[MotusTaxRank] = None
|
|
673
|
+
Family: Optional[MotusTaxRank] = None
|
|
674
|
+
Genus: Optional[MotusTaxRank] = None
|
|
675
|
+
Species: Optional[MotusTaxRank] = None
|
|
676
|
+
|
|
677
|
+
|
|
678
|
+
class MotusTaxonRecord(MotusTaxon):
|
|
679
|
+
"""Class for modelling a single taxon record in a mOTUs taxonomy file.
|
|
680
|
+
It inherits the MotusTaxon class, and simply adds a Count field, modelling the read counts
|
|
681
|
+
for that particular MotusTaxon record.
|
|
682
|
+
"""
|
|
683
|
+
|
|
684
|
+
count: int = Field(alias="Count")
|
|
685
|
+
|
|
686
|
+
|
|
687
|
+
class MotusTaxonSchema(pa.DataFrameModel):
|
|
688
|
+
"""Class modelling a Pandera dataframe schema that uses the MotusTaxonRecord class as dtype.
|
|
689
|
+
This is what actually validates the generated dataframe when read by pandas.read_csv.
|
|
690
|
+
"""
|
|
691
|
+
|
|
692
|
+
class Config:
|
|
693
|
+
"""Config with dataframe-level data type."""
|
|
694
|
+
|
|
695
|
+
dtype = PydanticModel(MotusTaxonRecord)
|
|
696
|
+
coerce = True
|
|
697
|
+
|
|
698
|
+
|
|
699
|
+
class FunctionProfileRecord(BaseModel):
|
|
700
|
+
"""Class for modelling a single taxon record in a functional profile file.
|
|
701
|
+
It models the read counts and coverage depth/breadth of each function (gene/protein)
|
|
702
|
+
for each specific record.
|
|
703
|
+
"""
|
|
704
|
+
|
|
705
|
+
read_count: int
|
|
706
|
+
coverage_depth: float
|
|
707
|
+
coverage_breadth: float
|
|
708
|
+
|
|
709
|
+
class Config:
|
|
710
|
+
validate_by_name = True
|
|
711
|
+
|
|
712
|
+
|
|
713
|
+
class FunctionProfileSchema(pa.DataFrameModel):
|
|
714
|
+
"""Class modelling a Pandera dataframe schema that uses the FunctionProfileRecord class as dtype.
|
|
715
|
+
This is what actually validates the generated dataframe when read by pandas.read_csv.
|
|
716
|
+
"""
|
|
717
|
+
|
|
718
|
+
class Config:
|
|
719
|
+
"""Config with dataframe-level data type."""
|
|
720
|
+
|
|
721
|
+
dtype = PydanticModel(FunctionProfileRecord)
|
|
722
|
+
coerce = True
|
|
723
|
+
|
|
724
|
+
|
|
576
725
|
def validate_dataframe(
|
|
577
726
|
df: pd.DataFrame, schema: Type[pa.DataFrameModel], df_metadata: str
|
|
578
727
|
) -> DataFrameBase:
|
|
@@ -33,6 +33,7 @@ mgnify_pipelines_toolkit/analysis/assembly/summarise_antismash_bgcs.py
|
|
|
33
33
|
mgnify_pipelines_toolkit/analysis/assembly/summarise_goslims.py
|
|
34
34
|
mgnify_pipelines_toolkit/analysis/assembly/summarise_sanntis_bgcs.py
|
|
35
35
|
mgnify_pipelines_toolkit/analysis/genomes/__init__.py
|
|
36
|
+
mgnify_pipelines_toolkit/analysis/rawreads/study_summary_generator.py
|
|
36
37
|
mgnify_pipelines_toolkit/analysis/shared/__init__.py
|
|
37
38
|
mgnify_pipelines_toolkit/analysis/shared/convert_cmscan_to_cmsearch_tblout.py
|
|
38
39
|
mgnify_pipelines_toolkit/analysis/shared/dwc_summary_generator.py
|
|
@@ -27,6 +27,7 @@ permute_primers = mgnify_pipelines_toolkit.analysis.amplicon.permute_primers:mai
|
|
|
27
27
|
primer_val_classification = mgnify_pipelines_toolkit.analysis.amplicon.primer_val_classification:main
|
|
28
28
|
process_dbcan_cazys = mgnify_pipelines_toolkit.analysis.assembly.process_dbcan_result_cazys:main
|
|
29
29
|
process_dbcan_clusters = mgnify_pipelines_toolkit.analysis.assembly.process_dbcan_result_clusters:main
|
|
30
|
+
rawreads_study_summary_generator = mgnify_pipelines_toolkit.analysis.rawreads.study_summary_generator:cli
|
|
30
31
|
remove_ambiguous_reads = mgnify_pipelines_toolkit.analysis.amplicon.remove_ambiguous_reads:main
|
|
31
32
|
rev_comp_se_primers = mgnify_pipelines_toolkit.analysis.amplicon.rev_comp_se_primers:main
|
|
32
33
|
summarise_antismash_bgcs = mgnify_pipelines_toolkit.analysis.assembly.summarise_antismash_bgcs:main
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
[project]
|
|
2
2
|
name = "mgnify_pipelines_toolkit"
|
|
3
|
-
version = "1.2.
|
|
3
|
+
version = "1.2.7"
|
|
4
4
|
readme = "README.md"
|
|
5
5
|
license = { text = "Apache Software License 2.0" }
|
|
6
6
|
authors = [
|
|
@@ -39,7 +39,8 @@ packages = ["mgnify_pipelines_toolkit",
|
|
|
39
39
|
"mgnify_pipelines_toolkit.analysis.shared",
|
|
40
40
|
"mgnify_pipelines_toolkit.analysis.amplicon",
|
|
41
41
|
"mgnify_pipelines_toolkit.analysis.assembly",
|
|
42
|
-
"mgnify_pipelines_toolkit.analysis.genomes"
|
|
42
|
+
"mgnify_pipelines_toolkit.analysis.genomes",
|
|
43
|
+
"mgnify_pipelines_toolkit.analysis.rawreads",
|
|
43
44
|
]
|
|
44
45
|
|
|
45
46
|
[project.scripts]
|
|
@@ -74,6 +75,8 @@ summarise_antismash_bgcs = "mgnify_pipelines_toolkit.analysis.assembly.summarise
|
|
|
74
75
|
gff_toolkit = "mgnify_pipelines_toolkit.analysis.assembly.gff_toolkit:main"
|
|
75
76
|
process_dbcan_clusters = "mgnify_pipelines_toolkit.analysis.assembly.process_dbcan_result_clusters:main"
|
|
76
77
|
process_dbcan_cazys = "mgnify_pipelines_toolkit.analysis.assembly.process_dbcan_result_cazys:main"
|
|
78
|
+
# analysis.rawreads #
|
|
79
|
+
rawreads_study_summary_generator = "mgnify_pipelines_toolkit.analysis.rawreads.study_summary_generator:cli"
|
|
77
80
|
# genomes #
|
|
78
81
|
genomes_extract_bacterial_rrnas_as_tsv = "mgnify_pipelines_toolkit.analysis.genomes.rna.extract_bacterial_rrnas_as_tsv:main"
|
|
79
82
|
genomes_extract_rrnas_as_fasta = "mgnify_pipelines_toolkit.analysis.genomes.rna.extract_rrnas_as_fasta:main"
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|