metacountregressor 0.1.176__tar.gz → 0.1.202__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/PKG-INFO +2 -2
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/helperprocess.py +11 -1
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/solution.py +143 -29
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor.egg-info/PKG-INFO +2 -2
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor.egg-info/requires.txt +1 -1
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/setup.py +1 -1
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/LICENSE.txt +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/README.rst +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/__init__.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/_device_cust.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/app_main.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/data_split_helper.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/halton.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/main.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/main_old.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/metaheuristics.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/pareto_file.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/pareto_logger__plot.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/setup.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/single_objective_finder.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/test_generated_paper2.py +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor.egg-info/SOURCES.txt +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor.egg-info/dependency_links.txt +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor.egg-info/not-zip-safe +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor.egg-info/top_level.txt +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/setup.cfg +0 -0
- {metacountregressor-0.1.176 → metacountregressor-0.1.202}/tests/test.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: metacountregressor
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.202
|
|
4
4
|
Summary: Extensive Testing for Estimation of Data Count Models
|
|
5
5
|
Home-page: https://github.com/zahern/CountDataEstimation
|
|
6
6
|
Author: Zeke Ahern
|
|
@@ -16,7 +16,7 @@ Requires-Dist: latextable
|
|
|
16
16
|
Requires-Dist: pandas
|
|
17
17
|
Requires-Dist: scikit_learn>=1.4.1.post1
|
|
18
18
|
Requires-Dist: statsmodels
|
|
19
|
-
Requires-Dist:
|
|
19
|
+
Requires-Dist: psutil
|
|
20
20
|
Dynamic: author
|
|
21
21
|
Dynamic: author-email
|
|
22
22
|
Dynamic: description
|
{metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/helperprocess.py
RENAMED
|
@@ -271,7 +271,17 @@ def guess_low_medium_high(column_name, series):
|
|
|
271
271
|
# Compute the tertiles (33rd and 66th percentiles)
|
|
272
272
|
#print('did it make it...')
|
|
273
273
|
#mode_value = st.mode(series) # Get the most frequent value
|
|
274
|
-
#
|
|
274
|
+
#i dont think this works cayse its not a seriers any other way
|
|
275
|
+
is_binary = series.isin([0, 1]).all()
|
|
276
|
+
if is_binary:
|
|
277
|
+
return {
|
|
278
|
+
'type': 'binary',
|
|
279
|
+
'bins': [0,1],
|
|
280
|
+
'labels': ['Off', 'On'],
|
|
281
|
+
'prefix': f'{column_name}'
|
|
282
|
+
|
|
283
|
+
}
|
|
284
|
+
|
|
275
285
|
# series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
|
|
276
286
|
low_threshold = np.quantile(series, 0.33)
|
|
277
287
|
high_threshold = np.quantile(series,0.66)
|
|
@@ -159,7 +159,7 @@ class ObjectiveFunction(object):
|
|
|
159
159
|
self.full_model = None
|
|
160
160
|
self.GP_parameter = 0
|
|
161
161
|
self.is_multi = kwargs.get('is_multi', False)
|
|
162
|
-
self.complexity_level = 6
|
|
162
|
+
self.complexity_level = kwargs('complexity_level', 6)
|
|
163
163
|
self._max_iterations_improvement = 10000
|
|
164
164
|
self.generated_sln = set()
|
|
165
165
|
self.ave_mae = 0
|
|
@@ -256,10 +256,11 @@ class ObjectiveFunction(object):
|
|
|
256
256
|
self.is_multi = False
|
|
257
257
|
|
|
258
258
|
if 'panels' in kwargs and not (kwargs.get('panels') == None):
|
|
259
|
-
|
|
259
|
+
if kwargs.get('group') is not None:
|
|
260
|
+
self.group_names = np.asarray(x_data[kwargs['group']].astype('category').cat._parent.dtype.categories)
|
|
260
261
|
|
|
261
|
-
|
|
262
|
-
|
|
262
|
+
x_data[kwargs['group']] = x_data[kwargs['group']].astype(
|
|
263
|
+
'category').cat.codes
|
|
263
264
|
self.complexity_level = 6
|
|
264
265
|
# create test dataset
|
|
265
266
|
|
|
@@ -309,10 +310,13 @@ class ObjectiveFunction(object):
|
|
|
309
310
|
df_train[kwargs['panels']]) if kwargs['panels'] is not None else None
|
|
310
311
|
self.ids_test = np.asarray(
|
|
311
312
|
df_test[kwargs['panels']]) if kwargs['panels'] is not None else None
|
|
312
|
-
|
|
313
|
-
'
|
|
314
|
-
|
|
315
|
-
'
|
|
313
|
+
if kwargs.get('group') is not None:
|
|
314
|
+
groupll = np.asarray(df_train[kwargs['group']].astype(
|
|
315
|
+
'category').cat.codes)
|
|
316
|
+
group_test = np.asarray(df_test[kwargs['group']].astype(
|
|
317
|
+
'category').cat.codes)
|
|
318
|
+
else:
|
|
319
|
+
groupll = None
|
|
316
320
|
X, Y, panel, group = self._arrange_long_format(
|
|
317
321
|
df_train, y_train, self.ids, self.ids, groupll)
|
|
318
322
|
self.group_halton = group.copy()
|
|
@@ -501,7 +505,7 @@ class ObjectiveFunction(object):
|
|
|
501
505
|
self._max_hurdle = 4
|
|
502
506
|
|
|
503
507
|
#Manually fit from analyst specification
|
|
504
|
-
manual_fit = kwargs.get('Manual_Fit')
|
|
508
|
+
manual_fit = kwargs.get('Manual_Fit', None)
|
|
505
509
|
if manual_fit is not None:
|
|
506
510
|
print('fitting manual')
|
|
507
511
|
self.process_manual_fit(manual_fit)
|
|
@@ -538,7 +542,7 @@ class ObjectiveFunction(object):
|
|
|
538
542
|
if self.is_multi:
|
|
539
543
|
self._offsets_test = self._x_data_test[:, :, val_od]
|
|
540
544
|
self._x_data_test = self.remove_offset(self._x_data_test, val_od)
|
|
541
|
-
print(self._offsets)
|
|
545
|
+
#print(self._offsets)
|
|
542
546
|
else:
|
|
543
547
|
self.initialize_empty_offsets()
|
|
544
548
|
|
|
@@ -1712,6 +1716,11 @@ class ObjectiveFunction(object):
|
|
|
1712
1716
|
vector[get_rdm_i] -= 1
|
|
1713
1717
|
only_ints_vals[get_rdm_i] -= 1
|
|
1714
1718
|
|
|
1719
|
+
elif vector[get_rdm_i] == 1:
|
|
1720
|
+
vector[get_rdm_i] -= 1
|
|
1721
|
+
only_ints_vals[get_rdm_i] -= 1
|
|
1722
|
+
|
|
1723
|
+
|
|
1715
1724
|
if vector.count(5) == 1:
|
|
1716
1725
|
idx = vector.index(5)
|
|
1717
1726
|
vector[idx] = 0
|
|
@@ -2361,7 +2370,7 @@ class ObjectiveFunction(object):
|
|
|
2361
2370
|
sorted(my_dict, key=lambda x: x[0]['pval_percentage'])
|
|
2362
2371
|
|
|
2363
2372
|
def get_fitness(self, vector, multi=False, verbose=False, max_routine=3):
|
|
2364
|
-
obj_1 = 10.0 **
|
|
2373
|
+
obj_1 = 10.0 ** 4
|
|
2365
2374
|
obj_best = None
|
|
2366
2375
|
sub_slns = list()
|
|
2367
2376
|
|
|
@@ -2369,12 +2378,14 @@ class ObjectiveFunction(object):
|
|
|
2369
2378
|
vector) # just added to grab the fixed fit TODO: Clean up
|
|
2370
2379
|
dispersion = model_nature.get('dispersion')
|
|
2371
2380
|
self.define_selfs_fixed_rdm_cor(model_nature)
|
|
2381
|
+
|
|
2372
2382
|
try:
|
|
2373
2383
|
self.repair(vector)
|
|
2374
2384
|
except Exception as e:
|
|
2375
|
-
print('
|
|
2385
|
+
print('problem repairing here')
|
|
2376
2386
|
print(vector)
|
|
2377
2387
|
print(e)
|
|
2388
|
+
|
|
2378
2389
|
layout = vector.copy()
|
|
2379
2390
|
trial_run = 0
|
|
2380
2391
|
max_trial = 0
|
|
@@ -2453,10 +2464,10 @@ class ObjectiveFunction(object):
|
|
|
2453
2464
|
|
|
2454
2465
|
|
|
2455
2466
|
if not self.is_quanitifiable_num(obj_1[self._obj_1]):
|
|
2456
|
-
obj_1[self._obj_1] = 10 **
|
|
2467
|
+
obj_1[self._obj_1] = 10 ** 5
|
|
2457
2468
|
else:
|
|
2458
2469
|
if obj_1[self._obj_1] <= 0:
|
|
2459
|
-
obj_1[self._obj_1] = 10 **
|
|
2470
|
+
obj_1[self._obj_1] = 10 ** 5
|
|
2460
2471
|
|
|
2461
2472
|
if multi:
|
|
2462
2473
|
|
|
@@ -2487,10 +2498,10 @@ class ObjectiveFunction(object):
|
|
|
2487
2498
|
|
|
2488
2499
|
self.reset_sln()
|
|
2489
2500
|
if not self.is_quanitifiable_num(obj_1[self._obj_1]):
|
|
2490
|
-
obj_1[self._obj_1] = 10 **
|
|
2501
|
+
obj_1[self._obj_1] = 10 ** 5
|
|
2491
2502
|
else:
|
|
2492
2503
|
if obj_1[self._obj_1] == 0:
|
|
2493
|
-
obj_1[self._obj_1] = 10 **
|
|
2504
|
+
obj_1[self._obj_1] = 10 **5
|
|
2494
2505
|
if verbose:
|
|
2495
2506
|
print('The best solution iteratively is of objective value:', obj_1)
|
|
2496
2507
|
|
|
@@ -3029,6 +3040,39 @@ class ObjectiveFunction(object):
|
|
|
3029
3040
|
# print('log_lik poisson', log_lik)
|
|
3030
3041
|
return -log_lik
|
|
3031
3042
|
|
|
3043
|
+
def extract_parameters(self, betas, Kf, Kr, Kchol_a, Krb_a):
|
|
3044
|
+
"""
|
|
3045
|
+
Extracts parameters from the `betas` array based on the given sizes.
|
|
3046
|
+
|
|
3047
|
+
Parameters:
|
|
3048
|
+
betas (numpy.ndarray): The array of betas.
|
|
3049
|
+
Kf (int): Size of Bf (first Kf elements of betas).
|
|
3050
|
+
Kr (int): Size of Br.
|
|
3051
|
+
Kchol_a (int): Part of the size for brstd.
|
|
3052
|
+
Krb_a (int): Part of the size for brstd.
|
|
3053
|
+
|
|
3054
|
+
Returns:
|
|
3055
|
+
tuple: A tuple containing:
|
|
3056
|
+
- Bf (numpy.ndarray): The first Kf elements of betas.
|
|
3057
|
+
- Br (numpy.ndarray): The next Kr elements of betas after Bf.
|
|
3058
|
+
- brstd (numpy.ndarray): The next Kchol_a + Krb_a elements of betas after Br.
|
|
3059
|
+
- remaining_betas (numpy.ndarray): Any remaining elements in betas after brstd.
|
|
3060
|
+
"""
|
|
3061
|
+
# Step 1: Extract Bf
|
|
3062
|
+
Bf = betas[:Kf] # First Kf elements
|
|
3063
|
+
|
|
3064
|
+
# Step 2: Extract Br
|
|
3065
|
+
Br = betas[Kf:Kf + Kr] # Next Kr elements after Bf
|
|
3066
|
+
|
|
3067
|
+
# Step 3: Extract brstd
|
|
3068
|
+
brstd_size = Kchol_a + Krb_a # Total size of brstd
|
|
3069
|
+
brstd = betas[Kf + Kr:Kf + Kr + brstd_size] # Next brstd_size elements after Br
|
|
3070
|
+
|
|
3071
|
+
# Step 4: Extract remaining betas
|
|
3072
|
+
remaining_betas = betas[Kf + Kr + brstd_size:] # Remaining elements in betas
|
|
3073
|
+
|
|
3074
|
+
return Bf, Br, brstd, remaining_betas
|
|
3075
|
+
|
|
3032
3076
|
def convert_nbinom_params(self, mu, theta):
|
|
3033
3077
|
"""
|
|
3034
3078
|
Convert mean/dispersion parameterization of a negative binomial to the ones scipy supports
|
|
@@ -3561,8 +3605,11 @@ class ObjectiveFunction(object):
|
|
|
3561
3605
|
# Compute: betas = mean + sd*draws
|
|
3562
3606
|
if len(br_sd) != draws.shape[1]:
|
|
3563
3607
|
#get the same size as the mean
|
|
3564
|
-
|
|
3565
|
-
|
|
3608
|
+
#if hasattr(self.Br):
|
|
3609
|
+
# betas_random = self.Br.copy()
|
|
3610
|
+
#else:
|
|
3611
|
+
idx = self.get_X_draw_tril()
|
|
3612
|
+
betas_random = br_mean[None, :, None] + draws[:,idx, :] * br_sd[None, :, None]
|
|
3566
3613
|
'''
|
|
3567
3614
|
c = self.get_num_params()[3:5]
|
|
3568
3615
|
|
|
@@ -4716,10 +4763,10 @@ class ObjectiveFunction(object):
|
|
|
4716
4763
|
n_coeff = self.get_param_num(dispersion)
|
|
4717
4764
|
Kf_a, Kr_a, Kr_c, Kr_b_a, Kchol_a, Kh = self.get_num_params()
|
|
4718
4765
|
if Kchol_a != Kchol:
|
|
4719
|
-
print('hold')
|
|
4766
|
+
print('hold qhy')
|
|
4720
4767
|
|
|
4721
4768
|
if Kr_b != Kr_b_a:
|
|
4722
|
-
print('hold')
|
|
4769
|
+
print('hold qhy')
|
|
4723
4770
|
|
|
4724
4771
|
|
|
4725
4772
|
|
|
@@ -4735,13 +4782,32 @@ class ObjectiveFunction(object):
|
|
|
4735
4782
|
Bf = betas[0:Kf] # Fixed betas
|
|
4736
4783
|
|
|
4737
4784
|
|
|
4738
|
-
|
|
4785
|
+
# Bf_new, Br_new, Br_std_new, Br_rema = self.extract_parameters(betas, Kf, Kr, Kchol_a, Kr_b_a)
|
|
4739
4786
|
|
|
4740
4787
|
|
|
4741
4788
|
Vdf = dev.np.einsum('njk,k -> nj', Xdf, Bf, dtype=np.float64) # (N, P)
|
|
4742
4789
|
br = betas[Kf:Kf + Kr]
|
|
4743
4790
|
|
|
4791
|
+
|
|
4792
|
+
|
|
4793
|
+
#i have an array of betas, Kf represents the first kf of the betas array
|
|
4794
|
+
# now return Bf where size of bf = kf
|
|
4795
|
+
|
|
4796
|
+
# size of br needs to be Kr
|
|
4797
|
+
#Kr
|
|
4798
|
+
#now extract from betas, after all the Bf
|
|
4799
|
+
# cakk
|
|
4800
|
+
|
|
4801
|
+
#the next array is brstd
|
|
4802
|
+
|
|
4803
|
+
# size of brstd needs to be
|
|
4804
|
+
# Kchol_a + Krb_a
|
|
4805
|
+
#its grabbing from the
|
|
4806
|
+
|
|
4807
|
+
|
|
4808
|
+
|
|
4744
4809
|
brstd = betas[Kf + Kr:Kf + Kr + Kr_b + Kchol]
|
|
4810
|
+
|
|
4745
4811
|
# initialises size matrix
|
|
4746
4812
|
proba = [] # Temp batching storage
|
|
4747
4813
|
|
|
@@ -4755,6 +4821,8 @@ class ObjectiveFunction(object):
|
|
|
4755
4821
|
if len(self.none_handler(self.rdm_cor_fit)) == 0:
|
|
4756
4822
|
# Br = self._transform_rand_betas(br, np.abs(
|
|
4757
4823
|
# brstd), draws_) # Get random coefficients, old method
|
|
4824
|
+
#TODO
|
|
4825
|
+
|
|
4758
4826
|
Br = self._transform_rand_betas(br,
|
|
4759
4827
|
brstd, draws_) # Get random coefficients
|
|
4760
4828
|
self.naming_for_printing(betas, dispersion=dispersion, model_nature=model_nature)
|
|
@@ -5844,6 +5912,11 @@ class ObjectiveFunction(object):
|
|
|
5844
5912
|
|
|
5845
5913
|
if self.no_extra_param:
|
|
5846
5914
|
dispersion_poisson = 0
|
|
5915
|
+
print('b :', len(b))
|
|
5916
|
+
print(self.get_param_num())
|
|
5917
|
+
baby = self.get_param_num()
|
|
5918
|
+
if len(b) != baby:
|
|
5919
|
+
print('modify')
|
|
5847
5920
|
betas_est = self._minimize(self._loglik_gradient, b, args=(
|
|
5848
5921
|
X, y, draws, X, Xr, self.batch_size, self.grad_yes, self.hess_yes, dispersion_poisson, 0, False, 0,
|
|
5849
5922
|
self.rdm_cor_fit, None, None, draws_grouped, XG, mod),
|
|
@@ -6205,8 +6278,9 @@ class ObjectiveFunction(object):
|
|
|
6205
6278
|
transform, distribution, None, dispersion=dispersion)
|
|
6206
6279
|
|
|
6207
6280
|
def get_named_indices(self, names):
|
|
6208
|
-
|
|
6209
|
-
|
|
6281
|
+
# Change substrings issue
|
|
6282
|
+
indices = [i for i, name in enumerate(self._characteristics_names) if name == names]
|
|
6283
|
+
indices = [i for i, name in enumerate(self._characteristics_names) if name in names and isinstance(name, str)]
|
|
6210
6284
|
return indices
|
|
6211
6285
|
|
|
6212
6286
|
"""
|
|
@@ -6482,10 +6556,7 @@ class ObjectiveFunction(object):
|
|
|
6482
6556
|
else:
|
|
6483
6557
|
rv_indices.append(rv_count_all - 1)
|
|
6484
6558
|
|
|
6485
|
-
|
|
6486
|
-
draws_tril_idx = np.array([corr_indices[j]
|
|
6487
|
-
for i in range(len(self.none_handler(self.rdm_cor_fit)))
|
|
6488
|
-
for j in range(i + 1)]) # varnames pos.
|
|
6559
|
+
|
|
6489
6560
|
X_tril_idx = np.array([corr_indices[i]
|
|
6490
6561
|
for i in range(len(self.none_handler(self.rdm_cor_fit)))
|
|
6491
6562
|
for j in range(i + 1)])
|
|
@@ -6494,12 +6565,55 @@ class ObjectiveFunction(object):
|
|
|
6494
6565
|
range_var = [x for x in
|
|
6495
6566
|
range(len(self.none_handler(var_uncor)))]
|
|
6496
6567
|
range_var = sorted(range_var)
|
|
6497
|
-
|
|
6568
|
+
|
|
6498
6569
|
X_tril_idx = np.array(np.concatenate((range_var, X_tril_idx)))
|
|
6499
|
-
|
|
6570
|
+
|
|
6500
6571
|
X_tril_idx = X_tril_idx.astype(int)
|
|
6501
6572
|
return X_tril_idx
|
|
6502
6573
|
|
|
6574
|
+
def get_X_draw_tril(self):
|
|
6575
|
+
'''For correlations find the repeating terms'''
|
|
6576
|
+
varnames = self.none_join([self.rdm_grouped_fit, self.rdm_fit, self.rdm_cor_fit])
|
|
6577
|
+
rv_count_all = 0
|
|
6578
|
+
chol_count = 0
|
|
6579
|
+
rv_count = 0
|
|
6580
|
+
corr_indices = []
|
|
6581
|
+
rv_indices = []
|
|
6582
|
+
for ii, var in enumerate(varnames): # TODO: BUGFIXf
|
|
6583
|
+
if var in self.none_handler(self.rdm_cor_fit):
|
|
6584
|
+
is_correlated = True
|
|
6585
|
+
else:
|
|
6586
|
+
is_correlated = False
|
|
6587
|
+
|
|
6588
|
+
rv_count_all += 1
|
|
6589
|
+
if is_correlated:
|
|
6590
|
+
chol_count += 1
|
|
6591
|
+
else:
|
|
6592
|
+
rv_count += 1
|
|
6593
|
+
|
|
6594
|
+
if var in self.none_handler(self.rdm_cor_fit):
|
|
6595
|
+
|
|
6596
|
+
corr_indices.append(rv_count_all - 1) # TODO: what does tis do
|
|
6597
|
+
|
|
6598
|
+
else:
|
|
6599
|
+
rv_indices.append(rv_count_all - 1)
|
|
6600
|
+
|
|
6601
|
+
# for s.d.: gr_w = (Obs prob. minus predicted probability) * obs. var * random draw
|
|
6602
|
+
draws_tril_idx = np.array([corr_indices[j]
|
|
6603
|
+
for i in range(len(self.none_handler(self.rdm_cor_fit)))
|
|
6604
|
+
for j in range(i + 1)]) # varnames pos.
|
|
6605
|
+
|
|
6606
|
+
# Find the s.d. for random variables that are not correlated
|
|
6607
|
+
var_uncor = self.none_join([self.rdm_grouped_fit, self.rdm_fit])
|
|
6608
|
+
range_var = [x for x in
|
|
6609
|
+
range(len(self.none_handler(var_uncor)))]
|
|
6610
|
+
range_var = sorted(range_var)
|
|
6611
|
+
draws_tril_idx = np.array(np.concatenate((range_var, draws_tril_idx)))
|
|
6612
|
+
|
|
6613
|
+
draws_tril_idx = draws_tril_idx.astype(int)
|
|
6614
|
+
|
|
6615
|
+
return draws_tril_idx
|
|
6616
|
+
|
|
6503
6617
|
|
|
6504
6618
|
|
|
6505
6619
|
def modifyn(self, data):
|
{metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor.egg-info/PKG-INFO
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: metacountregressor
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.202
|
|
4
4
|
Summary: Extensive Testing for Estimation of Data Count Models
|
|
5
5
|
Home-page: https://github.com/zahern/CountDataEstimation
|
|
6
6
|
Author: Zeke Ahern
|
|
@@ -16,7 +16,7 @@ Requires-Dist: latextable
|
|
|
16
16
|
Requires-Dist: pandas
|
|
17
17
|
Requires-Dist: scikit_learn>=1.4.1.post1
|
|
18
18
|
Requires-Dist: statsmodels
|
|
19
|
-
Requires-Dist:
|
|
19
|
+
Requires-Dist: psutil
|
|
20
20
|
Dynamic: author
|
|
21
21
|
Dynamic: author-email
|
|
22
22
|
Dynamic: description
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/_device_cust.py
RENAMED
|
File without changes
|
|
File without changes
|
{metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/data_split_helper.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/metaheuristics.py
RENAMED
|
File without changes
|
|
File without changes
|
{metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor/pareto_logger__plot.py
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
{metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor.egg-info/SOURCES.txt
RENAMED
|
File without changes
|
|
File without changes
|
{metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor.egg-info/not-zip-safe
RENAMED
|
File without changes
|
{metacountregressor-0.1.176 → metacountregressor-0.1.202}/metacountregressor.egg-info/top_level.txt
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|