metacountregressor 0.1.130__tar.gz → 0.1.132__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/PKG-INFO +1 -1
  2. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/helperprocess.py +5 -2
  3. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor.egg-info/PKG-INFO +1 -1
  4. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/LICENSE.txt +0 -0
  5. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/README.rst +0 -0
  6. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/__init__.py +0 -0
  7. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/_device_cust.py +0 -0
  8. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/app_main.py +0 -0
  9. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/data_split_helper.py +0 -0
  10. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/halton.py +0 -0
  11. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/main.py +0 -0
  12. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/main_old.py +0 -0
  13. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/metaheuristics.py +0 -0
  14. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/pareto_file.py +0 -0
  15. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/pareto_logger__plot.py +0 -0
  16. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/setup.py +0 -0
  17. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/single_objective_finder.py +0 -0
  18. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/solution.py +0 -0
  19. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor/test_generated_paper2.py +0 -0
  20. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor.egg-info/SOURCES.txt +0 -0
  21. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor.egg-info/dependency_links.txt +0 -0
  22. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor.egg-info/not-zip-safe +0 -0
  23. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor.egg-info/requires.txt +0 -0
  24. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/metacountregressor.egg-info/top_level.txt +0 -0
  25. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/setup.cfg +0 -0
  26. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/setup.py +0 -0
  27. {metacountregressor-0.1.130 → metacountregressor-0.1.132}/tests/test.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.130
3
+ Version: 0.1.132
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern
@@ -183,8 +183,9 @@ config = {
183
183
  # Function to guess Low, Medium, High ranges
184
184
  def guess_low_medium_high(column_name, series):
185
185
  # Compute the tertiles (33rd and 66th percentiles)
186
- print('why')
186
+ print('did it make it...')
187
187
  mode_value = np.mode(series) # Get the most frequent value
188
+ print('good')
188
189
  series = pd.to_numeric(series, errors='coerce').fillna(mode_value)
189
190
  low_threshold = np.quantile(series, 0.33)
190
191
  high_threshold = np.quantile(series,0.66)
@@ -250,12 +251,14 @@ def guess_column_type(column_name, series):
250
251
  return {'type': 'one-hot', 'prefix': column_name}
251
252
  elif pd.api.types.is_numeric_dtype(series):
252
253
  unique_values = series.nunique()
254
+
253
255
  if unique_values < 5:
254
256
  return {'type': 'one-hot', 'prefix': column_name}
255
257
 
256
258
  elif np.max(series) - np.min(series) > 20:
259
+ print('made it through here')
257
260
  # If there are few unique values, assume binning with default bins
258
- guess_low_medium_high(column_name,series)
261
+ return guess_low_medium_high(column_name,series)
259
262
  else:
260
263
  # # Otherwise, assume continuous data with normalization
261
264
  # Otherwise, fallback to continuous standardization
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: metacountregressor
3
- Version: 0.1.130
3
+ Version: 0.1.132
4
4
  Summary: Extensions for a Python package for estimation of count models.
5
5
  Home-page: https://github.com/zahern/CountDataEstimation
6
6
  Author: Zeke Ahern