metacontroller-pytorch 0.0.43__tar.gz → 0.0.44__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (19) hide show
  1. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/.gitignore +6 -0
  2. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/PKG-INFO +1 -1
  3. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/gather_babyai_trajs.py +81 -9
  4. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/metacontroller/metacontroller.py +12 -1
  5. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/pyproject.toml +1 -1
  6. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/train_babyai.py +5 -3
  7. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/train_behavior_clone_babyai.py +51 -22
  8. metacontroller_pytorch-0.0.43/test_babyai_e2e.sh +0 -35
  9. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/.github/workflows/python-publish.yml +0 -0
  10. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/.github/workflows/test.yml +0 -0
  11. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/LICENSE +0 -0
  12. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/README.md +0 -0
  13. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/babyai_env.py +0 -0
  14. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/fig1.png +0 -0
  15. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/metacontroller/__init__.py +0 -0
  16. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/metacontroller/metacontroller_with_binary_mapper.py +0 -0
  17. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/metacontroller/transformer_with_resnet.py +0 -0
  18. {metacontroller_pytorch-0.0.43 → metacontroller_pytorch-0.0.44}/tests/test_metacontroller.py +0 -0
  19. /metacontroller_pytorch-0.0.43/train_baby_evo_strat.py → /metacontroller_pytorch-0.0.44/train_babyai_evo_strat.py +0 -0
@@ -1,5 +1,11 @@
1
1
  replay-data/
2
2
  recordings/
3
+ trajectories/
4
+ wandb/
5
+ checkpoints/
6
+ *.sh
7
+ *.out
8
+ *.slurm
3
9
 
4
10
  # Byte-compiled / optimized / DLL files
5
11
  __pycache__/
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: metacontroller-pytorch
3
- Version: 0.0.43
3
+ Version: 0.0.44
4
4
  Summary: Transformer Metacontroller
5
5
  Project-URL: Homepage, https://pypi.org/project/metacontroller/
6
6
  Project-URL: Repository, https://github.com/lucidrains/metacontroller
@@ -37,6 +37,9 @@ from minigrid.core.constants import OBJECT_TO_IDX
37
37
 
38
38
  from memmap_replay_buffer import ReplayBuffer
39
39
 
40
+ # Difficulty thresholds based on mission length
41
+ EASY_MAX_LENGTH = 30 # easy: 0 to 30
42
+ MEDIUM_MAX_LENGTH = 75 # medium: 30 to 75, hard: > 75
40
43
 
41
44
  # helpers
42
45
 
@@ -46,6 +49,67 @@ def exists(val):
46
49
  def sample(prob):
47
50
  return random.random() < prob
48
51
 
52
+ def get_mission_length(env_id, seed):
53
+ """
54
+ Get the mission length for a given seed.
55
+ Returns the length of the mission string.
56
+ """
57
+ env = gym.make(env_id, render_mode="rgb_array")
58
+ env.reset(seed=seed)
59
+ length = len(env.unwrapped.mission)
60
+ env.close()
61
+ return length
62
+
63
+ def categorize_seeds_by_difficulty(env_id, num_seeds_per_level, level_difficulty=None):
64
+ """
65
+ Scan seeds and categorize them by difficulty based on mission length.
66
+
67
+ Args:
68
+ env_id: Environment ID
69
+ num_seeds_per_level: Number of seeds needed per difficulty level
70
+ level_difficulty: List of levels to collect seeds for.
71
+ Supported: 'easy', 'medium', 'hard'
72
+ If None, collects for ['easy', 'hard'].
73
+ max_seed_to_scan: Maximum seed value to scan
74
+
75
+ Returns:
76
+ dict with keys for each requested level, each containing a list of seeds
77
+ """
78
+
79
+ seeds = {level: [] for level in level_difficulty}
80
+
81
+ total_needed = sum(num_seeds_per_level for _ in level_difficulty)
82
+ print(f"Scanning seeds to categorize by difficulty (need {num_seeds_per_level} per level for {level_difficulty})...")
83
+
84
+ with tqdm(total=total_needed, desc="Categorizing seeds") as pbar:
85
+ seed = 1
86
+ all_done = False
87
+ while not all_done:
88
+ # Check if we have enough seeds for all requested levels
89
+ all_done = all(len(seeds[level]) >= num_seeds_per_level for level in level_difficulty)
90
+
91
+ try:
92
+ mission_length = get_mission_length(env_id, seed)
93
+
94
+ # easy: mission length <= 30
95
+ if 'easy' in level_difficulty and mission_length <= EASY_MAX_LENGTH and len(seeds['easy']) < num_seeds_per_level:
96
+ seeds['easy'].append(seed)
97
+ pbar.update(1)
98
+ # medium: mission length <= 75 (combines easy and medium)
99
+ elif 'medium' in level_difficulty and mission_length <= MEDIUM_MAX_LENGTH and len(seeds['medium']) < num_seeds_per_level:
100
+ seeds['medium'].append(seed)
101
+ pbar.update(1)
102
+ # hard: mission length > 75
103
+ elif 'hard' in level_difficulty and mission_length > MEDIUM_MAX_LENGTH and len(seeds['hard']) < num_seeds_per_level:
104
+ seeds['hard'].append(seed)
105
+ pbar.update(1)
106
+ except Exception as e:
107
+ logger.warning(f"Error getting mission length for seed {seed}: {e}")
108
+
109
+ seed += 1
110
+
111
+ return seeds
112
+
49
113
  # wrapper, necessarily modified to allow for both rgb obs (policy) and symbolic obs (bot)
50
114
 
51
115
  class RGBImgPartialObsWrapper(ObservationWrapper):
@@ -128,7 +192,7 @@ def collect_single_episode(env_id, seed, num_steps, random_action_prob, state_sh
128
192
  env.close()
129
193
  return None, None, False, 0
130
194
 
131
- episode_state[_step] = state_obs["rgb_image"] / 255. # normalizd to 0 to 1
195
+ episode_state[_step] = state_obs["rgb_image"]
132
196
  episode_action[_step] = action
133
197
 
134
198
  state_obs, reward, terminated, truncated, info = env.step(action)
@@ -151,6 +215,7 @@ def collect_demonstrations(
151
215
  num_steps = 500,
152
216
  random_action_prob = 0.05,
153
217
  num_workers = None,
218
+ difficulty = "easy",
154
219
  output_dir = "babyai-minibosslevel-trajectories"
155
220
  ):
156
221
  """
@@ -178,11 +243,9 @@ def collect_demonstrations(
178
243
 
179
244
  total_episodes = num_seeds * num_episodes_per_seed
180
245
 
181
- # Prepare seeds for all episodes
182
- seeds = []
183
- for count in range(num_seeds):
184
- for it in range(num_episodes_per_seed):
185
- seeds.append(count + 1)
246
+ # Collect seeds by difficulty
247
+ assert difficulty in ['easy', 'medium', 'hard']
248
+ seeds = categorize_seeds_by_difficulty(env_id, num_seeds_per_level=num_seeds, level_difficulty=[difficulty])
186
249
 
187
250
  successful = 0
188
251
  progressbar = tqdm(total=total_episodes)
@@ -203,14 +266,17 @@ def collect_demonstrations(
203
266
  )
204
267
 
205
268
  # Parallel execution with bounded pending futures to avoid OOM
206
- max_pending = num_workers * 4
269
+ max_pending = num_workers
270
+
271
+ # Flatten seeds: repeat each seed num_episodes_per_seed times
272
+ all_seeds = seeds[difficulty] * num_episodes_per_seed
207
273
 
208
274
  with ProcessPoolExecutor(max_workers=num_workers) as executor:
209
- seed_iter = iter(seeds)
275
+ seed_iter = iter(all_seeds)
210
276
  futures = {}
211
277
 
212
278
  # Initial batch of submissions
213
- for _ in range(min(max_pending, len(seeds))):
279
+ for _ in range(min(max_pending, len(all_seeds))):
214
280
  seed = next(seed_iter, None)
215
281
  if exists(seed):
216
282
  future = executor.submit(collect_single_episode, env_id, seed, num_steps, random_action_prob, state_shape)
@@ -244,7 +310,13 @@ def collect_demonstrations(
244
310
  buffer.flush()
245
311
  progressbar.close()
246
312
 
313
+ # Save the seeds used for reproducibility
314
+ seeds_array = np.array(seeds[difficulty])
315
+ seeds_path = output_folder / "seeds.npy"
316
+ np.save(seeds_path, seeds_array)
317
+
247
318
  logger.info(f"Saved {successful} trajectories to {output_dir}")
319
+ logger.info(f"Saved {len(seeds_array)} seeds to {seeds_path}")
248
320
 
249
321
  if __name__ == "__main__":
250
322
  fire.Fire(collect_demonstrations)
@@ -407,10 +407,19 @@ class Transformer(Module):
407
407
 
408
408
  # meta controller
409
409
 
410
- self.meta_controller = meta_controller
410
+ self.meta_controller = meta_controller
411
411
 
412
412
  self.register_buffer('zero', tensor(0.), persistent = False)
413
413
 
414
+ # ensure devices match
415
+
416
+ if exists(self.meta_controller): self._ensure_consistent_device(self.meta_controller)
417
+
418
+ def _ensure_consistent_device(self, network):
419
+ self.model_device = next(self.parameters()).device
420
+ if next(network.parameters()).device != self.model_device:
421
+ network.to(self.model_device)
422
+
414
423
  def evolve(
415
424
  self,
416
425
  num_generations,
@@ -447,6 +456,8 @@ class Transformer(Module):
447
456
 
448
457
  # meta controller is either given or already given at init
449
458
 
459
+ if exists(meta_controller): self._ensure_consistent_device(meta_controller)
460
+
450
461
  meta_controller = default(meta_controller, self.meta_controller)
451
462
 
452
463
  if force_behavior_cloning:
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "metacontroller-pytorch"
3
- version = "0.0.43"
3
+ version = "0.0.44"
4
4
  description = "Transformer Metacontroller"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -6,7 +6,8 @@
6
6
  # "memmap-replay-buffer>=0.0.12",
7
7
  # "metacontroller-pytorch",
8
8
  # "minigrid",
9
- # "tqdm"
9
+ # "tqdm",
10
+ # "wandb"
10
11
  # ]
11
12
  # ///
12
13
 
@@ -297,10 +298,11 @@ def main(
297
298
 
298
299
  accelerator.log({
299
300
  'loss': loss.item(),
300
- 'grad_norm': grad_norm.item()
301
+ 'grad_norm': grad_norm.item(),
302
+ 'reward': cumulative_rewards.mean().item()
301
303
  })
302
304
 
303
- accelerator.print(f'loss: {loss.item():.4f}, grad_norm: {grad_norm.item():.4f}')
305
+ accelerator.print(f'loss: {loss.item():.4f}, grad_norm: {grad_norm.item():.4f}, reward: {cumulative_rewards.mean().item():.4f}')
304
306
 
305
307
  env.close()
306
308
 
@@ -18,7 +18,7 @@ from tqdm import tqdm
18
18
  from pathlib import Path
19
19
 
20
20
  import torch
21
- from torch.optim import Adam
21
+ from torch.optim import AdamW
22
22
  from torch.utils.data import DataLoader
23
23
 
24
24
  from accelerate import Accelerator
@@ -31,14 +31,20 @@ from metacontroller.transformer_with_resnet import TransformerWithResnet
31
31
  import minigrid
32
32
  import gymnasium as gym
33
33
 
34
+ # TODO: loss is still ~300 and it could be the resnet output?
35
+ # TODO: changelog (paper hparams, checkpointing, difficulty levels in trajectory collection)
36
+
34
37
  def train(
35
38
  input_dir = "babyai-minibosslevel-trajectories",
36
39
  env_id = "BabyAI-MiniBossLevel-v0",
37
40
  cloning_epochs = 10,
38
41
  discovery_epochs = 10,
39
- batch_size = 32,
42
+ batch_size = 128,
43
+ gradient_accumulation_steps = None,
40
44
  lr = 1e-4,
41
45
  discovery_lr = 1e-4,
46
+ weight_decay = 0.03,
47
+ discovery_weight_decay = 0.03,
42
48
  dim = 512,
43
49
  depth = 2,
44
50
  heads = 8,
@@ -47,6 +53,7 @@ def train(
47
53
  wandb_project = "metacontroller-babyai-bc",
48
54
  checkpoint_path = "transformer_bc.pt",
49
55
  meta_controller_checkpoint_path = "meta_controller_discovery.pt",
56
+ save_steps = 50,
50
57
  state_loss_weight = 1.,
51
58
  action_loss_weight = 1.,
52
59
  discovery_action_recon_loss_weight = 1.,
@@ -55,6 +62,22 @@ def train(
55
62
  max_grad_norm = 1.,
56
63
  use_resnet = False
57
64
  ):
65
+
66
+ def store_checkpoint(step:int):
67
+ if accelerator.is_main_process:
68
+
69
+ # Add step to checkpoint filenames
70
+ checkpoint_path_with_step = checkpoint_path.replace('.pt', f'_step_{step}.pt')
71
+ meta_controller_checkpoint_path_with_step = meta_controller_checkpoint_path.replace('.pt', f'_step_{step}.pt')
72
+
73
+ unwrapped_model = accelerator.unwrap_model(model)
74
+ unwrapped_model.save(checkpoint_path_with_step)
75
+
76
+ unwrapped_meta_controller = accelerator.unwrap_model(meta_controller)
77
+ unwrapped_meta_controller.save(meta_controller_checkpoint_path_with_step)
78
+
79
+ accelerator.print(f"Model saved to {checkpoint_path_with_step}, MetaController to {meta_controller_checkpoint_path_with_step}")
80
+
58
81
  # accelerator
59
82
 
60
83
  accelerator = Accelerator(log_with = "wandb" if use_wandb else None)
@@ -99,6 +122,10 @@ def train(
99
122
 
100
123
  accelerator.print(f"Detected state_dim: {state_dim}, num_actions: {num_actions} from env: {env_id}")
101
124
 
125
+ # meta controller
126
+
127
+ meta_controller = MetaController(dim)
128
+
102
129
  # transformer
103
130
 
104
131
  transformer_class = TransformerWithResnet if use_resnet else Transformer
@@ -108,18 +135,15 @@ def train(
108
135
  state_embed_readout = dict(num_continuous = state_dim),
109
136
  action_embed_readout = dict(num_discrete = num_actions),
110
137
  lower_body = dict(depth = depth, heads = heads, attn_dim_head = dim_head),
111
- upper_body = dict(depth = depth, heads = heads, attn_dim_head = dim_head)
138
+ upper_body = dict(depth = depth, heads = heads, attn_dim_head = dim_head),
139
+ meta_controller = meta_controller
112
140
  )
113
141
 
114
- # meta controller
115
-
116
- meta_controller = MetaController(dim)
117
-
118
142
  # optimizer
119
143
 
120
- optim_model = Adam(model.parameters(), lr = lr)
144
+ optim_model = AdamW(model.parameters(), lr = lr, weight_decay = weight_decay)
121
145
 
122
- optim_meta_controller = Adam(meta_controller.discovery_parameters(), lr = discovery_lr)
146
+ optim_meta_controller = AdamW(meta_controller.discovery_parameters(), lr = discovery_lr, weight_decay = discovery_weight_decay)
123
147
 
124
148
  # prepare
125
149
 
@@ -127,6 +151,7 @@ def train(
127
151
 
128
152
  # training
129
153
 
154
+ gradient_step = 0
130
155
  for epoch in range(cloning_epochs + discovery_epochs):
131
156
 
132
157
  model.train()
@@ -154,13 +179,14 @@ def train(
154
179
  else: # flatten state: (B, T, 7, 7, 3) -> (B, T, 147)
155
180
  states = rearrange(states, 'b t ... -> b t (...)')
156
181
 
182
+
157
183
  with accelerator.accumulate(model):
158
184
  losses = model(
159
185
  states,
160
186
  actions,
161
187
  episode_lens = episode_lens,
162
188
  discovery_phase = is_discovering,
163
- meta_controller = meta_controller if is_discovering else None
189
+ force_behavior_cloning = not is_discovering
164
190
  )
165
191
 
166
192
  if is_discovering:
@@ -190,14 +216,19 @@ def train(
190
216
  action_loss = action_loss.item(),
191
217
  )
192
218
 
219
+ # gradient accumulation
220
+
221
+ if gradient_accumulation_steps is not None: loss /= gradient_accumulation_steps
222
+
193
223
  # backprop
194
224
 
195
225
  accelerator.backward(loss)
196
226
 
197
227
  grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm = max_grad_norm)
198
228
 
199
- optim.step()
200
- optim.zero_grad()
229
+ if gradient_accumulation_steps is None or gradient_step % gradient_accumulation_steps == 0:
230
+ optim.step()
231
+ optim.zero_grad()
201
232
 
202
233
  # log
203
234
 
@@ -211,23 +242,21 @@ def train(
211
242
  })
212
243
 
213
244
  progress_bar.set_postfix(**log)
245
+ gradient_step += 1
246
+
247
+ # checkpoint
248
+
249
+ if gradient_step % save_steps == 0:
250
+ accelerator.wait_for_everyone()
251
+ store_checkpoint(gradient_step)
214
252
 
215
253
  avg_losses = {k: v / len(dataloader) for k, v in total_losses.items()}
216
254
  avg_losses_str = ", ".join([f"{k}={v:.4f}" for k, v in avg_losses.items()])
217
255
  accelerator.print(f"Epoch {epoch}: {avg_losses_str}")
218
256
 
219
257
  # save weights
220
-
221
258
  accelerator.wait_for_everyone()
222
- if accelerator.is_main_process:
223
-
224
- unwrapped_model = accelerator.unwrap_model(model)
225
- unwrapped_model.save(checkpoint_path)
226
-
227
- unwrapped_meta_controller = accelerator.unwrap_model(meta_controller)
228
- unwrapped_meta_controller.save(meta_controller_checkpoint_path)
229
-
230
- accelerator.print(f"Model saved to {checkpoint_path}, MetaController to {meta_controller_checkpoint_path}")
259
+ store_checkpoint(gradient_step)
231
260
 
232
261
  accelerator.end_training()
233
262
 
@@ -1,35 +0,0 @@
1
- #!/bin/bash
2
- set -e
3
-
4
- # 1. Gather trajectories
5
- echo "Gathering trajectories..."
6
- uv run gather_babyai_trajs.py \
7
- --num_seeds 100 \
8
- --num_episodes_per_seed 10 \
9
- --num_steps 500 \
10
- --output_dir end_to_end_trajectories \
11
- --env_id BabyAI-MiniBossLevel-v0
12
-
13
- # 2. Behavioral cloning
14
- echo "Training behavioral cloning model..."
15
- ACCELERATE_USE_CPU=true ACCELERATE_MIXED_PRECISION=no uv run train_behavior_clone_babyai.py \
16
- --cloning_epochs 10 \
17
- --discovery_epochs 10 \
18
- --batch_size 256 \
19
- --input_dir end_to_end_trajectories \
20
- --env_id BabyAI-MiniBossLevel-v0 \
21
- --checkpoint_path end_to_end_model.pt \
22
- --use_resnet
23
-
24
- # 3. Inference rollouts
25
- echo "Running inference rollouts..."
26
- uv run train_babyai.py \
27
- --transformer_weights_path end_to_end_model.pt \
28
- --meta_controller_weights_path meta_controller_discovery.pt \
29
- --env_name BabyAI-MiniBossLevel-v0 \
30
- --num_episodes 1000 \
31
- --buffer_size 1000 \
32
- --max_timesteps 100 \
33
- --num_groups 16 \
34
- --lr 1e-4 \
35
- --use_resnet