metacontroller-pytorch 0.0.42__tar.gz → 0.0.43__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (19) hide show
  1. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/PKG-INFO +1 -1
  2. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/metacontroller/metacontroller.py +1 -1
  3. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/metacontroller/metacontroller_with_binary_mapper.py +1 -1
  4. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/pyproject.toml +1 -1
  5. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/tests/test_metacontroller.py +10 -2
  6. metacontroller_pytorch-0.0.43/train_baby_evo_strat.py +213 -0
  7. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/train_babyai.py +15 -14
  8. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/.github/workflows/python-publish.yml +0 -0
  9. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/.github/workflows/test.yml +0 -0
  10. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/.gitignore +0 -0
  11. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/LICENSE +0 -0
  12. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/README.md +0 -0
  13. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/babyai_env.py +0 -0
  14. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/fig1.png +0 -0
  15. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/gather_babyai_trajs.py +0 -0
  16. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/metacontroller/__init__.py +0 -0
  17. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/metacontroller/transformer_with_resnet.py +0 -0
  18. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/test_babyai_e2e.sh +0 -0
  19. {metacontroller_pytorch-0.0.42 → metacontroller_pytorch-0.0.43}/train_behavior_clone_babyai.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: metacontroller-pytorch
3
- Version: 0.0.42
3
+ Version: 0.0.43
4
4
  Summary: Transformer Metacontroller
5
5
  Project-URL: Homepage, https://pypi.org/project/metacontroller/
6
6
  Project-URL: Repository, https://github.com/lucidrains/metacontroller
@@ -291,7 +291,7 @@ class MetaController(Module):
291
291
  else:
292
292
  # else during inference, use the previous sampled latent action
293
293
 
294
- assert seq_len == 1, f'inference RL phase must be done one token at a time'
294
+ assert seq_len == 1, 'inference RL phase must be done one token at a time - if replaying for policy optimization, please use `get_action_dist_for_internal_rl`'
295
295
  z_prev = prev_sampled_latent_action
296
296
 
297
297
  # switch input is previous latent action and the embedding
@@ -241,7 +241,7 @@ class MetaControllerWithBinaryMapper(Module):
241
241
  if discovery_phase:
242
242
  z_prev = cat((prev_sampled_code, sampled_codes[:, :-1]), dim = 1)
243
243
  else:
244
- assert seq_len == 1, f'inference RL phase must be done one token at a time'
244
+ assert seq_len == 1, 'inference RL phase must be done one token at a time - if replaying for policy optimization, please use `get_action_dist_for_internal_rl`'
245
245
  z_prev = prev_sampled_code
246
246
 
247
247
  switch_input = torch.cat((meta_embed, z_prev), dim=-1)
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "metacontroller-pytorch"
3
- version = "0.0.42"
3
+ version = "0.0.43"
4
4
  description = "Transformer Metacontroller"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -114,13 +114,14 @@ def test_metacontroller(
114
114
  for one_state in subset_state.unbind(dim = 1):
115
115
  one_state = rearrange(one_state, 'b d -> b 1 d')
116
116
 
117
- logits, cache = model(one_state, past_action_id, meta_controller = meta_controller, return_cache = True)
117
+ logits, cache = model(one_state, past_action_id, meta_controller = meta_controller, cache = cache, return_cache = True)
118
118
 
119
119
  past_action_id = model.action_readout.sample(logits)
120
120
 
121
121
  # extract grpo data and store
122
122
 
123
- grpo_data_list.append(extract_grpo_data(meta_controller, cache))
123
+ grpo_data = extract_grpo_data(meta_controller, cache)
124
+ grpo_data_list.append(grpo_data)
124
125
 
125
126
  # accumulate across time for the episode data
126
127
 
@@ -145,6 +146,13 @@ def test_metacontroller(
145
146
  # simulate a policy loss update over the entire group
146
147
 
147
148
  group_states, group_log_probs, group_switch_betas, group_latent_actions = map(partial(cat, dim = 0), zip(*all_episodes))
149
+
150
+ # parallel verification
151
+
152
+ parallel_action_dist = meta_controller.get_action_dist_for_internal_rl(group_states)
153
+ parallel_log_probs = meta_controller.log_prob(parallel_action_dist, group_latent_actions)
154
+
155
+ assert torch.allclose(parallel_log_probs, group_log_probs, atol = 1e-5), 'parallel log probs do not match stored log probs'
148
156
 
149
157
  for states, log_probs, switch_betas, latent_actions, advantages in zip(group_states, group_log_probs, group_switch_betas, group_latent_actions, group_advantages):
150
158
  replay_buffer.store_episode(
@@ -0,0 +1,213 @@
1
+ # /// script
2
+ # dependencies = [
3
+ # "fire",
4
+ # "gymnasium",
5
+ # "gymnasium[other]",
6
+ # "metacontroller-pytorch",
7
+ # "minigrid",
8
+ # "tqdm",
9
+ # "x-evolution",
10
+ # "einops"
11
+ # ]
12
+ # ///
13
+
14
+ from __future__ import annotations
15
+ import fire
16
+ from pathlib import Path
17
+ from shutil import rmtree
18
+ import numpy as np
19
+
20
+ import torch
21
+ from torch import nn, Tensor, tensor
22
+ from torch.nn import Module
23
+ from einops import rearrange
24
+
25
+ from babyai_env import create_env
26
+ from metacontroller.metacontroller import Transformer, MetaController
27
+
28
+ # functions
29
+
30
+ def exists(v):
31
+ return v is not None
32
+
33
+ def default(v, d):
34
+ return v if exists(v) else d
35
+
36
+ # default fitness function
37
+
38
+ def default_fitness_fn(
39
+ rewards: list[float],
40
+ states: list[any],
41
+ actions: list[any],
42
+ next_states: list[any],
43
+ infos: list[any]
44
+ ) -> float:
45
+ """
46
+ researchers can modify this function to engineer their own rewards and fitness scores
47
+ processing the entire episode at once for every noise vector of the population separately
48
+ """
49
+ return sum(rewards)
50
+
51
+ # babyai environment for ES
52
+
53
+ class BabyAIEnvironment(Module):
54
+ def __init__(
55
+ self,
56
+ env_id = 'BabyAI-BossLevel-v0',
57
+ video_folder = './recordings_babyai_es',
58
+ render_every_eps = 100,
59
+ max_steps = 500,
60
+ use_resnet = False,
61
+ fitness_fn = default_fitness_fn
62
+ ):
63
+ super().__init__()
64
+
65
+ self.env_id = env_id
66
+ self.video_folder = video_folder
67
+ self.render_every_eps = render_every_eps
68
+ self.max_steps = max_steps
69
+ self.use_resnet = use_resnet
70
+ self.fitness_fn = fitness_fn
71
+
72
+ # initial env creation for observation space etc. if needed
73
+ # but create_env is called inside pre_main_callback or reset
74
+ self.env = None
75
+
76
+ def pre_main_callback(self):
77
+ # clean up and initialize environment
78
+ rmtree(self.video_folder, ignore_errors = True)
79
+
80
+ self.env = create_env(
81
+ self.env_id,
82
+ render_mode = 'rgb_array',
83
+ video_folder = self.video_folder,
84
+ render_every_eps = self.render_every_eps
85
+ )
86
+
87
+ def forward(self, model):
88
+ device = next(model.parameters()).device
89
+
90
+ seed = torch.randint(0, int(1e6), ()).item()
91
+ state, _ = self.env.reset(seed = seed)
92
+
93
+ step = 0
94
+ cache = None
95
+ past_action_id = None
96
+
97
+ unwrapped_model = getattr(model, 'model', model)
98
+
99
+ episode_rewards = []
100
+ episode_states = []
101
+ episode_actions = []
102
+ episode_next_states = []
103
+ episode_infos = []
104
+
105
+ while step < self.max_steps:
106
+ image = state['image']
107
+ image_tensor = torch.from_numpy(image).float().to(device)
108
+
109
+ if self.use_resnet:
110
+ image_tensor = rearrange(image_tensor, 'h w c -> 1 1 h w c')
111
+ image_tensor = unwrapped_model.visual_encode(image_tensor)
112
+ else:
113
+ image_tensor = rearrange(image_tensor, 'h w c -> 1 1 (h w c)')
114
+
115
+ if torch.is_tensor(past_action_id):
116
+ past_action_id = past_action_id.long()
117
+
118
+ with torch.no_grad():
119
+ logits, cache = model(
120
+ image_tensor,
121
+ past_action_id,
122
+ return_cache = True,
123
+ return_raw_action_dist = True,
124
+ cache = cache
125
+ )
126
+
127
+ action = unwrapped_model.action_readout.sample(logits)
128
+ past_action_id = action
129
+ action_id = action.squeeze()
130
+
131
+ next_state, reward, terminated, truncated, info = self.env.step(action_id.cpu().numpy().item())
132
+
133
+ episode_rewards.append(reward)
134
+ episode_states.append(state)
135
+ episode_actions.append(action_id)
136
+ episode_next_states.append(next_state)
137
+ episode_infos.append(info)
138
+
139
+ done = terminated or truncated
140
+ if done:
141
+ break
142
+
143
+ state = next_state
144
+ step += 1
145
+
146
+ return self.fitness_fn(
147
+ episode_rewards,
148
+ episode_states,
149
+ episode_actions,
150
+ episode_next_states,
151
+ episode_infos
152
+ )
153
+
154
+ def main(
155
+ env_id = 'BabyAI-BossLevel-v0',
156
+ num_generations = 100,
157
+ max_steps = 500,
158
+ render_every_eps = 100,
159
+ video_folder = './recordings_babyai_es',
160
+ transformer_weights_path: str | None = None,
161
+ meta_controller_weights_path: str | None = None,
162
+ output_meta_controller_path = 'metacontroller_es_trained.pt',
163
+ use_resnet = False,
164
+ noise_population_size = 50,
165
+ noise_scale = 1e-2,
166
+ learning_rate = 1e-3,
167
+ fitness_fn = default_fitness_fn
168
+ ):
169
+ # load model
170
+
171
+ assert exists(transformer_weights_path), "Transformer weights must be provided"
172
+
173
+ # lazy import to avoid unnecessary dependencies if not used
174
+ from metacontroller.transformer_with_resnet import TransformerWithResnet as TransformerResnet
175
+ transformer_klass = TransformerResnet if use_resnet else Transformer
176
+
177
+ model = transformer_klass.init_and_load(transformer_weights_path, strict = False)
178
+ model.eval()
179
+
180
+ if exists(meta_controller_weights_path):
181
+ meta_controller = MetaController.init_and_load(meta_controller_weights_path, strict = False)
182
+ model.meta_controller = meta_controller
183
+
184
+ assert exists(model.meta_controller), "MetaController must be present for evolution"
185
+
186
+ # setup environment
187
+
188
+ babyai_env = BabyAIEnvironment(
189
+ env_id = env_id,
190
+ video_folder = video_folder,
191
+ render_every_eps = render_every_eps,
192
+ max_steps = max_steps,
193
+ use_resnet = use_resnet,
194
+ fitness_fn = fitness_fn
195
+ )
196
+
197
+ # evolve
198
+
199
+ model.evolve(
200
+ num_generations = num_generations,
201
+ environment = babyai_env,
202
+ noise_population_size = noise_population_size,
203
+ noise_scale = noise_scale,
204
+ learning_rate = learning_rate
205
+ )
206
+
207
+ # save
208
+
209
+ model.meta_controller.save(output_meta_controller_path)
210
+ print(f'MetaController weights saved to {output_meta_controller_path}')
211
+
212
+ if __name__ == '__main__':
213
+ fire.Fire(main)
@@ -57,22 +57,23 @@ def default(v, d):
57
57
  # main
58
58
 
59
59
  def main(
60
- env_name: str = 'BabyAI-BossLevel-v0',
61
- num_episodes: int = int(10e6),
62
- max_timesteps: int = 500,
63
- buffer_size: int = 5_000,
64
- render_every_eps: int = 1_000,
65
- video_folder: str = './recordings',
60
+ env_name = 'BabyAI-BossLevel-v0',
61
+ num_episodes = int(10e6),
62
+ max_timesteps = 500,
63
+ buffer_size = 5_000,
64
+ render_every_eps = 1_000,
65
+ video_folder = './recordings',
66
66
  seed: int | None = None,
67
67
  transformer_weights_path: str | None = None,
68
68
  meta_controller_weights_path: str | None = None,
69
- output_meta_controller_path: str = 'metacontroller_rl_trained.pt',
70
- use_resnet: bool = False,
71
- lr: float = 1e-4,
72
- num_groups: int = 16,
73
- max_grad_norm: float = 1.0,
74
- use_wandb: bool = False,
75
- wandb_project: str = 'metacontroller-babyai-rl'
69
+ output_meta_controller_path = 'metacontroller_rl_trained.pt',
70
+ use_resnet = False,
71
+ lr = 1e-4,
72
+ batch_size = 16,
73
+ num_groups = 16,
74
+ max_grad_norm = 1.0,
75
+ use_wandb = False,
76
+ wandb_project = 'metacontroller-babyai-rl'
76
77
  ):
77
78
  # accelerator
78
79
 
@@ -263,7 +264,7 @@ def main(
263
264
  # learn
264
265
 
265
266
  if len(replay_buffer) >= buffer_size:
266
- dl = replay_buffer.dataloader(batch_size = num_groups)
267
+ dl = replay_buffer.dataloader(batch_size = batch_size)
267
268
  dl = accelerator.prepare(dl)
268
269
 
269
270
  meta_controller.train()