metacontroller-pytorch 0.0.34__tar.gz → 0.0.36__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of metacontroller-pytorch might be problematic. Click here for more details.

Files changed (17) hide show
  1. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/PKG-INFO +2 -2
  2. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/metacontroller/metacontroller.py +19 -7
  3. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/metacontroller/metacontroller_with_binary_mapper.py +9 -2
  4. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/pyproject.toml +2 -2
  5. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/tests/test_metacontroller.py +64 -21
  6. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/train_behavior_clone_babyai.py +82 -25
  7. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/.github/workflows/python-publish.yml +0 -0
  8. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/.github/workflows/test.yml +0 -0
  9. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/.gitignore +0 -0
  10. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/LICENSE +0 -0
  11. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/README.md +0 -0
  12. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/fig1.png +0 -0
  13. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/gather_babyai_trajs.py +0 -0
  14. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/metacontroller/__init__.py +0 -0
  15. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/metacontroller/transformer_with_resnet.py +0 -0
  16. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/test_babyai_e2e.sh +0 -0
  17. {metacontroller_pytorch-0.0.34 → metacontroller_pytorch-0.0.36}/train_babyai.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: metacontroller-pytorch
3
- Version: 0.0.34
3
+ Version: 0.0.36
4
4
  Summary: Transformer Metacontroller
5
5
  Project-URL: Homepage, https://pypi.org/project/metacontroller/
6
6
  Project-URL: Repository, https://github.com/lucidrains/metacontroller
@@ -39,7 +39,7 @@ Requires-Dist: discrete-continuous-embed-readout>=0.1.12
39
39
  Requires-Dist: einops>=0.8.1
40
40
  Requires-Dist: einx>=0.3.0
41
41
  Requires-Dist: loguru
42
- Requires-Dist: memmap-replay-buffer>=0.0.23
42
+ Requires-Dist: memmap-replay-buffer>=0.0.25
43
43
  Requires-Dist: torch-einops-utils>=0.0.19
44
44
  Requires-Dist: torch>=2.5
45
45
  Requires-Dist: vector-quantize-pytorch>=1.27.20
@@ -329,8 +329,15 @@ class MetaController(Module):
329
329
  sampled_latent_action[:, -1:]
330
330
  )
331
331
 
332
+ # squeeze out the last dimension of switch_beta if single gate for all latent dimensions
333
+
334
+ if not self.switch_per_latent_dim:
335
+ switch_beta = rearrange(switch_beta, '... 1 -> ...')
336
+
332
337
  return control_signal, MetaControllerOutput(next_hiddens, residual_stream, action_dist, sampled_latent_action, switch_beta, kl_loss, switch_loss)
333
338
 
339
+ MetaController.policy_loss = policy_loss
340
+
334
341
  # main transformer, which is subsumed into the environment after behavioral cloning
335
342
 
336
343
  Hiddens = namedtuple('Hiddens', (
@@ -409,17 +416,21 @@ class Transformer(Module):
409
416
  ):
410
417
  device = state.device
411
418
 
419
+ # meta controller is either given or already given at init
420
+
412
421
  meta_controller = default(meta_controller, self.meta_controller)
413
422
 
414
- meta_controlling = exists(meta_controller)
423
+ has_meta_controller = exists(meta_controller)
424
+
425
+ assert not (discovery_phase and not has_meta_controller), 'meta controller must be made available during discovery phase'
415
426
 
416
- behavioral_cloning = not meta_controlling and not return_raw_action_dist
427
+ behavioral_cloning = not has_meta_controller and not return_raw_action_dist
417
428
 
418
429
  # by default, if meta controller is passed in, transformer is no grad
419
430
 
420
- lower_transformer_context = nullcontext if not meta_controlling else torch.no_grad
421
- meta_controller_context = nullcontext if meta_controlling else torch.no_grad
422
- upper_transformer_context = nullcontext if (not meta_controlling or discovery_phase) else torch.no_grad
431
+ lower_transformer_context = nullcontext if not has_meta_controller else torch.no_grad
432
+ meta_controller_context = nullcontext if has_meta_controller else torch.no_grad
433
+ upper_transformer_context = nullcontext if (not has_meta_controller or discovery_phase) else torch.no_grad
423
434
 
424
435
  # handle cache
425
436
 
@@ -427,7 +438,8 @@ class Transformer(Module):
427
438
 
428
439
  # handle maybe behavioral cloning
429
440
 
430
- if behavioral_cloning or (meta_controlling and discovery_phase):
441
+ if behavioral_cloning or discovery_phase: # during behavior cloning and discovery phase, the network is predicting / reconstructing the next token
442
+
431
443
  assert exists(actions), f'`actions` cannot be empty when doing discovery or behavioral cloning'
432
444
 
433
445
  state, target_state = state[:, :-1], state[:, 1:]
@@ -490,7 +502,7 @@ class Transformer(Module):
490
502
 
491
503
  return state_clone_loss, action_clone_loss
492
504
 
493
- elif meta_controlling and discovery_phase:
505
+ elif discovery_phase:
494
506
 
495
507
  action_recon_loss = self.action_readout.calculate_loss(dist_params, target_actions)
496
508
 
@@ -28,7 +28,7 @@ from torch_einops_utils.save_load import save_load
28
28
 
29
29
  from vector_quantize_pytorch import BinaryMapper
30
30
 
31
- from metacontroller.metacontroller import MetaControllerOutput
31
+ from metacontroller.metacontroller import MetaControllerOutput, policy_loss
32
32
 
33
33
  # constants
34
34
 
@@ -170,7 +170,7 @@ class MetaControllerWithBinaryMapper(Module):
170
170
  action_log_probs = log_probs.gather(-1, codes)
171
171
  action_log_probs = rearrange(action_log_probs, '... 1 -> ...')
172
172
 
173
- return action_log_probs.sum(dim = -1)
173
+ return action_log_probs
174
174
 
175
175
  def forward(
176
176
  self,
@@ -296,4 +296,11 @@ class MetaControllerWithBinaryMapper(Module):
296
296
  sampled_codes[:, -1:]
297
297
  )
298
298
 
299
+ # squeeze out the last dimension of switch_beta if single gate for all codes
300
+
301
+ if not self.switch_per_code:
302
+ switch_beta = rearrange(switch_beta, '... 1 -> ...')
303
+
299
304
  return control_signal, MetaControllerOutput(next_hiddens, residual_stream, binary_logits, sampled_codes, switch_beta, kl_loss, switch_loss)
305
+
306
+ MetaControllerWithBinaryMapper.policy_loss = policy_loss
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "metacontroller-pytorch"
3
- version = "0.0.34"
3
+ version = "0.0.36"
4
4
  description = "Transformer Metacontroller"
5
5
  authors = [
6
6
  { name = "Phil Wang", email = "lucidrains@gmail.com" }
@@ -29,7 +29,7 @@ dependencies = [
29
29
  "einx>=0.3.0",
30
30
  "einops>=0.8.1",
31
31
  "loguru",
32
- "memmap-replay-buffer>=0.0.23",
32
+ "memmap-replay-buffer>=0.0.25",
33
33
  "torch>=2.5",
34
34
  "torch-einops-utils>=0.0.19",
35
35
  "vector-quantize-pytorch>=1.27.20",
@@ -1,13 +1,17 @@
1
1
  import pytest
2
2
  param = pytest.mark.parametrize
3
3
 
4
+ from shutil import rmtree
4
5
  from pathlib import Path
6
+ from functools import partial
5
7
 
6
8
  import torch
7
9
  from torch import cat
8
10
  from metacontroller.metacontroller import Transformer, MetaController, policy_loss, z_score
9
11
  from metacontroller.metacontroller_with_binary_mapper import MetaControllerWithBinaryMapper
10
12
 
13
+ from memmap_replay_buffer import ReplayBuffer
14
+
11
15
  from einops import rearrange
12
16
 
13
17
  # functions
@@ -65,6 +69,12 @@ def test_metacontroller(
65
69
  dim_latent = 128,
66
70
  switch_per_latent_dim = switch_per_latent_dim
67
71
  )
72
+
73
+ field_shapes = dict(
74
+ log_probs = ('float', 128),
75
+ switch_betas = ('float', 128 if switch_per_latent_dim else 1),
76
+ latent_actions = ('float', 128)
77
+ )
68
78
  else:
69
79
  meta_controller = MetaControllerWithBinaryMapper(
70
80
  dim_model = 512,
@@ -73,6 +83,12 @@ def test_metacontroller(
73
83
  dim_code_bits = 8, # 2 ** 8 = 256 codes
74
84
  )
75
85
 
86
+ field_shapes = dict(
87
+ log_probs = ('float', 8),
88
+ switch_betas = ('float', 8 if switch_per_latent_dim else 1),
89
+ latent_actions = ('float', 256)
90
+ )
91
+
76
92
  # discovery phase
77
93
 
78
94
  (action_recon_loss, kl_loss, switch_loss) = model(state, actions, meta_controller = meta_controller, discovery_phase = True, episode_lens = episode_lens)
@@ -80,6 +96,23 @@ def test_metacontroller(
80
96
 
81
97
  # internal rl - done iteratively
82
98
 
99
+ # replay buffer
100
+
101
+ test_folder = './test-buffer-for-grpo'
102
+
103
+ replay_buffer = ReplayBuffer(
104
+ test_folder,
105
+ max_episodes = 3,
106
+ max_timesteps = 256,
107
+ fields = dict(
108
+ states = ('float', 512),
109
+ **field_shapes
110
+ ),
111
+ meta_fields = dict(
112
+ advantages = 'float'
113
+ )
114
+ )
115
+
83
116
  # simulate grpo
84
117
 
85
118
  all_episodes = []
@@ -116,11 +149,11 @@ def test_metacontroller(
116
149
 
117
150
  # accumulate across time for the episode data
118
151
 
119
- all_episodes.append(dict(
120
- states = cat(states, dim = 1),
121
- log_probs = cat(log_probs, dim = 1),
122
- switch_betas = cat(switch_betas, dim = 1),
123
- latent_actions = cat(latent_actions, dim = 1)
152
+ all_episodes.append((
153
+ cat(states, dim = 1),
154
+ cat(log_probs, dim = 1),
155
+ cat(switch_betas, dim = 1),
156
+ cat(latent_actions, dim = 1)
124
157
  ))
125
158
 
126
159
  all_rewards.append(torch.randn(1))
@@ -128,29 +161,37 @@ def test_metacontroller(
128
161
  # calculate advantages using z-score
129
162
 
130
163
  rewards = cat(all_rewards)
131
- advantages = z_score(rewards)
164
+ group_advantages = z_score(rewards)
132
165
 
133
- assert advantages.shape == (3,)
166
+ assert group_advantages.shape == (3,)
134
167
 
135
168
  # simulate a policy loss update over the entire group
136
169
 
137
- group_states = cat([e['states'] for e in all_episodes], dim = 0)
138
- group_log_probs = cat([e['log_probs'] for e in all_episodes], dim = 0)
139
- group_latent_actions = cat([e['latent_actions'] for e in all_episodes], dim = 0)
140
- group_switch_betas = cat([e['switch_betas'] for e in all_episodes], dim = 0)
170
+ group_states, group_log_probs, group_switch_betas, group_latent_actions = map(partial(cat, dim = 0), zip(*all_episodes))
141
171
 
142
- if not use_binary_mapper_variant:
143
- loss = policy_loss(
144
- meta_controller,
145
- group_states,
146
- group_log_probs,
147
- group_latent_actions,
148
- advantages,
149
- group_switch_betas == 1.,
150
- episode_lens = episode_lens[:1].repeat(3) if exists(episode_lens) else None
172
+ for states, log_probs, switch_betas, latent_actions, advantages in zip(group_states, group_log_probs, group_switch_betas, group_latent_actions, group_advantages):
173
+ replay_buffer.store_episode(
174
+ states = states,
175
+ log_probs = log_probs,
176
+ switch_betas = switch_betas,
177
+ latent_actions = latent_actions,
178
+ advantages = advantages
151
179
  )
152
180
 
153
- loss.backward()
181
+ dl = replay_buffer.dataloader(batch_size = 3)
182
+
183
+ batch = next(iter(dl))
184
+
185
+ loss = meta_controller.policy_loss(
186
+ batch['states'],
187
+ batch['log_probs'],
188
+ batch['latent_actions'],
189
+ batch['advantages'],
190
+ batch['switch_betas'] == 1.,
191
+ episode_lens = batch['_lens']
192
+ )
193
+
194
+ loss.backward()
154
195
 
155
196
  # evolutionary strategies over grpo
156
197
 
@@ -170,3 +211,5 @@ def test_metacontroller(
170
211
 
171
212
  Path('./meta_controller.pt').unlink()
172
213
  Path('./trained.pt').unlink()
214
+
215
+ rmtree(test_folder, ignore_errors = True)
@@ -25,29 +25,35 @@ from accelerate import Accelerator
25
25
  from memmap_replay_buffer import ReplayBuffer
26
26
  from einops import rearrange
27
27
 
28
- from metacontroller.metacontroller import Transformer
28
+ from metacontroller.metacontroller import Transformer, MetaController
29
29
  from metacontroller.transformer_with_resnet import TransformerWithResnet
30
30
 
31
31
  import minigrid
32
32
  import gymnasium as gym
33
33
 
34
34
  def train(
35
- input_dir: str = "babyai-minibosslevel-trajectories",
36
- env_id: str = "BabyAI-MiniBossLevel-v0",
37
- cloning_epochs: int = 10,
38
- discovery_epochs: int = 10,
39
- batch_size: int = 32,
40
- lr: float = 1e-4,
41
- dim: int = 512,
42
- depth: int = 2,
43
- heads: int = 8,
44
- dim_head: int = 64,
45
- use_wandb: bool = False,
46
- wandb_project: str = "metacontroller-babyai-bc",
47
- checkpoint_path: str = "transformer_bc.pt",
48
- state_loss_weight: float = 1.,
49
- action_loss_weight: float = 1.,
50
- use_resnet: bool = False
35
+ input_dir = "babyai-minibosslevel-trajectories",
36
+ env_id = "BabyAI-MiniBossLevel-v0",
37
+ cloning_epochs = 10,
38
+ discovery_epochs = 10,
39
+ batch_size = 32,
40
+ lr = 1e-4,
41
+ discovery_lr = 1e-4,
42
+ dim = 512,
43
+ depth = 2,
44
+ heads = 8,
45
+ dim_head = 64,
46
+ use_wandb = False,
47
+ wandb_project = "metacontroller-babyai-bc",
48
+ checkpoint_path = "transformer_bc.pt",
49
+ meta_controller_checkpoint_path = "meta_controller_discovery.pt",
50
+ state_loss_weight = 1.,
51
+ action_loss_weight = 1.,
52
+ discovery_action_recon_loss_weight = 1.,
53
+ discovery_kl_loss_weight = 1.,
54
+ discovery_switch_loss_weight = 1.,
55
+ max_grad_norm = 1.,
56
+ use_resnet = False
51
57
  ):
52
58
  # accelerator
53
59
 
@@ -96,6 +102,7 @@ def train(
96
102
  # transformer
97
103
 
98
104
  transformer_class = TransformerWithResnet if use_resnet else Transformer
105
+
99
106
  model = transformer_class(
100
107
  dim = dim,
101
108
  state_embed_readout = dict(num_continuous = state_dim),
@@ -104,23 +111,34 @@ def train(
104
111
  upper_body = dict(depth = depth, heads = heads, attn_dim_head = dim_head)
105
112
  )
106
113
 
114
+ # meta controller
115
+
116
+ meta_controller = MetaController(dim)
117
+
107
118
  # optimizer
108
119
 
109
- optim = Adam(model.parameters(), lr = lr)
120
+ optim_model = Adam(model.parameters(), lr = lr)
121
+
122
+ optim_meta_controller = Adam(meta_controller.discovery_parameters(), lr = discovery_lr)
110
123
 
111
124
  # prepare
112
125
 
113
- model, optim, dataloader = accelerator.prepare(model, optim, dataloader)
126
+ model, optim_model, optim_meta_controller, dataloader = accelerator.prepare(model, optim_model, optim_meta_controller, dataloader)
114
127
 
115
128
  # training
129
+
116
130
  for epoch in range(cloning_epochs + discovery_epochs):
131
+
117
132
  model.train()
118
133
  total_state_loss = 0.
119
134
  total_action_loss = 0.
120
135
 
121
136
  progress_bar = tqdm(dataloader, desc = f"Epoch {epoch}", disable = not accelerator.is_local_main_process)
137
+
122
138
  is_discovering = (epoch >= cloning_epochs) # discovery phase is BC with metacontroller tuning
123
139
 
140
+ optim = optim_model if not is_discovering else optim_meta_controller
141
+
124
142
  for batch in progress_bar:
125
143
  # batch is a NamedTuple (e.g. MemoryMappedBatch)
126
144
  # state: (B, T, 7, 7, 3), action: (B, T)
@@ -130,18 +148,53 @@ def train(
130
148
  episode_lens = batch.get('_lens')
131
149
 
132
150
  # use resnet18 to embed visual observations
151
+
133
152
  if use_resnet:
134
153
  states = model.visual_encode(states)
135
154
  else: # flatten state: (B, T, 7, 7, 3) -> (B, T, 147)
136
155
  states = rearrange(states, 'b t ... -> b t (...)')
137
156
 
138
157
  with accelerator.accumulate(model):
139
- state_loss, action_loss = model(states, actions, episode_lens = episode_lens, discovery_phase=is_discovering)
140
- loss = state_loss * state_loss_weight + action_loss * action_loss_weight
158
+ losses = model(
159
+ states,
160
+ actions,
161
+ episode_lens = episode_lens,
162
+ discovery_phase = is_discovering,
163
+ meta_controller = meta_controller if is_discovering else None
164
+ )
165
+
166
+ if is_discovering:
167
+ action_recon_loss, kl_loss, switch_loss = losses
168
+
169
+ loss = (
170
+ action_recon_loss * discovery_action_recon_loss_weight +
171
+ kl_loss * discovery_kl_loss_weight +
172
+ switch_loss * discovery_switch_loss_weight
173
+ )
174
+
175
+ log = dict(
176
+ action_recon_loss = action_recon_loss.item(),
177
+ kl_loss = kl_loss.item(),
178
+ switch_loss = switch_loss.item()
179
+ )
180
+ else:
181
+ state_loss, action_loss = losses
182
+
183
+ loss = (
184
+ state_loss * state_loss_weight +
185
+ action_loss * action_loss_weight
186
+ )
187
+
188
+ log = dict(
189
+ state_loss = state_loss.item(),
190
+ action_loss = action_loss.item(),
191
+ )
192
+
193
+ # backprop
141
194
 
142
195
  accelerator.backward(loss)
143
196
 
144
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
197
+ grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm = max_grad_norm)
145
198
 
146
199
  optim.step()
147
200
  optim.zero_grad()
@@ -152,8 +205,7 @@ def train(
152
205
  total_action_loss += action_loss.item()
153
206
 
154
207
  accelerator.log({
155
- "state_loss": state_loss.item(),
156
- "action_loss": action_loss.item(),
208
+ **log,
157
209
  "total_loss": loss.item(),
158
210
  "grad_norm": grad_norm.item()
159
211
  })
@@ -172,9 +224,14 @@ def train(
172
224
 
173
225
  accelerator.wait_for_everyone()
174
226
  if accelerator.is_main_process:
227
+
175
228
  unwrapped_model = accelerator.unwrap_model(model)
176
229
  unwrapped_model.save(checkpoint_path)
177
- accelerator.print(f"Model saved to {checkpoint_path}")
230
+
231
+ unwrapped_meta_controller = accelerator.unwrap_model(meta_controller)
232
+ unwrapped_meta_controller.save(meta_controller_checkpoint_path)
233
+
234
+ accelerator.print(f"Model saved to {checkpoint_path}, MetaControler to {meta_controller_checkpoint_path}")
178
235
 
179
236
  accelerator.end_training()
180
237