metacontroller-pytorch 0.0.24__tar.gz → 0.0.26__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of metacontroller-pytorch might be problematic. Click here for more details.
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/PKG-INFO +1 -1
- metacontroller_pytorch-0.0.26/gather_babyai_trajs.py +209 -0
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/metacontroller/metacontroller.py +18 -7
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/pyproject.toml +1 -1
- metacontroller_pytorch-0.0.26/test_babyai_e2e.sh +14 -0
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/tests/test_metacontroller.py +6 -3
- metacontroller_pytorch-0.0.24/train.py → metacontroller_pytorch-0.0.26/train_babyai.py +47 -4
- metacontroller_pytorch-0.0.26/train_behavior_clone_babyai.py +175 -0
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/.github/workflows/python-publish.yml +0 -0
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/.github/workflows/test.yml +0 -0
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/.gitignore +0 -0
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/LICENSE +0 -0
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/README.md +0 -0
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/fig1.png +0 -0
- {metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/metacontroller/__init__.py +0 -0
|
@@ -0,0 +1,209 @@
|
|
|
1
|
+
# /// script
|
|
2
|
+
# dependencies = [
|
|
3
|
+
# "gymnasium",
|
|
4
|
+
# "minigrid",
|
|
5
|
+
# "tqdm",
|
|
6
|
+
# "fire",
|
|
7
|
+
# "memmap-replay-buffer>=0.0.23",
|
|
8
|
+
# "loguru"
|
|
9
|
+
# ]
|
|
10
|
+
# ///
|
|
11
|
+
|
|
12
|
+
# taken with modifications from https://github.com/ddidacus/bot-minigrid-babyai/blob/main/tests/get_trajectories.py
|
|
13
|
+
|
|
14
|
+
import fire
|
|
15
|
+
import random
|
|
16
|
+
import multiprocessing
|
|
17
|
+
from loguru import logger
|
|
18
|
+
from pathlib import Path
|
|
19
|
+
|
|
20
|
+
import warnings
|
|
21
|
+
warnings.filterwarnings("ignore", category = UserWarning)
|
|
22
|
+
|
|
23
|
+
import numpy as np
|
|
24
|
+
|
|
25
|
+
from tqdm import tqdm
|
|
26
|
+
from concurrent.futures import ProcessPoolExecutor, wait, FIRST_COMPLETED
|
|
27
|
+
|
|
28
|
+
import torch
|
|
29
|
+
import minigrid
|
|
30
|
+
import gymnasium as gym
|
|
31
|
+
from minigrid.utils.baby_ai_bot import BabyAIBot
|
|
32
|
+
from minigrid.wrappers import FullyObsWrapper, SymbolicObsWrapper
|
|
33
|
+
|
|
34
|
+
from memmap_replay_buffer import ReplayBuffer
|
|
35
|
+
|
|
36
|
+
# helpers
|
|
37
|
+
|
|
38
|
+
def exists(val):
|
|
39
|
+
return val is not None
|
|
40
|
+
|
|
41
|
+
def sample(prob):
|
|
42
|
+
return random.random() < prob
|
|
43
|
+
|
|
44
|
+
# agent
|
|
45
|
+
|
|
46
|
+
class BabyAIBotEpsilonGreedy:
|
|
47
|
+
def __init__(self, env, random_action_prob = 0.):
|
|
48
|
+
self.expert = BabyAIBot(env)
|
|
49
|
+
self.random_action_prob = random_action_prob
|
|
50
|
+
self.num_actions = env.action_space.n
|
|
51
|
+
self.last_action = None
|
|
52
|
+
|
|
53
|
+
def __call__(self, state):
|
|
54
|
+
if sample(self.random_action_prob):
|
|
55
|
+
action = torch.randint(0, self.num_actions, ()).item()
|
|
56
|
+
else:
|
|
57
|
+
action = self.expert.replan(self.last_action)
|
|
58
|
+
|
|
59
|
+
self.last_action = action
|
|
60
|
+
return action
|
|
61
|
+
|
|
62
|
+
# functions
|
|
63
|
+
|
|
64
|
+
def collect_single_episode(env_id, seed, num_steps, random_action_prob, state_shape):
|
|
65
|
+
"""
|
|
66
|
+
Collect a single episode of demonstrations.
|
|
67
|
+
Returns tuple of (episode_state, episode_action, success, episode_length)
|
|
68
|
+
"""
|
|
69
|
+
if env_id not in gym.envs.registry:
|
|
70
|
+
minigrid.register_minigrid_envs()
|
|
71
|
+
|
|
72
|
+
env = gym.make(env_id, render_mode="rgb_array", highlight=False)
|
|
73
|
+
env = FullyObsWrapper(env.unwrapped)
|
|
74
|
+
env = SymbolicObsWrapper(env.unwrapped)
|
|
75
|
+
|
|
76
|
+
try:
|
|
77
|
+
state_obs, _ = env.reset(seed=seed)
|
|
78
|
+
|
|
79
|
+
episode_state = np.zeros((num_steps, *state_shape), dtype=np.float32)
|
|
80
|
+
episode_action = np.zeros(num_steps, dtype=np.float32)
|
|
81
|
+
|
|
82
|
+
expert = BabyAIBotEpsilonGreedy(env.unwrapped, random_action_prob = random_action_prob)
|
|
83
|
+
|
|
84
|
+
for _step in range(num_steps):
|
|
85
|
+
try:
|
|
86
|
+
action = expert(state_obs)
|
|
87
|
+
except Exception:
|
|
88
|
+
env.close()
|
|
89
|
+
return None, None, False, 0
|
|
90
|
+
|
|
91
|
+
episode_state[_step] = state_obs["image"]
|
|
92
|
+
episode_action[_step] = action
|
|
93
|
+
|
|
94
|
+
state_obs, reward, terminated, truncated, info = env.step(action)
|
|
95
|
+
|
|
96
|
+
if terminated:
|
|
97
|
+
env.close()
|
|
98
|
+
return episode_state, episode_action, True, _step + 1
|
|
99
|
+
|
|
100
|
+
env.close()
|
|
101
|
+
return episode_state, episode_action, False, num_steps
|
|
102
|
+
|
|
103
|
+
except Exception:
|
|
104
|
+
env.close()
|
|
105
|
+
return None, None, False, 0
|
|
106
|
+
|
|
107
|
+
def collect_demonstrations(
|
|
108
|
+
env_id = "BabyAI-MiniBossLevel-v0",
|
|
109
|
+
num_seeds = 100,
|
|
110
|
+
num_episodes_per_seed = 100,
|
|
111
|
+
num_steps = 500,
|
|
112
|
+
random_action_prob = 0.05,
|
|
113
|
+
num_workers = None,
|
|
114
|
+
output_dir = "babyai-minibosslevel-trajectories"
|
|
115
|
+
):
|
|
116
|
+
"""
|
|
117
|
+
The BabyAI Bot should be able to solve all BabyAI environments,
|
|
118
|
+
allowing us therefore to generate demonstrations.
|
|
119
|
+
Parallelized version using ProcessPoolExecutor.
|
|
120
|
+
"""
|
|
121
|
+
|
|
122
|
+
# Register minigrid envs if not already registered
|
|
123
|
+
if env_id not in gym.envs.registry:
|
|
124
|
+
minigrid.register_minigrid_envs()
|
|
125
|
+
|
|
126
|
+
# Determine state shape from environment
|
|
127
|
+
temp_env = gym.make(env_id)
|
|
128
|
+
temp_env = FullyObsWrapper(temp_env.unwrapped)
|
|
129
|
+
temp_env = SymbolicObsWrapper(temp_env.unwrapped)
|
|
130
|
+
state_shape = temp_env.observation_space['image'].shape
|
|
131
|
+
temp_env.close()
|
|
132
|
+
|
|
133
|
+
logger.info(f"Detected state shape: {state_shape} for env {env_id}")
|
|
134
|
+
|
|
135
|
+
if not exists(num_workers):
|
|
136
|
+
num_workers = multiprocessing.cpu_count()
|
|
137
|
+
|
|
138
|
+
total_episodes = num_seeds * num_episodes_per_seed
|
|
139
|
+
|
|
140
|
+
# Prepare seeds for all episodes
|
|
141
|
+
seeds = []
|
|
142
|
+
for count in range(num_seeds):
|
|
143
|
+
for it in range(num_episodes_per_seed):
|
|
144
|
+
seeds.append(count + 1)
|
|
145
|
+
|
|
146
|
+
successful = 0
|
|
147
|
+
progressbar = tqdm(total=total_episodes)
|
|
148
|
+
|
|
149
|
+
output_folder = Path(output_dir)
|
|
150
|
+
|
|
151
|
+
fields = {
|
|
152
|
+
'state': ('float', state_shape),
|
|
153
|
+
'action': ('float', ())
|
|
154
|
+
}
|
|
155
|
+
|
|
156
|
+
buffer = ReplayBuffer(
|
|
157
|
+
folder = output_folder,
|
|
158
|
+
max_episodes = total_episodes,
|
|
159
|
+
max_timesteps = num_steps,
|
|
160
|
+
fields = fields,
|
|
161
|
+
overwrite = True
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
# Parallel execution with bounded pending futures to avoid OOM
|
|
165
|
+
max_pending = num_workers * 4
|
|
166
|
+
|
|
167
|
+
with ProcessPoolExecutor(max_workers=num_workers) as executor:
|
|
168
|
+
seed_iter = iter(seeds)
|
|
169
|
+
futures = {}
|
|
170
|
+
|
|
171
|
+
# Initial batch of submissions
|
|
172
|
+
for _ in range(min(max_pending, len(seeds))):
|
|
173
|
+
seed = next(seed_iter, None)
|
|
174
|
+
if exists(seed):
|
|
175
|
+
future = executor.submit(collect_single_episode, env_id, seed, num_steps, random_action_prob, state_shape)
|
|
176
|
+
futures[future] = seed
|
|
177
|
+
|
|
178
|
+
# Process completed tasks and submit new ones
|
|
179
|
+
while futures:
|
|
180
|
+
# Wait for at least one future to complete
|
|
181
|
+
done, _ = wait(futures, return_when=FIRST_COMPLETED)
|
|
182
|
+
|
|
183
|
+
for future in done:
|
|
184
|
+
del futures[future]
|
|
185
|
+
episode_state, episode_action, success, episode_length = future.result()
|
|
186
|
+
|
|
187
|
+
if success and exists(episode_state):
|
|
188
|
+
buffer.store_episode(
|
|
189
|
+
state = episode_state[:episode_length],
|
|
190
|
+
action = episode_action[:episode_length]
|
|
191
|
+
)
|
|
192
|
+
successful += 1
|
|
193
|
+
|
|
194
|
+
progressbar.update(1)
|
|
195
|
+
progressbar.set_description(f"success rate = {successful}/{progressbar.n:.2f}")
|
|
196
|
+
|
|
197
|
+
# Submit a new task to replace the completed one
|
|
198
|
+
seed = next(seed_iter, None)
|
|
199
|
+
if exists(seed):
|
|
200
|
+
new_future = executor.submit(collect_single_episode, env_id, seed, num_steps, random_action_prob, state_shape)
|
|
201
|
+
futures[new_future] = seed
|
|
202
|
+
|
|
203
|
+
buffer.flush()
|
|
204
|
+
progressbar.close()
|
|
205
|
+
|
|
206
|
+
logger.info(f"Saved {successful} trajectories to {output_dir}")
|
|
207
|
+
|
|
208
|
+
if __name__ == "__main__":
|
|
209
|
+
fire.Fire(collect_demonstrations)
|
{metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/metacontroller/metacontroller.py
RENAMED
|
@@ -6,7 +6,7 @@ from collections import namedtuple
|
|
|
6
6
|
from loguru import logger
|
|
7
7
|
|
|
8
8
|
import torch
|
|
9
|
-
from torch import nn, cat, stack, tensor
|
|
9
|
+
from torch import nn, cat, stack, tensor, Tensor
|
|
10
10
|
from torch.nn import Module, GRU, Linear, Identity
|
|
11
11
|
import torch.nn.functional as F
|
|
12
12
|
|
|
@@ -26,7 +26,7 @@ from discrete_continuous_embed_readout import Embed, Readout, EmbedAndReadout
|
|
|
26
26
|
|
|
27
27
|
from assoc_scan import AssocScan
|
|
28
28
|
|
|
29
|
-
from torch_einops_utils import pad_at_dim
|
|
29
|
+
from torch_einops_utils import maybe, pad_at_dim, lens_to_mask
|
|
30
30
|
from torch_einops_utils.save_load import save_load
|
|
31
31
|
|
|
32
32
|
# constants
|
|
@@ -151,7 +151,8 @@ class MetaController(Module):
|
|
|
151
151
|
cache: MetaControllerOutput | None = None,
|
|
152
152
|
discovery_phase = False,
|
|
153
153
|
hard_switch = False,
|
|
154
|
-
temperature = 1
|
|
154
|
+
temperature = 1.,
|
|
155
|
+
episode_lens: Tensor | None = None
|
|
155
156
|
):
|
|
156
157
|
device = residual_stream.device
|
|
157
158
|
|
|
@@ -168,7 +169,9 @@ class MetaController(Module):
|
|
|
168
169
|
if discovery_phase:
|
|
169
170
|
logger.warning('meta controller cache being passed back in for discovery phase, which does not make sense given bidirectional encoder')
|
|
170
171
|
|
|
171
|
-
|
|
172
|
+
mask = maybe(lens_to_mask)(episode_lens, meta_embed.shape[1])
|
|
173
|
+
|
|
174
|
+
encoded_temporal = self.bidirectional_temporal_encoder(meta_embed, mask = mask)
|
|
172
175
|
|
|
173
176
|
proposed_action_hidden, _ = self.emitter(cat((encoded_temporal, meta_embed), dim = -1))
|
|
174
177
|
readout = self.emitter_to_action_mean_log_var
|
|
@@ -335,6 +338,7 @@ class Transformer(Module):
|
|
|
335
338
|
return_raw_action_dist = False,
|
|
336
339
|
return_latents = False,
|
|
337
340
|
return_cache = False,
|
|
341
|
+
episode_lens: Tensor | None = None
|
|
338
342
|
):
|
|
339
343
|
device = state.device
|
|
340
344
|
|
|
@@ -362,6 +366,9 @@ class Transformer(Module):
|
|
|
362
366
|
state, target_state = state[:, :-1], state[:, 1:]
|
|
363
367
|
actions, target_actions = actions[:, :-1], actions[:, 1:]
|
|
364
368
|
|
|
369
|
+
if exists(episode_lens):
|
|
370
|
+
episode_lens = (episode_lens - 1).clamp(min = 0)
|
|
371
|
+
|
|
365
372
|
# transformer lower body
|
|
366
373
|
|
|
367
374
|
with lower_transformer_context():
|
|
@@ -387,7 +394,7 @@ class Transformer(Module):
|
|
|
387
394
|
with meta_controller_context():
|
|
388
395
|
|
|
389
396
|
if exists(meta_controller):
|
|
390
|
-
control_signal, next_meta_hiddens = meta_controller(residual_stream, cache = meta_hiddens, discovery_phase = discovery_phase, temperature = meta_controller_temperature)
|
|
397
|
+
control_signal, next_meta_hiddens = meta_controller(residual_stream, cache = meta_hiddens, discovery_phase = discovery_phase, temperature = meta_controller_temperature, episode_lens = episode_lens)
|
|
391
398
|
else:
|
|
392
399
|
control_signal, next_meta_hiddens = self.zero, None
|
|
393
400
|
|
|
@@ -406,10 +413,14 @@ class Transformer(Module):
|
|
|
406
413
|
# maybe return behavior cloning loss
|
|
407
414
|
|
|
408
415
|
if behavioral_cloning:
|
|
416
|
+
loss_mask = None
|
|
417
|
+
if exists(episode_lens):
|
|
418
|
+
loss_mask = lens_to_mask(episode_lens, state.shape[1])
|
|
419
|
+
|
|
409
420
|
state_dist_params = self.state_readout(attended)
|
|
410
|
-
state_clone_loss = self.state_readout.calculate_loss(state_dist_params, target_state)
|
|
421
|
+
state_clone_loss = self.state_readout.calculate_loss(state_dist_params, target_state, mask = loss_mask)
|
|
411
422
|
|
|
412
|
-
action_clone_loss = self.action_readout.calculate_loss(dist_params, target_actions)
|
|
423
|
+
action_clone_loss = self.action_readout.calculate_loss(dist_params, target_actions, mask = loss_mask)
|
|
413
424
|
|
|
414
425
|
return state_clone_loss, action_clone_loss
|
|
415
426
|
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
#!/bin/bash
|
|
2
|
+
set -e
|
|
3
|
+
|
|
4
|
+
# 1. Gather trajectories
|
|
5
|
+
echo "Gathering trajectories..."
|
|
6
|
+
uv run gather_babyai_trajs.py --num_seeds 10 --num_episodes_per_seed 10 --output_dir end_to_end_trajectories --env_id BabyAI-MiniBossLevel-v0
|
|
7
|
+
|
|
8
|
+
# 2. Behavioral cloning
|
|
9
|
+
echo "Training behavioral cloning model..."
|
|
10
|
+
uv run train_behavior_clone_babyai.py --epochs 1 --batch_size 16 --input_dir end_to_end_trajectories --env_id BabyAI-MiniBossLevel-v0 --checkpoint_path end_to_end_model.pt
|
|
11
|
+
|
|
12
|
+
# 3. Inference rollouts
|
|
13
|
+
echo "Running inference rollouts..."
|
|
14
|
+
uv run train_babyai.py --weights_path end_to_end_model.pt --env_name BabyAI-MiniBossLevel-v0 --num_episodes 5 --buffer_size 100 --max_timesteps 100
|
{metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/tests/test_metacontroller.py
RENAMED
|
@@ -10,12 +10,15 @@ from einops import rearrange
|
|
|
10
10
|
|
|
11
11
|
@param('action_discrete', (False, True))
|
|
12
12
|
@param('switch_per_latent_dim', (False, True))
|
|
13
|
+
@param('variable_length', (False, True))
|
|
13
14
|
def test_metacontroller(
|
|
14
15
|
action_discrete,
|
|
15
|
-
switch_per_latent_dim
|
|
16
|
+
switch_per_latent_dim,
|
|
17
|
+
variable_length
|
|
16
18
|
):
|
|
17
19
|
|
|
18
20
|
state = torch.randn(1, 1024, 384)
|
|
21
|
+
episode_lens = torch.tensor([512]) if variable_length else None
|
|
19
22
|
|
|
20
23
|
if action_discrete:
|
|
21
24
|
actions = torch.randint(0, 4, (1, 1024))
|
|
@@ -36,7 +39,7 @@ def test_metacontroller(
|
|
|
36
39
|
upper_body = dict(depth = 2,),
|
|
37
40
|
)
|
|
38
41
|
|
|
39
|
-
state_clone_loss, action_clone_loss = model(state, actions)
|
|
42
|
+
state_clone_loss, action_clone_loss = model(state, actions, episode_lens = episode_lens)
|
|
40
43
|
(state_clone_loss + 0.5 * action_clone_loss).backward()
|
|
41
44
|
|
|
42
45
|
# discovery and internal rl phase with meta controller
|
|
@@ -50,7 +53,7 @@ def test_metacontroller(
|
|
|
50
53
|
|
|
51
54
|
# discovery phase
|
|
52
55
|
|
|
53
|
-
(action_recon_loss, kl_loss, switch_loss) = model(state, actions, meta_controller = meta_controller, discovery_phase = True)
|
|
56
|
+
(action_recon_loss, kl_loss, switch_loss) = model(state, actions, meta_controller = meta_controller, discovery_phase = True, episode_lens = episode_lens)
|
|
54
57
|
(action_recon_loss + kl_loss * 0.1 + switch_loss * 0.2).backward()
|
|
55
58
|
|
|
56
59
|
# internal rl - done iteratively
|
|
@@ -13,13 +13,17 @@
|
|
|
13
13
|
from fire import Fire
|
|
14
14
|
from tqdm import tqdm
|
|
15
15
|
from shutil import rmtree
|
|
16
|
+
from pathlib import Path
|
|
16
17
|
|
|
17
18
|
import torch
|
|
19
|
+
from einops import rearrange
|
|
18
20
|
|
|
19
21
|
import gymnasium as gym
|
|
20
22
|
import minigrid
|
|
23
|
+
from minigrid.wrappers import FullyObsWrapper, SymbolicObsWrapper
|
|
21
24
|
|
|
22
25
|
from memmap_replay_buffer import ReplayBuffer
|
|
26
|
+
from metacontroller.metacontroller import Transformer
|
|
23
27
|
|
|
24
28
|
# functions
|
|
25
29
|
|
|
@@ -41,12 +45,15 @@ def main(
|
|
|
41
45
|
buffer_size = 5_000,
|
|
42
46
|
render_every_eps = 1_000,
|
|
43
47
|
video_folder = './recordings',
|
|
44
|
-
seed = None
|
|
48
|
+
seed = None,
|
|
49
|
+
weights_path = None
|
|
45
50
|
):
|
|
46
51
|
|
|
47
52
|
# environment
|
|
48
53
|
|
|
49
54
|
env = gym.make(env_name, render_mode = 'rgb_array')
|
|
55
|
+
env = FullyObsWrapper(env.unwrapped)
|
|
56
|
+
env = SymbolicObsWrapper(env.unwrapped)
|
|
50
57
|
|
|
51
58
|
rmtree(video_folder, ignore_errors = True)
|
|
52
59
|
|
|
@@ -58,6 +65,15 @@ def main(
|
|
|
58
65
|
disable_logger = True
|
|
59
66
|
)
|
|
60
67
|
|
|
68
|
+
# maybe load model
|
|
69
|
+
|
|
70
|
+
model = None
|
|
71
|
+
if exists(weights_path):
|
|
72
|
+
weights_path = Path(weights_path)
|
|
73
|
+
assert weights_path.exists(), f"weights not found at {weights_path}"
|
|
74
|
+
model = Transformer.init_and_load(str(weights_path), strict = False)
|
|
75
|
+
model.eval()
|
|
76
|
+
|
|
61
77
|
# replay
|
|
62
78
|
|
|
63
79
|
replay_buffer = ReplayBuffer(
|
|
@@ -79,10 +95,37 @@ def main(
|
|
|
79
95
|
|
|
80
96
|
state, *_ = env.reset(seed = seed)
|
|
81
97
|
|
|
98
|
+
cache = None
|
|
99
|
+
past_action_id = None
|
|
100
|
+
|
|
82
101
|
for _ in range(max_timesteps):
|
|
83
102
|
|
|
84
|
-
|
|
85
|
-
|
|
103
|
+
if exists(model):
|
|
104
|
+
# preprocess state
|
|
105
|
+
# assume state is a dict with 'image'
|
|
106
|
+
image = state['image']
|
|
107
|
+
image_tensor = torch.from_numpy(image).float()
|
|
108
|
+
image_tensor = rearrange(image_tensor, 'h w c -> 1 1 (h w c)')
|
|
109
|
+
|
|
110
|
+
if exists(past_action_id) and torch.is_tensor(past_action_id):
|
|
111
|
+
past_action_id = past_action_id.long()
|
|
112
|
+
|
|
113
|
+
with torch.no_grad():
|
|
114
|
+
logits, cache = model(
|
|
115
|
+
image_tensor,
|
|
116
|
+
past_action_id,
|
|
117
|
+
return_cache = True,
|
|
118
|
+
return_raw_action_dist = True,
|
|
119
|
+
cache = cache
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
action = model.action_readout.sample(logits)
|
|
123
|
+
past_action_id = action
|
|
124
|
+
action = action.squeeze()
|
|
125
|
+
else:
|
|
126
|
+
action = torch.randint(0, 7, ())
|
|
127
|
+
|
|
128
|
+
next_state, reward, terminated, truncated, *_ = env.step(action.cpu().numpy())
|
|
86
129
|
|
|
87
130
|
done = terminated or truncated
|
|
88
131
|
|
|
@@ -91,7 +134,7 @@ def main(
|
|
|
91
134
|
|
|
92
135
|
state = next_state
|
|
93
136
|
|
|
94
|
-
|
|
137
|
+
env.close()
|
|
95
138
|
|
|
96
139
|
if __name__ == '__main__':
|
|
97
140
|
Fire(main)
|
|
@@ -0,0 +1,175 @@
|
|
|
1
|
+
# /// script
|
|
2
|
+
# dependencies = [
|
|
3
|
+
# "accelerate",
|
|
4
|
+
# "fire",
|
|
5
|
+
# "memmap-replay-buffer>=0.0.23",
|
|
6
|
+
# "metacontroller-pytorch",
|
|
7
|
+
# "torch",
|
|
8
|
+
# "einops",
|
|
9
|
+
# "tqdm",
|
|
10
|
+
# "wandb",
|
|
11
|
+
# "gymnasium",
|
|
12
|
+
# "minigrid"
|
|
13
|
+
# ]
|
|
14
|
+
# ///
|
|
15
|
+
|
|
16
|
+
import fire
|
|
17
|
+
from tqdm import tqdm
|
|
18
|
+
from pathlib import Path
|
|
19
|
+
|
|
20
|
+
import torch
|
|
21
|
+
from torch.optim import Adam
|
|
22
|
+
from torch.utils.data import DataLoader
|
|
23
|
+
|
|
24
|
+
from accelerate import Accelerator
|
|
25
|
+
from memmap_replay_buffer import ReplayBuffer
|
|
26
|
+
from einops import rearrange
|
|
27
|
+
|
|
28
|
+
from metacontroller.metacontroller import Transformer
|
|
29
|
+
|
|
30
|
+
import minigrid
|
|
31
|
+
import gymnasium as gym
|
|
32
|
+
|
|
33
|
+
def train(
|
|
34
|
+
input_dir: str = "babyai-minibosslevel-trajectories",
|
|
35
|
+
env_id: str = "BabyAI-MiniBossLevel-v0",
|
|
36
|
+
epochs: int = 10,
|
|
37
|
+
batch_size: int = 32,
|
|
38
|
+
lr: float = 1e-4,
|
|
39
|
+
dim: int = 512,
|
|
40
|
+
depth: int = 2,
|
|
41
|
+
heads: int = 8,
|
|
42
|
+
dim_head: int = 64,
|
|
43
|
+
use_wandb: bool = False,
|
|
44
|
+
wandb_project: str = "metacontroller-babyai-bc",
|
|
45
|
+
checkpoint_path: str = "transformer_bc.pt",
|
|
46
|
+
state_loss_weight: float = 1.,
|
|
47
|
+
action_loss_weight: float = 1.
|
|
48
|
+
):
|
|
49
|
+
# accelerator
|
|
50
|
+
|
|
51
|
+
accelerator = Accelerator(log_with = "wandb" if use_wandb else None)
|
|
52
|
+
|
|
53
|
+
if use_wandb:
|
|
54
|
+
accelerator.init_trackers(
|
|
55
|
+
wandb_project,
|
|
56
|
+
config = {
|
|
57
|
+
"epochs": epochs,
|
|
58
|
+
"batch_size": batch_size,
|
|
59
|
+
"lr": lr,
|
|
60
|
+
"dim": dim,
|
|
61
|
+
"depth": depth,
|
|
62
|
+
"heads": heads,
|
|
63
|
+
"dim_head": dim_head,
|
|
64
|
+
"env_id": env_id,
|
|
65
|
+
"state_loss_weight": state_loss_weight,
|
|
66
|
+
"action_loss_weight": action_loss_weight
|
|
67
|
+
}
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
# replay buffer and dataloader
|
|
71
|
+
|
|
72
|
+
input_path = Path(input_dir)
|
|
73
|
+
assert input_path.exists(), f"Input directory {input_dir} does not exist"
|
|
74
|
+
|
|
75
|
+
replay_buffer = ReplayBuffer.from_folder(input_path)
|
|
76
|
+
dataloader = replay_buffer.dataloader(batch_size = batch_size)
|
|
77
|
+
|
|
78
|
+
# state shape and action dimension
|
|
79
|
+
# state: (B, T, H, W, C) or (B, T, D)
|
|
80
|
+
state_shape = replay_buffer.shapes['state']
|
|
81
|
+
state_dim = int(torch.tensor(state_shape).prod().item())
|
|
82
|
+
|
|
83
|
+
# state shape and action dimension
|
|
84
|
+
# state: (B, T, H, W, C) or (B, T, D)
|
|
85
|
+
state_shape = replay_buffer.shapes['state']
|
|
86
|
+
state_dim = int(torch.tensor(state_shape).prod().item())
|
|
87
|
+
|
|
88
|
+
# deduce num_actions from the environment
|
|
89
|
+
minigrid.register_minigrid_envs()
|
|
90
|
+
temp_env = gym.make(env_id)
|
|
91
|
+
num_actions = int(temp_env.action_space.n)
|
|
92
|
+
temp_env.close()
|
|
93
|
+
|
|
94
|
+
accelerator.print(f"Detected state_dim: {state_dim}, num_actions: {num_actions} from env: {env_id}")
|
|
95
|
+
|
|
96
|
+
# transformer
|
|
97
|
+
|
|
98
|
+
model = Transformer(
|
|
99
|
+
dim = dim,
|
|
100
|
+
state_embed_readout = dict(num_continuous = state_dim),
|
|
101
|
+
action_embed_readout = dict(num_discrete = num_actions),
|
|
102
|
+
lower_body = dict(depth = depth, heads = heads, attn_dim_head = dim_head),
|
|
103
|
+
upper_body = dict(depth = depth, heads = heads, attn_dim_head = dim_head)
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
# optimizer
|
|
107
|
+
|
|
108
|
+
optim = Adam(model.parameters(), lr = lr)
|
|
109
|
+
|
|
110
|
+
# prepare
|
|
111
|
+
|
|
112
|
+
model, optim, dataloader = accelerator.prepare(model, optim, dataloader)
|
|
113
|
+
|
|
114
|
+
# training
|
|
115
|
+
|
|
116
|
+
for epoch in range(epochs):
|
|
117
|
+
model.train()
|
|
118
|
+
total_state_loss = 0.
|
|
119
|
+
total_action_loss = 0.
|
|
120
|
+
|
|
121
|
+
progress_bar = tqdm(dataloader, desc = f"Epoch {epoch}", disable = not accelerator.is_local_main_process)
|
|
122
|
+
|
|
123
|
+
for batch in progress_bar:
|
|
124
|
+
# batch is a NamedTuple (e.g. MemoryMappedBatch)
|
|
125
|
+
# state: (B, T, 7, 7, 3), action: (B, T)
|
|
126
|
+
|
|
127
|
+
states = batch['state'].float()
|
|
128
|
+
actions = batch['action'].long()
|
|
129
|
+
episode_lens = batch.get('_lens')
|
|
130
|
+
|
|
131
|
+
# flatten state: (B, T, 7, 7, 3) -> (B, T, 147)
|
|
132
|
+
|
|
133
|
+
states = rearrange(states, 'b t ... -> b t (...)')
|
|
134
|
+
|
|
135
|
+
with accelerator.accumulate(model):
|
|
136
|
+
state_loss, action_loss = model(states, actions, episode_lens = episode_lens)
|
|
137
|
+
loss = state_loss * state_loss_weight + action_loss * action_loss_weight
|
|
138
|
+
|
|
139
|
+
accelerator.backward(loss)
|
|
140
|
+
optim.step()
|
|
141
|
+
optim.zero_grad()
|
|
142
|
+
|
|
143
|
+
# log
|
|
144
|
+
|
|
145
|
+
total_state_loss += state_loss.item()
|
|
146
|
+
total_action_loss += action_loss.item()
|
|
147
|
+
|
|
148
|
+
accelerator.log({
|
|
149
|
+
"state_loss": state_loss.item(),
|
|
150
|
+
"action_loss": action_loss.item(),
|
|
151
|
+
"total_loss": loss.item()
|
|
152
|
+
})
|
|
153
|
+
|
|
154
|
+
progress_bar.set_postfix(
|
|
155
|
+
state_loss = state_loss.item(),
|
|
156
|
+
action_loss = action_loss.item()
|
|
157
|
+
)
|
|
158
|
+
|
|
159
|
+
avg_state_loss = total_state_loss / len(dataloader)
|
|
160
|
+
avg_action_loss = total_action_loss / len(dataloader)
|
|
161
|
+
|
|
162
|
+
accelerator.print(f"Epoch {epoch}: state_loss={avg_state_loss:.4f}, action_loss={avg_action_loss:.4f}")
|
|
163
|
+
|
|
164
|
+
# save weights
|
|
165
|
+
|
|
166
|
+
accelerator.wait_for_everyone()
|
|
167
|
+
if accelerator.is_main_process:
|
|
168
|
+
unwrapped_model = accelerator.unwrap_model(model)
|
|
169
|
+
unwrapped_model.save(checkpoint_path)
|
|
170
|
+
accelerator.print(f"Model saved to {checkpoint_path}")
|
|
171
|
+
|
|
172
|
+
accelerator.end_training()
|
|
173
|
+
|
|
174
|
+
if __name__ == "__main__":
|
|
175
|
+
fire.Fire(train)
|
{metacontroller_pytorch-0.0.24 → metacontroller_pytorch-0.0.26}/.github/workflows/python-publish.yml
RENAMED
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|