metacontroller-pytorch 0.0.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- metacontroller_pytorch-0.0.1/.github/workflows/python-publish.yml +36 -0
- metacontroller_pytorch-0.0.1/.github/workflows/test.yml +21 -0
- metacontroller_pytorch-0.0.1/.gitignore +207 -0
- metacontroller_pytorch-0.0.1/LICENSE +21 -0
- metacontroller_pytorch-0.0.1/PKG-INFO +79 -0
- metacontroller_pytorch-0.0.1/README.md +30 -0
- metacontroller_pytorch-0.0.1/fig1.png +0 -0
- metacontroller_pytorch-0.0.1/metacontroller/__init__.py +1 -0
- metacontroller_pytorch-0.0.1/metacontroller/metacontroller.py +257 -0
- metacontroller_pytorch-0.0.1/pyproject.toml +64 -0
- metacontroller_pytorch-0.0.1/tests/test_metacontroller.py +26 -0
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# This workflow will upload a Python Package using Twine when a release is created
|
|
2
|
+
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
|
|
3
|
+
|
|
4
|
+
# This workflow uses actions that are not certified by GitHub.
|
|
5
|
+
# They are provided by a third-party and are governed by
|
|
6
|
+
# separate terms of service, privacy policy, and support
|
|
7
|
+
# documentation.
|
|
8
|
+
|
|
9
|
+
name: Upload Python Package
|
|
10
|
+
|
|
11
|
+
on:
|
|
12
|
+
release:
|
|
13
|
+
types: [published]
|
|
14
|
+
|
|
15
|
+
jobs:
|
|
16
|
+
deploy:
|
|
17
|
+
|
|
18
|
+
runs-on: ubuntu-latest
|
|
19
|
+
|
|
20
|
+
steps:
|
|
21
|
+
- uses: actions/checkout@v2
|
|
22
|
+
- name: Set up Python
|
|
23
|
+
uses: actions/setup-python@v2
|
|
24
|
+
with:
|
|
25
|
+
python-version: '3.x'
|
|
26
|
+
- name: Install dependencies
|
|
27
|
+
run: |
|
|
28
|
+
python -m pip install --upgrade pip
|
|
29
|
+
pip install build
|
|
30
|
+
- name: Build package
|
|
31
|
+
run: python -m build
|
|
32
|
+
- name: Publish package
|
|
33
|
+
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
|
|
34
|
+
with:
|
|
35
|
+
user: __token__
|
|
36
|
+
password: ${{ secrets.PYPI_API_TOKEN }}
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
name: Pytest
|
|
2
|
+
on: [push, pull_request]
|
|
3
|
+
|
|
4
|
+
jobs:
|
|
5
|
+
build:
|
|
6
|
+
|
|
7
|
+
runs-on: ubuntu-latest
|
|
8
|
+
|
|
9
|
+
steps:
|
|
10
|
+
- uses: actions/checkout@v4
|
|
11
|
+
- name: Set up Python 3.10
|
|
12
|
+
uses: actions/setup-python@v5
|
|
13
|
+
with:
|
|
14
|
+
python-version: "3.10"
|
|
15
|
+
- name: Install dependencies
|
|
16
|
+
run: |
|
|
17
|
+
python -m pip install --upgrade pip
|
|
18
|
+
python -m pip install -e .[test]
|
|
19
|
+
- name: Test with pytest
|
|
20
|
+
run: |
|
|
21
|
+
python -m pytest tests/
|
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
# Byte-compiled / optimized / DLL files
|
|
2
|
+
__pycache__/
|
|
3
|
+
*.py[codz]
|
|
4
|
+
*$py.class
|
|
5
|
+
|
|
6
|
+
# C extensions
|
|
7
|
+
*.so
|
|
8
|
+
|
|
9
|
+
# Distribution / packaging
|
|
10
|
+
.Python
|
|
11
|
+
build/
|
|
12
|
+
develop-eggs/
|
|
13
|
+
dist/
|
|
14
|
+
downloads/
|
|
15
|
+
eggs/
|
|
16
|
+
.eggs/
|
|
17
|
+
lib/
|
|
18
|
+
lib64/
|
|
19
|
+
parts/
|
|
20
|
+
sdist/
|
|
21
|
+
var/
|
|
22
|
+
wheels/
|
|
23
|
+
share/python-wheels/
|
|
24
|
+
*.egg-info/
|
|
25
|
+
.installed.cfg
|
|
26
|
+
*.egg
|
|
27
|
+
MANIFEST
|
|
28
|
+
|
|
29
|
+
# PyInstaller
|
|
30
|
+
# Usually these files are written by a python script from a template
|
|
31
|
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
|
32
|
+
*.manifest
|
|
33
|
+
*.spec
|
|
34
|
+
|
|
35
|
+
# Installer logs
|
|
36
|
+
pip-log.txt
|
|
37
|
+
pip-delete-this-directory.txt
|
|
38
|
+
|
|
39
|
+
# Unit test / coverage reports
|
|
40
|
+
htmlcov/
|
|
41
|
+
.tox/
|
|
42
|
+
.nox/
|
|
43
|
+
.coverage
|
|
44
|
+
.coverage.*
|
|
45
|
+
.cache
|
|
46
|
+
nosetests.xml
|
|
47
|
+
coverage.xml
|
|
48
|
+
*.cover
|
|
49
|
+
*.py.cover
|
|
50
|
+
.hypothesis/
|
|
51
|
+
.pytest_cache/
|
|
52
|
+
cover/
|
|
53
|
+
|
|
54
|
+
# Translations
|
|
55
|
+
*.mo
|
|
56
|
+
*.pot
|
|
57
|
+
|
|
58
|
+
# Django stuff:
|
|
59
|
+
*.log
|
|
60
|
+
local_settings.py
|
|
61
|
+
db.sqlite3
|
|
62
|
+
db.sqlite3-journal
|
|
63
|
+
|
|
64
|
+
# Flask stuff:
|
|
65
|
+
instance/
|
|
66
|
+
.webassets-cache
|
|
67
|
+
|
|
68
|
+
# Scrapy stuff:
|
|
69
|
+
.scrapy
|
|
70
|
+
|
|
71
|
+
# Sphinx documentation
|
|
72
|
+
docs/_build/
|
|
73
|
+
|
|
74
|
+
# PyBuilder
|
|
75
|
+
.pybuilder/
|
|
76
|
+
target/
|
|
77
|
+
|
|
78
|
+
# Jupyter Notebook
|
|
79
|
+
.ipynb_checkpoints
|
|
80
|
+
|
|
81
|
+
# IPython
|
|
82
|
+
profile_default/
|
|
83
|
+
ipython_config.py
|
|
84
|
+
|
|
85
|
+
# pyenv
|
|
86
|
+
# For a library or package, you might want to ignore these files since the code is
|
|
87
|
+
# intended to run in multiple environments; otherwise, check them in:
|
|
88
|
+
# .python-version
|
|
89
|
+
|
|
90
|
+
# pipenv
|
|
91
|
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
|
92
|
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
|
93
|
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
|
94
|
+
# install all needed dependencies.
|
|
95
|
+
#Pipfile.lock
|
|
96
|
+
|
|
97
|
+
# UV
|
|
98
|
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
|
99
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
100
|
+
# commonly ignored for libraries.
|
|
101
|
+
#uv.lock
|
|
102
|
+
|
|
103
|
+
# poetry
|
|
104
|
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
|
105
|
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
|
106
|
+
# commonly ignored for libraries.
|
|
107
|
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
|
108
|
+
#poetry.lock
|
|
109
|
+
#poetry.toml
|
|
110
|
+
|
|
111
|
+
# pdm
|
|
112
|
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
|
113
|
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
|
114
|
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
|
115
|
+
#pdm.lock
|
|
116
|
+
#pdm.toml
|
|
117
|
+
.pdm-python
|
|
118
|
+
.pdm-build/
|
|
119
|
+
|
|
120
|
+
# pixi
|
|
121
|
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
|
122
|
+
#pixi.lock
|
|
123
|
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
|
124
|
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
|
125
|
+
.pixi
|
|
126
|
+
|
|
127
|
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
|
128
|
+
__pypackages__/
|
|
129
|
+
|
|
130
|
+
# Celery stuff
|
|
131
|
+
celerybeat-schedule
|
|
132
|
+
celerybeat.pid
|
|
133
|
+
|
|
134
|
+
# SageMath parsed files
|
|
135
|
+
*.sage.py
|
|
136
|
+
|
|
137
|
+
# Environments
|
|
138
|
+
.env
|
|
139
|
+
.envrc
|
|
140
|
+
.venv
|
|
141
|
+
env/
|
|
142
|
+
venv/
|
|
143
|
+
ENV/
|
|
144
|
+
env.bak/
|
|
145
|
+
venv.bak/
|
|
146
|
+
|
|
147
|
+
# Spyder project settings
|
|
148
|
+
.spyderproject
|
|
149
|
+
.spyproject
|
|
150
|
+
|
|
151
|
+
# Rope project settings
|
|
152
|
+
.ropeproject
|
|
153
|
+
|
|
154
|
+
# mkdocs documentation
|
|
155
|
+
/site
|
|
156
|
+
|
|
157
|
+
# mypy
|
|
158
|
+
.mypy_cache/
|
|
159
|
+
.dmypy.json
|
|
160
|
+
dmypy.json
|
|
161
|
+
|
|
162
|
+
# Pyre type checker
|
|
163
|
+
.pyre/
|
|
164
|
+
|
|
165
|
+
# pytype static type analyzer
|
|
166
|
+
.pytype/
|
|
167
|
+
|
|
168
|
+
# Cython debug symbols
|
|
169
|
+
cython_debug/
|
|
170
|
+
|
|
171
|
+
# PyCharm
|
|
172
|
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
|
173
|
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
|
174
|
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
|
175
|
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
|
176
|
+
#.idea/
|
|
177
|
+
|
|
178
|
+
# Abstra
|
|
179
|
+
# Abstra is an AI-powered process automation framework.
|
|
180
|
+
# Ignore directories containing user credentials, local state, and settings.
|
|
181
|
+
# Learn more at https://abstra.io/docs
|
|
182
|
+
.abstra/
|
|
183
|
+
|
|
184
|
+
# Visual Studio Code
|
|
185
|
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
|
186
|
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
|
187
|
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
|
188
|
+
# you could uncomment the following to ignore the entire vscode folder
|
|
189
|
+
# .vscode/
|
|
190
|
+
|
|
191
|
+
# Ruff stuff:
|
|
192
|
+
.ruff_cache/
|
|
193
|
+
|
|
194
|
+
# PyPI configuration file
|
|
195
|
+
.pypirc
|
|
196
|
+
|
|
197
|
+
# Cursor
|
|
198
|
+
# Cursor is an AI-powered code editor. `.cursorignore` specifies files/directories to
|
|
199
|
+
# exclude from AI features like autocomplete and code analysis. Recommended for sensitive data
|
|
200
|
+
# refer to https://docs.cursor.com/context/ignore-files
|
|
201
|
+
.cursorignore
|
|
202
|
+
.cursorindexingignore
|
|
203
|
+
|
|
204
|
+
# Marimo
|
|
205
|
+
marimo/_static/
|
|
206
|
+
marimo/_lsp/
|
|
207
|
+
__marimo__/
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Phil Wang
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,79 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: metacontroller-pytorch
|
|
3
|
+
Version: 0.0.1
|
|
4
|
+
Summary: Transformer Metacontroller
|
|
5
|
+
Project-URL: Homepage, https://pypi.org/project/metacontroller/
|
|
6
|
+
Project-URL: Repository, https://github.com/lucidrains/metacontroller
|
|
7
|
+
Author-email: Phil Wang <lucidrains@gmail.com>
|
|
8
|
+
License: MIT License
|
|
9
|
+
|
|
10
|
+
Copyright (c) 2025 Phil Wang
|
|
11
|
+
|
|
12
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
13
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
14
|
+
in the Software without restriction, including without limitation the rights
|
|
15
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
16
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
17
|
+
furnished to do so, subject to the following conditions:
|
|
18
|
+
|
|
19
|
+
The above copyright notice and this permission notice shall be included in all
|
|
20
|
+
copies or substantial portions of the Software.
|
|
21
|
+
|
|
22
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
23
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
24
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
25
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
26
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
27
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
28
|
+
SOFTWARE.
|
|
29
|
+
License-File: LICENSE
|
|
30
|
+
Keywords: artificial intelligence,deep learning,hierarchical reinforcement learning,latent steering
|
|
31
|
+
Classifier: Development Status :: 4 - Beta
|
|
32
|
+
Classifier: Intended Audience :: Developers
|
|
33
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
34
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
35
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
36
|
+
Requires-Python: >=3.9
|
|
37
|
+
Requires-Dist: assoc-scan
|
|
38
|
+
Requires-Dist: discrete-continuous-embed-readout>=0.1.11
|
|
39
|
+
Requires-Dist: einops>=0.8.1
|
|
40
|
+
Requires-Dist: einx>=0.3.0
|
|
41
|
+
Requires-Dist: torch>=2.5
|
|
42
|
+
Requires-Dist: x-evolution>=0.1.23
|
|
43
|
+
Requires-Dist: x-mlps-pytorch
|
|
44
|
+
Requires-Dist: x-transformers
|
|
45
|
+
Provides-Extra: examples
|
|
46
|
+
Provides-Extra: test
|
|
47
|
+
Requires-Dist: pytest; extra == 'test'
|
|
48
|
+
Description-Content-Type: text/markdown
|
|
49
|
+
|
|
50
|
+
<img src="./fig1.png" width="400px"></img>
|
|
51
|
+
|
|
52
|
+
## metacontroller (wip)
|
|
53
|
+
|
|
54
|
+
Implementation of the MetaController proposed in [Emergent temporal abstractions in autoregressive models enable hierarchical reinforcement learning](https://arxiv.org/abs/2512.20605)
|
|
55
|
+
|
|
56
|
+
## Citations
|
|
57
|
+
|
|
58
|
+
```bibtex
|
|
59
|
+
@misc{kobayashi2025emergenttemporalabstractionsautoregressive,
|
|
60
|
+
title = {Emergent temporal abstractions in autoregressive models enable hierarchical reinforcement learning},
|
|
61
|
+
author = {Seijin Kobayashi and Yanick Schimpf and Maximilian Schlegel and Angelika Steger and Maciej Wolczyk and Johannes von Oswald and Nino Scherrer and Kaitlin Maile and Guillaume Lajoie and Blake A. Richards and Rif A. Saurous and James Manyika and Blaise Agüera y Arcas and Alexander Meulemans and João Sacramento},
|
|
62
|
+
year={2025},
|
|
63
|
+
eprint = {2512.20605},
|
|
64
|
+
archivePrefix = {arXiv},
|
|
65
|
+
primaryClass = {cs.LG},
|
|
66
|
+
url = {https://arxiv.org/abs/2512.20605},
|
|
67
|
+
}
|
|
68
|
+
```
|
|
69
|
+
|
|
70
|
+
```bibtex
|
|
71
|
+
@article{Wagenmaker2025SteeringYD,
|
|
72
|
+
title = {Steering Your Diffusion Policy with Latent Space Reinforcement Learning},
|
|
73
|
+
author = {Andrew Wagenmaker and Mitsuhiko Nakamoto and Yunchu Zhang and Seohong Park and Waleed Yagoub and Anusha Nagabandi and Abhishek Gupta and Sergey Levine},
|
|
74
|
+
journal = {ArXiv},
|
|
75
|
+
year = {2025},
|
|
76
|
+
volume = {abs/2506.15799},
|
|
77
|
+
url = {https://api.semanticscholar.org/CorpusID:279464702}
|
|
78
|
+
}
|
|
79
|
+
```
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
<img src="./fig1.png" width="400px"></img>
|
|
2
|
+
|
|
3
|
+
## metacontroller (wip)
|
|
4
|
+
|
|
5
|
+
Implementation of the MetaController proposed in [Emergent temporal abstractions in autoregressive models enable hierarchical reinforcement learning](https://arxiv.org/abs/2512.20605)
|
|
6
|
+
|
|
7
|
+
## Citations
|
|
8
|
+
|
|
9
|
+
```bibtex
|
|
10
|
+
@misc{kobayashi2025emergenttemporalabstractionsautoregressive,
|
|
11
|
+
title = {Emergent temporal abstractions in autoregressive models enable hierarchical reinforcement learning},
|
|
12
|
+
author = {Seijin Kobayashi and Yanick Schimpf and Maximilian Schlegel and Angelika Steger and Maciej Wolczyk and Johannes von Oswald and Nino Scherrer and Kaitlin Maile and Guillaume Lajoie and Blake A. Richards and Rif A. Saurous and James Manyika and Blaise Agüera y Arcas and Alexander Meulemans and João Sacramento},
|
|
13
|
+
year={2025},
|
|
14
|
+
eprint = {2512.20605},
|
|
15
|
+
archivePrefix = {arXiv},
|
|
16
|
+
primaryClass = {cs.LG},
|
|
17
|
+
url = {https://arxiv.org/abs/2512.20605},
|
|
18
|
+
}
|
|
19
|
+
```
|
|
20
|
+
|
|
21
|
+
```bibtex
|
|
22
|
+
@article{Wagenmaker2025SteeringYD,
|
|
23
|
+
title = {Steering Your Diffusion Policy with Latent Space Reinforcement Learning},
|
|
24
|
+
author = {Andrew Wagenmaker and Mitsuhiko Nakamoto and Yunchu Zhang and Seohong Park and Waleed Yagoub and Anusha Nagabandi and Abhishek Gupta and Sergey Levine},
|
|
25
|
+
journal = {ArXiv},
|
|
26
|
+
year = {2025},
|
|
27
|
+
volume = {abs/2506.15799},
|
|
28
|
+
url = {https://api.semanticscholar.org/CorpusID:279464702}
|
|
29
|
+
}
|
|
30
|
+
```
|
|
Binary file
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from metacontroller.metacontroller import MetaController
|
|
@@ -0,0 +1,257 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
from functools import partial
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from torch import nn, cat, stack, tensor
|
|
6
|
+
from torch.nn import Module, GRU, Linear, Identity
|
|
7
|
+
import torch.nn.functional as F
|
|
8
|
+
|
|
9
|
+
# einops
|
|
10
|
+
|
|
11
|
+
import einx
|
|
12
|
+
from einops import einsum, rearrange, repeat, reduce
|
|
13
|
+
from einops.layers.torch import Rearrange
|
|
14
|
+
|
|
15
|
+
# external modules
|
|
16
|
+
|
|
17
|
+
from x_transformers import Decoder
|
|
18
|
+
from x_mlps_pytorch import Feedforwards
|
|
19
|
+
from x_evolution import EvoStrategy
|
|
20
|
+
|
|
21
|
+
from discrete_continuous_embed_readout import Embed, Readout
|
|
22
|
+
|
|
23
|
+
from assoc_scan import AssocScan
|
|
24
|
+
|
|
25
|
+
# constants
|
|
26
|
+
|
|
27
|
+
LinearNoBias = partial(Linear, bias = False)
|
|
28
|
+
|
|
29
|
+
GRU = partial(GRU, batch_first = True)
|
|
30
|
+
|
|
31
|
+
# helper functions
|
|
32
|
+
|
|
33
|
+
def exists(v):
|
|
34
|
+
return v is not None
|
|
35
|
+
|
|
36
|
+
def identity(t):
|
|
37
|
+
return t
|
|
38
|
+
|
|
39
|
+
def default(*args):
|
|
40
|
+
for arg in args:
|
|
41
|
+
if exists(arg):
|
|
42
|
+
return arg
|
|
43
|
+
return None
|
|
44
|
+
|
|
45
|
+
# meta controller
|
|
46
|
+
|
|
47
|
+
class MetaController(Module):
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
dim_latent,
|
|
51
|
+
*,
|
|
52
|
+
decoder_expansion_factor = 2.,
|
|
53
|
+
decoder_depth = 1,
|
|
54
|
+
hypernetwork_low_rank = 16,
|
|
55
|
+
assoc_scan_kwargs: dict = dict()
|
|
56
|
+
):
|
|
57
|
+
super().__init__()
|
|
58
|
+
|
|
59
|
+
# there are two phases, the first (discovery ssl phase) uses acausal with some ssm i don't really believe in - let's just use a bidirectional GRU as placeholders
|
|
60
|
+
|
|
61
|
+
self.bidirectional_temporal_compressor = GRU(dim_latent, dim_latent, bidirectional = True) # revisit naming
|
|
62
|
+
|
|
63
|
+
self.emitter = GRU(dim_latent * 2, dim_latent * 2)
|
|
64
|
+
self.emitter_to_action_mean_log_var = LinearNoBias(dim_latent * 2, dim_latent * 2)
|
|
65
|
+
|
|
66
|
+
# internal rl phase substitutes the acausal + emitter with a causal ssm
|
|
67
|
+
|
|
68
|
+
self.action_proposer = GRU(dim_latent, dim_latent)
|
|
69
|
+
self.action_proposer_mean_log_var = LinearNoBias(dim_latent, dim_latent * 2)
|
|
70
|
+
|
|
71
|
+
# switching unit
|
|
72
|
+
|
|
73
|
+
self.switching_unit = GRU(dim_latent, dim_latent)
|
|
74
|
+
self.to_switching_unit_beta = nn.Linear(dim_latent, 1, bias = False)
|
|
75
|
+
|
|
76
|
+
self.switch_gating = AssocScan(**assoc_scan_kwargs)
|
|
77
|
+
|
|
78
|
+
# decoder
|
|
79
|
+
|
|
80
|
+
assert hypernetwork_low_rank < dim_latent
|
|
81
|
+
|
|
82
|
+
dim_decoder_hidden = int(dim_latent * decoder_expansion_factor)
|
|
83
|
+
|
|
84
|
+
self.decoder = Feedforwards(
|
|
85
|
+
dim_in = dim_latent,
|
|
86
|
+
dim = dim_decoder_hidden,
|
|
87
|
+
depth = decoder_depth,
|
|
88
|
+
dim_out = 2 * hypernetwork_low_rank * dim_latent
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
self.to_hyper_network_weights = Rearrange('... (two d r) -> two ... d r', two = 2, r = hypernetwork_low_rank)
|
|
92
|
+
|
|
93
|
+
self.register_buffer('zero', tensor(0.), persistent = False)
|
|
94
|
+
|
|
95
|
+
def discovery_parameters(self):
|
|
96
|
+
return [
|
|
97
|
+
*self.bidirectional_temporal_compressor.parameters(),
|
|
98
|
+
*self.emitter.parameters(),
|
|
99
|
+
*self.emitter_to_action_mean_log_var.parameters()
|
|
100
|
+
*self.decoder.parameters(),
|
|
101
|
+
*self.switch_gating
|
|
102
|
+
]
|
|
103
|
+
|
|
104
|
+
def internal_rl_parameters(self):
|
|
105
|
+
return [
|
|
106
|
+
*self.action_proposer.parameters(),
|
|
107
|
+
*self.action_proposer_mean_log_var.parameters(),
|
|
108
|
+
*self.decoder.parameters(),
|
|
109
|
+
*self.switch_gating
|
|
110
|
+
]
|
|
111
|
+
|
|
112
|
+
def forward(
|
|
113
|
+
self,
|
|
114
|
+
residual_stream,
|
|
115
|
+
discovery_phase = False
|
|
116
|
+
):
|
|
117
|
+
|
|
118
|
+
if discovery_phase:
|
|
119
|
+
temporal_compressed, _ = self.bidirectional_temporal_compressor(residual_stream)
|
|
120
|
+
temporal_compressed = reduce(temporal_compressed, '... (two d) -> ... d', 'mean', two = 2)
|
|
121
|
+
|
|
122
|
+
proposed_action_hidden, _ = self.emitter(cat((temporal_compressed, residual_stream), dim = -1))
|
|
123
|
+
proposed_action = self.emitter_to_action_mean_log_var(proposed_action_hidden)
|
|
124
|
+
|
|
125
|
+
else: # else internal rl phase
|
|
126
|
+
proposed_action_hidden, _ = self.action_proposer(residual_stream)
|
|
127
|
+
proposed_action = self.action_proposer_mean_log_var(proposed_action_hidden)
|
|
128
|
+
|
|
129
|
+
# sample from the gaussian as the action from the meta controller
|
|
130
|
+
|
|
131
|
+
mean, log_var = proposed_action.chunk(2, dim = -1)
|
|
132
|
+
|
|
133
|
+
std = (0.5 * log_var).exp()
|
|
134
|
+
sampled_action_intents = mean + torch.randn_like(mean) * std
|
|
135
|
+
|
|
136
|
+
# need to encourage normal distribution
|
|
137
|
+
|
|
138
|
+
vae_kl_loss = self.zero
|
|
139
|
+
|
|
140
|
+
if discovery_phase:
|
|
141
|
+
vae_kl_loss = (0.5 * (
|
|
142
|
+
log_var.exp()
|
|
143
|
+
+ mean.square()
|
|
144
|
+
- log_var
|
|
145
|
+
- 1.
|
|
146
|
+
)).sum(dim = -1).mean()
|
|
147
|
+
|
|
148
|
+
# switching unit timer
|
|
149
|
+
|
|
150
|
+
batch, _, dim = sampled_action_intents.shape
|
|
151
|
+
|
|
152
|
+
switching_unit_gru_out, switching_unit_gru_hidden = self.switching_unit(residual_stream)
|
|
153
|
+
|
|
154
|
+
switch_beta = self.to_switching_unit_beta(switching_unit_gru_out).sigmoid()
|
|
155
|
+
|
|
156
|
+
action_intent_for_gating = rearrange(sampled_action_intents, 'b n d -> (b d) n')
|
|
157
|
+
switch_beta = repeat(switch_beta, 'b n 1 -> (b d) n', d = dim)
|
|
158
|
+
|
|
159
|
+
forget = 1. - switch_beta
|
|
160
|
+
gated_action_intent = self.switch_gating(action_intent_for_gating * forget, switch_beta)
|
|
161
|
+
|
|
162
|
+
gated_action_intent = rearrange(gated_action_intent, '(b d) n -> b n d', b = batch)
|
|
163
|
+
|
|
164
|
+
# decoder
|
|
165
|
+
|
|
166
|
+
decoder_out = self.decoder(gated_action_intent)
|
|
167
|
+
|
|
168
|
+
w1, w2 = self.to_hyper_network_weights(decoder_out)
|
|
169
|
+
hypernetwork_weight = einsum(w1, w2, '... i r, ... j r -> ... i j')
|
|
170
|
+
|
|
171
|
+
# generating the residual stream controlling signal
|
|
172
|
+
|
|
173
|
+
control_signal = einsum(gated_action_intent, hypernetwork_weight, '... d1, ... d1 d2 -> ... d1')
|
|
174
|
+
|
|
175
|
+
modified_residual_stream = residual_stream + control_signal
|
|
176
|
+
|
|
177
|
+
return modified_residual_stream, vae_kl_loss
|
|
178
|
+
|
|
179
|
+
# main transformer, which is subsumed into the environment after behavioral cloning
|
|
180
|
+
|
|
181
|
+
class Transformer(Module):
|
|
182
|
+
def __init__(
|
|
183
|
+
self,
|
|
184
|
+
dim,
|
|
185
|
+
*,
|
|
186
|
+
embed: Embed | dict,
|
|
187
|
+
lower_body: Decoder | dict,
|
|
188
|
+
upper_body: Decoder | dict,
|
|
189
|
+
readout: Readout | dict,
|
|
190
|
+
meta_controller: MetaController | None = None
|
|
191
|
+
):
|
|
192
|
+
super().__init__()
|
|
193
|
+
|
|
194
|
+
if isinstance(embed, dict):
|
|
195
|
+
embed = Embed(dim = dim, **embed)
|
|
196
|
+
|
|
197
|
+
if isinstance(lower_body, dict):
|
|
198
|
+
lower_body = Decoder(dim = dim, **lower_body)
|
|
199
|
+
|
|
200
|
+
if isinstance(upper_body, dict):
|
|
201
|
+
upper_body = Decoder(dim = dim, **upper_body)
|
|
202
|
+
|
|
203
|
+
if isinstance(readout, dict):
|
|
204
|
+
readout = Readout(dim = dim, **readout)
|
|
205
|
+
|
|
206
|
+
self.embed = embed
|
|
207
|
+
self.lower_body = lower_body
|
|
208
|
+
self.upper_body = upper_body
|
|
209
|
+
self.readout = readout
|
|
210
|
+
|
|
211
|
+
# meta controller
|
|
212
|
+
|
|
213
|
+
self.meta_controller = meta_controller
|
|
214
|
+
|
|
215
|
+
def evolve(
|
|
216
|
+
self,
|
|
217
|
+
environment,
|
|
218
|
+
**kwargs
|
|
219
|
+
):
|
|
220
|
+
assert exists(self.meta_controller), '`meta_controller` must be defined on init for evolutionary strategies to be straightforwardly applied'
|
|
221
|
+
|
|
222
|
+
evo_strat = EvoStrategy(
|
|
223
|
+
self,
|
|
224
|
+
environment = environment,
|
|
225
|
+
params_to_optimize = self.meta_controller.internal_rl_parameters(),
|
|
226
|
+
**kwargs
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
evo_strat()
|
|
230
|
+
|
|
231
|
+
def forward(
|
|
232
|
+
self,
|
|
233
|
+
ids,
|
|
234
|
+
meta_controller: Module | None = None,
|
|
235
|
+
discovery_phase = False,
|
|
236
|
+
return_latents = False
|
|
237
|
+
):
|
|
238
|
+
meta_controller = default(meta_controller, self.meta_controller, Identity())
|
|
239
|
+
|
|
240
|
+
embed = self.embed(ids)
|
|
241
|
+
|
|
242
|
+
residual_stream = self.lower_body(embed)
|
|
243
|
+
|
|
244
|
+
# meta controller acts on residual stream here
|
|
245
|
+
|
|
246
|
+
modified_residual_stream, vae_aux_loss = meta_controller(residual_stream, discovery_phase = discovery_phase)
|
|
247
|
+
|
|
248
|
+
# modified residual stream sent back
|
|
249
|
+
|
|
250
|
+
attended = self.upper_body(modified_residual_stream)
|
|
251
|
+
|
|
252
|
+
dist_params = self.readout(attended)
|
|
253
|
+
|
|
254
|
+
if not return_latents:
|
|
255
|
+
return dist_params
|
|
256
|
+
|
|
257
|
+
return dist_params, latents
|
|
@@ -0,0 +1,64 @@
|
|
|
1
|
+
[project]
|
|
2
|
+
name = "metacontroller-pytorch"
|
|
3
|
+
version = "0.0.1"
|
|
4
|
+
description = "Transformer Metacontroller"
|
|
5
|
+
authors = [
|
|
6
|
+
{ name = "Phil Wang", email = "lucidrains@gmail.com" }
|
|
7
|
+
]
|
|
8
|
+
readme = "README.md"
|
|
9
|
+
requires-python = ">= 3.9"
|
|
10
|
+
license = { file = "LICENSE" }
|
|
11
|
+
keywords = [
|
|
12
|
+
'artificial intelligence',
|
|
13
|
+
'deep learning',
|
|
14
|
+
'latent steering',
|
|
15
|
+
'hierarchical reinforcement learning'
|
|
16
|
+
]
|
|
17
|
+
|
|
18
|
+
classifiers=[
|
|
19
|
+
'Development Status :: 4 - Beta',
|
|
20
|
+
'Intended Audience :: Developers',
|
|
21
|
+
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
|
22
|
+
'License :: OSI Approved :: MIT License',
|
|
23
|
+
'Programming Language :: Python :: 3.9',
|
|
24
|
+
]
|
|
25
|
+
|
|
26
|
+
dependencies = [
|
|
27
|
+
"assoc-scan",
|
|
28
|
+
"einx>=0.3.0",
|
|
29
|
+
"einops>=0.8.1",
|
|
30
|
+
"discrete-continuous-embed-readout>=0.1.11",
|
|
31
|
+
"torch>=2.5",
|
|
32
|
+
"x-evolution>=0.1.23",
|
|
33
|
+
"x-mlps-pytorch",
|
|
34
|
+
"x-transformers"
|
|
35
|
+
]
|
|
36
|
+
|
|
37
|
+
[project.urls]
|
|
38
|
+
Homepage = "https://pypi.org/project/metacontroller/"
|
|
39
|
+
Repository = "https://github.com/lucidrains/metacontroller"
|
|
40
|
+
|
|
41
|
+
[project.optional-dependencies]
|
|
42
|
+
examples = []
|
|
43
|
+
test = [
|
|
44
|
+
"pytest"
|
|
45
|
+
]
|
|
46
|
+
|
|
47
|
+
[tool.pytest.ini_options]
|
|
48
|
+
pythonpath = [
|
|
49
|
+
"."
|
|
50
|
+
]
|
|
51
|
+
|
|
52
|
+
[build-system]
|
|
53
|
+
requires = ["hatchling"]
|
|
54
|
+
build-backend = "hatchling.build"
|
|
55
|
+
|
|
56
|
+
[tool.rye]
|
|
57
|
+
managed = true
|
|
58
|
+
dev-dependencies = []
|
|
59
|
+
|
|
60
|
+
[tool.hatch.metadata]
|
|
61
|
+
allow-direct-references = true
|
|
62
|
+
|
|
63
|
+
[tool.hatch.build.targets.wheel]
|
|
64
|
+
packages = ["metacontroller"]
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
param = pytest.mark.parametrize
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from metacontroller.metacontroller import Transformer, MetaController
|
|
6
|
+
|
|
7
|
+
@param('discovery_phase', (False, True))
|
|
8
|
+
def test_metacontroller(
|
|
9
|
+
discovery_phase
|
|
10
|
+
):
|
|
11
|
+
|
|
12
|
+
ids = torch.randint(0, 256, (1, 1024))
|
|
13
|
+
|
|
14
|
+
model = Transformer(
|
|
15
|
+
512,
|
|
16
|
+
embed = dict(num_discrete = 256),
|
|
17
|
+
lower_body = dict(depth = 2,),
|
|
18
|
+
upper_body = dict(depth = 2,),
|
|
19
|
+
readout = dict(num_discrete = 256)
|
|
20
|
+
)
|
|
21
|
+
|
|
22
|
+
meta_controller = MetaController(512)
|
|
23
|
+
|
|
24
|
+
logits = model(ids, meta_controller = meta_controller, discovery_phase = discovery_phase)
|
|
25
|
+
|
|
26
|
+
assert logits.shape == (1, 1024, 256)
|