mergeron 2024.739104.1__tar.gz → 2024.739105.4__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mergeron might be problematic. Click here for more details.

Files changed (33) hide show
  1. mergeron-2024.739105.4/PKG-INFO +115 -0
  2. mergeron-2024.739105.4/README.rst +73 -0
  3. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/pyproject.toml +2 -2
  4. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/__init__.py +4 -2
  5. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/core/guidelines_boundaries.py +30 -19
  6. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/core/guidelines_boundary_functions.py +5 -5
  7. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/core/guidelines_boundary_functions_extra.py +3 -3
  8. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/gen/__init__.py +31 -28
  9. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/gen/data_generation.py +44 -33
  10. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/gen/data_generation_functions.py +50 -43
  11. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/gen/enforcement_stats.py +12 -12
  12. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/gen/upp_tests.py +9 -10
  13. mergeron-2024.739104.1/PKG-INFO +0 -102
  14. mergeron-2024.739104.1/README.rst +0 -60
  15. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/License.txt +0 -0
  16. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/core/__init__.py +0 -0
  17. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/core/damodaran_margin_data.py +0 -0
  18. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/core/ftc_merger_investigations_data.py +0 -0
  19. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/core/pseudorandom_numbers.py +0 -0
  20. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/__init__.py +0 -0
  21. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/damodaran_margin_data.xls +0 -0
  22. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/damodaran_margin_data_dict.msgpack +0 -0
  23. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/ftc_invdata.msgpack +0 -0
  24. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/jinja2_LaTeX_templates/clrrate_cis_summary_table_template.tex.jinja2 +0 -0
  25. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/jinja2_LaTeX_templates/ftcinvdata_byhhianddelta_table_template.tex.jinja2 +0 -0
  26. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/jinja2_LaTeX_templates/ftcinvdata_summary_table_template.tex.jinja2 +0 -0
  27. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/jinja2_LaTeX_templates/ftcinvdata_summarypaired_table_template.tex.jinja2 +0 -0
  28. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/jinja2_LaTeX_templates/mergeron.cls +0 -0
  29. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/jinja2_LaTeX_templates/mergeron_table_collection_template.tex.jinja2 +0 -0
  30. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/data/jinja2_LaTeX_templates/setup_tikz_tables.tex +0 -0
  31. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/demo/__init__.py +0 -0
  32. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/demo/visualize_empirical_margin_distribution.py +0 -0
  33. {mergeron-2024.739104.1 → mergeron-2024.739105.4}/src/mergeron/py.typed +0 -0
@@ -0,0 +1,115 @@
1
+ Metadata-Version: 2.1
2
+ Name: mergeron
3
+ Version: 2024.739105.4
4
+ Summary: Merger Policy Analysis using Python
5
+ License: MIT
6
+ Keywords: merger policy analysis,merger guidelines,merger screening,policy presumptions,concentration standards,upward pricing pressure,GUPPI
7
+ Author: Murthy Kambhampaty
8
+ Author-email: smk@capeconomics.com
9
+ Requires-Python: >=3.12,<4.0
10
+ Classifier: Development Status :: 4 - Beta
11
+ Classifier: Environment :: Console
12
+ Classifier: Intended Audience :: End Users/Desktop
13
+ Classifier: Intended Audience :: Science/Research
14
+ Classifier: License :: OSI Approved :: MIT License
15
+ Classifier: Operating System :: OS Independent
16
+ Classifier: Programming Language :: Python
17
+ Classifier: Programming Language :: Python :: 3
18
+ Classifier: Programming Language :: Python :: 3.12
19
+ Classifier: Programming Language :: Python :: 3 :: Only
20
+ Classifier: Programming Language :: Python :: Implementation :: CPython
21
+ Requires-Dist: aenum (>=3.1.15,<4.0.0)
22
+ Requires-Dist: attrs (>=23.2)
23
+ Requires-Dist: bs4 (>=0.0.1)
24
+ Requires-Dist: certifi (>=2023.11.17)
25
+ Requires-Dist: google-re2 (>=1.1)
26
+ Requires-Dist: jinja2 (>=3.1)
27
+ Requires-Dist: joblib (>=1.3)
28
+ Requires-Dist: matplotlib (>=3.8)
29
+ Requires-Dist: mpmath (>=1.3)
30
+ Requires-Dist: msgpack (>=1.0)
31
+ Requires-Dist: msgpack-numpy (>=0.4)
32
+ Requires-Dist: numpy (>=1.26,<2)
33
+ Requires-Dist: scipy (>=1.12)
34
+ Requires-Dist: sympy (>=1.12)
35
+ Requires-Dist: tables (>=3.8)
36
+ Requires-Dist: types-beautifulsoup4 (>=4.11.2)
37
+ Requires-Dist: urllib3 (>=2.2.2,<3.0.0)
38
+ Requires-Dist: xlrd (>=2.0.1,<3.0.0)
39
+ Requires-Dist: xlsxwriter (>=3.1)
40
+ Description-Content-Type: text/x-rst
41
+
42
+ mergeron: Merger Policy Analysis using Python
43
+ =============================================
44
+
45
+ Analyze the sets of mergers conforming to concentration and diversion ratio bounds. Analyze intrinsic enforcement rates, and intrinsic clearance rates, under concentration, diversion ratio, GUPPI, CMCR, and IPR bounds using generated data with specified distributions of market shares, price-cost margins, firm counts, and prices, optionally imposing restrictions implied by statutory filing thresholds and/or Bertrand-Nash oligopoly with MNL demand. Download and analyze merger investigations data published by the U.S. Federal Trade Commission in various reports on extended merger investigations (Second Requests) during 1996 to 2011.
46
+
47
+ Here, enforcement rates derived with merger enforcement as being exogenous to firm conduct are defined as intrinsic enforcement rates, and similarly intrinsic clearance rates. Depending on the merger enforcement regime, or merger control regime, intrinsic enforcement rates may also not be the complement of intrinsic clearance rates, i.e, it is not necessarily true that the intrinsic clearance rate estimate for a given enforcement regime is 1 minus the intrinsic enforcement rate. In contrast, observed enforcement rates reflect the deterrent effects of merger enforcement on firm conduct as well as the effects of merger screening on the level of enforcement; and, by definition, the observed clearance rate is 1 minus the observed enforcement rate.
48
+
49
+ Introduction
50
+ ------------
51
+
52
+ Module :code:`.core.guidelines_boundaries` includes classes for specifying concentration bounds (:code:`.core.guidelines_boundaries.ConcentrationBoundary`) and diversion-ratio bounds (:code:`.core.guidelines_boundaries.DiversionRatioBoundary`), with automatic generation of boundary (as an array of share-pairs) and area. This module also includes a function for generating plots of concentration and diversion-ratio boundaries, and functions for mapping GUPPI standards to concentration (ΔHHI) standards, and vice-versa.
53
+
54
+ Module :code:`.gen.data_generation` includes the :code:`.gen.data_generation.MarketSample` which provides for a rich specification of shares and diversion ratios (:code:`.gen.data_generation.MarketSample.share_spec`), margins (:code:`.gen.data_generation.MarketSample.pcm_spec`, prices (:code:`.gen.data_generation.MarketSample.price_spec`), and HSR filing requirements (:code:`.gen.data_generation.MarketSample.hsr_filing_test_type`), and with methods for, (i) generating sample data (:code:`.gen.data_generation.MarketSample.generate_sample`), and (ii) estimating enforcement or clearance rates under specified enforcement regimes given a method of aggregating diversion ratio or GUPPI estimates for the firms in a merger (:code:`.gen.data_generation.MarketSample.estimate_enf_counts`). While the latter populate the properties, :code:`.gen.data_generation.MarketSample.data`
55
+ and :code:`.gen.data_generation.MarketSample.enf_counts`, respectively, the underlying methods for generating standalone :code:`MarketDataSample` and :code:`UPPTestCounts` objects are included in the class definition, with helper functions defined in the modules, :code:`.gen.data_generation_functions` and :code:`.gen.upp_tests`. Notably, market shares are generated for a sample of markets with firm-count distributed as specified in :code:`.gen.data_generation.MarketSample.share_spec.firm_count_weights`, with defaults as discussed below (also see, :code:`.gen.ShareSpec.firm_count_weights`.
56
+
57
+ By default, merging-firm shares are drawn with uniform distribution over the space :math:`s_1 + s_2 \leqslant 1` for an unspecified number of firms. Alternatively, shares may be drawn from the Dirichlet distribution, with specified shape parameters (see property `dist_type` of :code:`.gen.data_generation.MarketSample.share_spec`, of type, :code:`.gen.SHRDistribution`). When drawing shares from the Dirichlet distribution, the user specifies the `firm_count_weights` property of :code:`.gen.data_generation.MarketSample.share_spec`, as a vector of weights specifying the frequency distribution over sequential firm counts, e.g., :code:`[133, 184, 134, 52, 32, 10, 12, 4, 3]` to specify shares drawn from Dirichlet distributions with 2 to 10 pre-merger firms distributed as in data for FTC merger investigations during 1996--2003 (See, for example, Table 4.1 of `FTC, Horizontal Merger Investigations Data, Fiscal Years 1996--2003 (Revised: August 31, 2004) <https://www.ftc.gov/sites/default/files/documents/reports/horizontal-merger-investigation-data-fiscal-years-1996-2003/040831horizmergersdata96-03.pdf>`_). If the property `firm_count_weights` is not explicitly assigned a value when defining :code:`.gen.data_generation.MarketSample.share_spec`, the default values is used, which results in a sample of markets with 2 to 7 firms with relative frequency in inverse proportion to firm-count, with 2-firm markets being 6 times as likely to be drawn as 7-firm markets.
58
+
59
+ Recapture rates can be specified as, "proportional", "inside-out", "outside-in" (see :code:`.RECForm`). The "inside-out" specification (assigning :code:`.RECForm.INOUT` to the `recapture_form` property of :code:`.gen.data_generation.MarketSample.share_spec`) results in recapture ratios consistent with merging-firms' in-market shares and a default recapture rate. The "outside-in" specification (assigning :code:`.RECForm.INOUT` to the `recapture_form` property of :code:`.gen.data_generation.MarketSample.share_spec`) yields diversion ratios from purchase probabilities drawn at random for :math:`N+1` goods, from which are derived market shares and recapture rates for the :math:`N` goods in the putative market (see, :code:`.gen.ShareSpec`). The "outside-in" specification is invalid when the distribution of markets over firm-count is unspecified, i.e., when the property `dist_type` of :code:`.gen.data_generation.MarketSample.share_spec` is assigned :code:`.gen.ShareDistributions.UNI`, raising a :code:`ValueError` exception. The "proportional" form (`recapture_form` = :code:`.RECForm.FIXED`) is often used in the literature, as an approximation to the "inside-out" calibration. See, for example, Coate (2011).
60
+
61
+ Price-cost-margins may be specified as having uniform distribution, Beta distribution (including a bounded Beta distribution with specified mean and variance), or an empirical distribution (see, :code:`.gen.PCMSpec`). The empirical margin distribution is based on resampling margin data published by Prof. Damodaran of NYU Stern School of Business (see Notes), using an estimated Gaussian KDE. The second merging firm's margin (per the property `firm2_pcm_constraint` of :code:`.gen.data_generation.MarketSample.pcm_spec`) may be specified as symmetric, i.i.d., or subject to equilibrium conditions for (profit-maximization in) Bertrand-Nash oligopoly with MNL demand (:code:`.gen.FM2Constraint`).
62
+
63
+ Prices may be specified as symmetric or asymmetric, and in the latter case, the direction of correlation between merging firm prices, if any, can also be specified (see, :code:`.gen.PriceSpec`). Prices may also be defined by imposing cost symmetry on firms in the sample, with fixed unit marginal costs normalized to 1 unit, such that price equal :math:`1 / (1 - \pmb{m})`, where :math:`\pmb{m}` represents the array of margins for firms in the sample.
64
+
65
+ The market sample may be restricted to mergers meeting the HSR filing requirement under two alternative approaches: in the one, the smaller of the two merging firms meets the lower HSR size threshold ($10 million, as adjusted) and the larger of the two merging firms meets the size test if it's share is no less than 10 times the share of the smaller firm. In the other, the :math:`n`-th firm's size is maintained as $10 million, as adjusted (see, :code:`.gen.SSZConstant`), and a merger meets the HSR filing test if either, (a.) the smaller merging firm is no smaller than the n-th firm and the larger merging firm is at 10-times as large as the n-th firm, or (b.) the smaller merging firm's market share is in excess of 10%; in effect this version of the test maintains that if the smaller merging firm's market share exceeds 10%, the value of the transaction exceeds $200 million, as adjusted, and the size-of-person test is eliminated (see, FTC (2008, p. 12); the above are simplifications of the statutory HSR filing requirements). The second assumption avoids the unfortunate assumption in the first that, within the resulting sample, the larger merging firm be at least 10 times as large as the smaller merging firm, as a consequence of the full definition of the HSR filing requirement.
66
+
67
+ The full specification of a market sample is given in a :code:`.gen.data_generation.MarketSample` object, including the above parameters. Data are drawn by invoking :code:`.gen.data_generation.MarketSample.generate_sample` which adds a :code:`data` property of class, :code:`.gen.MarketDataSample`. Enforcement or clearance counts are computed by invoking :code:`.gen.data_generation.MarketSample.estimate_enf_counts`, which adds an :code:`enf_counts` property of class :code:`.gen.UPPTestsCounts`. For fast, parallel generation of enforcement or clearance counts over large market data samples that ordinarily would exceed available limits on machine memory, the user can invoke the method :code:`.gen.data_generation.MarketSample.estimate_enf_counts` on a :code:`.gen.data_generation.MarketSample` object without first invoking :code:`.gen.data_generation.MarketSample.generate_sample`. Note, however, that this strategy does not retain the market sample in memory in the interests of conserving memory and maintaining high performance (the user can specify that the market sample and enforcement statistics be stored to permanent storage; when saving to current PCIe NVMe storage, the performance penalty is slight, but can be considerable if saving to SATA storage).
68
+
69
+ Enforcement statistics based on FTC investigations data and test data are printed to screen or rendered to LaTex files (for processing into publication-quality tables) using methods provided in :code:`.gen.enforcement_stats`.
70
+
71
+ Programs demonstrating the use of this package are included in the sub-package, :code:`.demo`.
72
+
73
+ This package includes a class, :code:`.core.pseudorandom_numbers.MulithreadedRNG` for generating random numbers with selected continuous distribution over specified parameters, and with CPU multithreading on machines with multiple virtual, logical, or physical CPU cores. This class is an adaptation from the documentation of the :code:`numpy` package, from the discussion on `multithreaded random-number generation <https://numpy.org/doc/stable/reference/random/multithreading.html>_`; the version included here permits selection of the distribution with pre-tests to catch and inform on common errors. To access these directly:
74
+
75
+ .. code-block:: python
76
+
77
+ import mergeron.core.pseudorandom_numbers as prng
78
+
79
+ Documentation for this package is in the form of the API Reference. Documentation for individual functions and classes is accessible within a python shell. For example:
80
+
81
+ .. code-block:: python
82
+
83
+ import mergeron.core.market_sample as market_sample
84
+
85
+ help(market_sample.MarketSample)
86
+
87
+ .. rubric:: References
88
+
89
+ .. _coate2011:
90
+
91
+ Coate, M. B. (2011). Benchmarking the upward pricing pressure model with Federal Trade
92
+ Commission evidence. Journal of Competition Law & Economics, 7(4), 825--846. URL: https://doi.org/10.1093/joclec/nhr014.
93
+
94
+ .. _ftc_premerger_guide2:
95
+
96
+ FTC Premerger Notification Office. “To File or Not to File: When You Must File a Premerger Notification Report Form”. 2008 (September, revised). URL: https://www.ftc.gov/sites/default/files/attachments/premerger-introductory-guides/guide2.pdf
97
+
98
+
99
+ .. image:: https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json
100
+ :alt: Poetry
101
+ :target: https://python-poetry.org/
102
+
103
+ .. image:: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json
104
+ :alt: Ruff
105
+ :target: https://github.com/astral-sh/ruff
106
+
107
+ .. image:: https://www.mypy-lang.org/static/mypy_badge.svg
108
+ :alt: Checked with mypy
109
+ :target: https://mypy-lang.org/
110
+
111
+ .. image:: https://img.shields.io/badge/License-MIT-yellow.svg
112
+ :alt: License: MIT
113
+ :target: https://opensource.org/licenses/MIT
114
+
115
+
@@ -0,0 +1,73 @@
1
+ mergeron: Merger Policy Analysis using Python
2
+ =============================================
3
+
4
+ Analyze the sets of mergers conforming to concentration and diversion ratio bounds. Analyze intrinsic enforcement rates, and intrinsic clearance rates, under concentration, diversion ratio, GUPPI, CMCR, and IPR bounds using generated data with specified distributions of market shares, price-cost margins, firm counts, and prices, optionally imposing restrictions implied by statutory filing thresholds and/or Bertrand-Nash oligopoly with MNL demand. Download and analyze merger investigations data published by the U.S. Federal Trade Commission in various reports on extended merger investigations (Second Requests) during 1996 to 2011.
5
+
6
+ Here, enforcement rates derived with merger enforcement as being exogenous to firm conduct are defined as intrinsic enforcement rates, and similarly intrinsic clearance rates. Depending on the merger enforcement regime, or merger control regime, intrinsic enforcement rates may also not be the complement of intrinsic clearance rates, i.e, it is not necessarily true that the intrinsic clearance rate estimate for a given enforcement regime is 1 minus the intrinsic enforcement rate. In contrast, observed enforcement rates reflect the deterrent effects of merger enforcement on firm conduct as well as the effects of merger screening on the level of enforcement; and, by definition, the observed clearance rate is 1 minus the observed enforcement rate.
7
+
8
+ Introduction
9
+ ------------
10
+
11
+ Module :code:`.core.guidelines_boundaries` includes classes for specifying concentration bounds (:code:`.core.guidelines_boundaries.ConcentrationBoundary`) and diversion-ratio bounds (:code:`.core.guidelines_boundaries.DiversionRatioBoundary`), with automatic generation of boundary (as an array of share-pairs) and area. This module also includes a function for generating plots of concentration and diversion-ratio boundaries, and functions for mapping GUPPI standards to concentration (ΔHHI) standards, and vice-versa.
12
+
13
+ Module :code:`.gen.data_generation` includes the :code:`.gen.data_generation.MarketSample` which provides for a rich specification of shares and diversion ratios (:code:`.gen.data_generation.MarketSample.share_spec`), margins (:code:`.gen.data_generation.MarketSample.pcm_spec`, prices (:code:`.gen.data_generation.MarketSample.price_spec`), and HSR filing requirements (:code:`.gen.data_generation.MarketSample.hsr_filing_test_type`), and with methods for, (i) generating sample data (:code:`.gen.data_generation.MarketSample.generate_sample`), and (ii) estimating enforcement or clearance rates under specified enforcement regimes given a method of aggregating diversion ratio or GUPPI estimates for the firms in a merger (:code:`.gen.data_generation.MarketSample.estimate_enf_counts`). While the latter populate the properties, :code:`.gen.data_generation.MarketSample.data`
14
+ and :code:`.gen.data_generation.MarketSample.enf_counts`, respectively, the underlying methods for generating standalone :code:`MarketDataSample` and :code:`UPPTestCounts` objects are included in the class definition, with helper functions defined in the modules, :code:`.gen.data_generation_functions` and :code:`.gen.upp_tests`. Notably, market shares are generated for a sample of markets with firm-count distributed as specified in :code:`.gen.data_generation.MarketSample.share_spec.firm_count_weights`, with defaults as discussed below (also see, :code:`.gen.ShareSpec.firm_count_weights`.
15
+
16
+ By default, merging-firm shares are drawn with uniform distribution over the space :math:`s_1 + s_2 \leqslant 1` for an unspecified number of firms. Alternatively, shares may be drawn from the Dirichlet distribution, with specified shape parameters (see property `dist_type` of :code:`.gen.data_generation.MarketSample.share_spec`, of type, :code:`.gen.SHRDistribution`). When drawing shares from the Dirichlet distribution, the user specifies the `firm_count_weights` property of :code:`.gen.data_generation.MarketSample.share_spec`, as a vector of weights specifying the frequency distribution over sequential firm counts, e.g., :code:`[133, 184, 134, 52, 32, 10, 12, 4, 3]` to specify shares drawn from Dirichlet distributions with 2 to 10 pre-merger firms distributed as in data for FTC merger investigations during 1996--2003 (See, for example, Table 4.1 of `FTC, Horizontal Merger Investigations Data, Fiscal Years 1996--2003 (Revised: August 31, 2004) <https://www.ftc.gov/sites/default/files/documents/reports/horizontal-merger-investigation-data-fiscal-years-1996-2003/040831horizmergersdata96-03.pdf>`_). If the property `firm_count_weights` is not explicitly assigned a value when defining :code:`.gen.data_generation.MarketSample.share_spec`, the default values is used, which results in a sample of markets with 2 to 7 firms with relative frequency in inverse proportion to firm-count, with 2-firm markets being 6 times as likely to be drawn as 7-firm markets.
17
+
18
+ Recapture rates can be specified as, "proportional", "inside-out", "outside-in" (see :code:`.RECForm`). The "inside-out" specification (assigning :code:`.RECForm.INOUT` to the `recapture_form` property of :code:`.gen.data_generation.MarketSample.share_spec`) results in recapture ratios consistent with merging-firms' in-market shares and a default recapture rate. The "outside-in" specification (assigning :code:`.RECForm.INOUT` to the `recapture_form` property of :code:`.gen.data_generation.MarketSample.share_spec`) yields diversion ratios from purchase probabilities drawn at random for :math:`N+1` goods, from which are derived market shares and recapture rates for the :math:`N` goods in the putative market (see, :code:`.gen.ShareSpec`). The "outside-in" specification is invalid when the distribution of markets over firm-count is unspecified, i.e., when the property `dist_type` of :code:`.gen.data_generation.MarketSample.share_spec` is assigned :code:`.gen.ShareDistributions.UNI`, raising a :code:`ValueError` exception. The "proportional" form (`recapture_form` = :code:`.RECForm.FIXED`) is often used in the literature, as an approximation to the "inside-out" calibration. See, for example, Coate (2011).
19
+
20
+ Price-cost-margins may be specified as having uniform distribution, Beta distribution (including a bounded Beta distribution with specified mean and variance), or an empirical distribution (see, :code:`.gen.PCMSpec`). The empirical margin distribution is based on resampling margin data published by Prof. Damodaran of NYU Stern School of Business (see Notes), using an estimated Gaussian KDE. The second merging firm's margin (per the property `firm2_pcm_constraint` of :code:`.gen.data_generation.MarketSample.pcm_spec`) may be specified as symmetric, i.i.d., or subject to equilibrium conditions for (profit-maximization in) Bertrand-Nash oligopoly with MNL demand (:code:`.gen.FM2Constraint`).
21
+
22
+ Prices may be specified as symmetric or asymmetric, and in the latter case, the direction of correlation between merging firm prices, if any, can also be specified (see, :code:`.gen.PriceSpec`). Prices may also be defined by imposing cost symmetry on firms in the sample, with fixed unit marginal costs normalized to 1 unit, such that price equal :math:`1 / (1 - \pmb{m})`, where :math:`\pmb{m}` represents the array of margins for firms in the sample.
23
+
24
+ The market sample may be restricted to mergers meeting the HSR filing requirement under two alternative approaches: in the one, the smaller of the two merging firms meets the lower HSR size threshold ($10 million, as adjusted) and the larger of the two merging firms meets the size test if it's share is no less than 10 times the share of the smaller firm. In the other, the :math:`n`-th firm's size is maintained as $10 million, as adjusted (see, :code:`.gen.SSZConstant`), and a merger meets the HSR filing test if either, (a.) the smaller merging firm is no smaller than the n-th firm and the larger merging firm is at 10-times as large as the n-th firm, or (b.) the smaller merging firm's market share is in excess of 10%; in effect this version of the test maintains that if the smaller merging firm's market share exceeds 10%, the value of the transaction exceeds $200 million, as adjusted, and the size-of-person test is eliminated (see, FTC (2008, p. 12); the above are simplifications of the statutory HSR filing requirements). The second assumption avoids the unfortunate assumption in the first that, within the resulting sample, the larger merging firm be at least 10 times as large as the smaller merging firm, as a consequence of the full definition of the HSR filing requirement.
25
+
26
+ The full specification of a market sample is given in a :code:`.gen.data_generation.MarketSample` object, including the above parameters. Data are drawn by invoking :code:`.gen.data_generation.MarketSample.generate_sample` which adds a :code:`data` property of class, :code:`.gen.MarketDataSample`. Enforcement or clearance counts are computed by invoking :code:`.gen.data_generation.MarketSample.estimate_enf_counts`, which adds an :code:`enf_counts` property of class :code:`.gen.UPPTestsCounts`. For fast, parallel generation of enforcement or clearance counts over large market data samples that ordinarily would exceed available limits on machine memory, the user can invoke the method :code:`.gen.data_generation.MarketSample.estimate_enf_counts` on a :code:`.gen.data_generation.MarketSample` object without first invoking :code:`.gen.data_generation.MarketSample.generate_sample`. Note, however, that this strategy does not retain the market sample in memory in the interests of conserving memory and maintaining high performance (the user can specify that the market sample and enforcement statistics be stored to permanent storage; when saving to current PCIe NVMe storage, the performance penalty is slight, but can be considerable if saving to SATA storage).
27
+
28
+ Enforcement statistics based on FTC investigations data and test data are printed to screen or rendered to LaTex files (for processing into publication-quality tables) using methods provided in :code:`.gen.enforcement_stats`.
29
+
30
+ Programs demonstrating the use of this package are included in the sub-package, :code:`.demo`.
31
+
32
+ This package includes a class, :code:`.core.pseudorandom_numbers.MulithreadedRNG` for generating random numbers with selected continuous distribution over specified parameters, and with CPU multithreading on machines with multiple virtual, logical, or physical CPU cores. This class is an adaptation from the documentation of the :code:`numpy` package, from the discussion on `multithreaded random-number generation <https://numpy.org/doc/stable/reference/random/multithreading.html>_`; the version included here permits selection of the distribution with pre-tests to catch and inform on common errors. To access these directly:
33
+
34
+ .. code-block:: python
35
+
36
+ import mergeron.core.pseudorandom_numbers as prng
37
+
38
+ Documentation for this package is in the form of the API Reference. Documentation for individual functions and classes is accessible within a python shell. For example:
39
+
40
+ .. code-block:: python
41
+
42
+ import mergeron.core.market_sample as market_sample
43
+
44
+ help(market_sample.MarketSample)
45
+
46
+ .. rubric:: References
47
+
48
+ .. _coate2011:
49
+
50
+ Coate, M. B. (2011). Benchmarking the upward pricing pressure model with Federal Trade
51
+ Commission evidence. Journal of Competition Law & Economics, 7(4), 825--846. URL: https://doi.org/10.1093/joclec/nhr014.
52
+
53
+ .. _ftc_premerger_guide2:
54
+
55
+ FTC Premerger Notification Office. “To File or Not to File: When You Must File a Premerger Notification Report Form”. 2008 (September, revised). URL: https://www.ftc.gov/sites/default/files/attachments/premerger-introductory-guides/guide2.pdf
56
+
57
+
58
+ .. image:: https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json
59
+ :alt: Poetry
60
+ :target: https://python-poetry.org/
61
+
62
+ .. image:: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json
63
+ :alt: Ruff
64
+ :target: https://github.com/astral-sh/ruff
65
+
66
+ .. image:: https://www.mypy-lang.org/static/mypy_badge.svg
67
+ :alt: Checked with mypy
68
+ :target: https://mypy-lang.org/
69
+
70
+ .. image:: https://img.shields.io/badge/License-MIT-yellow.svg
71
+ :alt: License: MIT
72
+ :target: https://opensource.org/licenses/MIT
73
+
@@ -13,7 +13,7 @@ keywords = [
13
13
  "upward pricing pressure",
14
14
  "GUPPI",
15
15
  ]
16
- version = "2024.739104.1"
16
+ version = "2024.739105.4"
17
17
 
18
18
  # Classifiers list: https://pypi.org/classifiers/
19
19
  classifiers = [
@@ -68,8 +68,8 @@ pendulum = ">=3.0.0"
68
68
  ruff = ">=0.5"
69
69
  poetry-plugin-export = "^1.8.0"
70
70
  pytest = ">=8.0"
71
+ Sphinx = ">=7.2, <8.0"
71
72
  semver = ">=3.0"
72
- sphinx = ">=7.2"
73
73
  sphinx-autodoc-typehints = ">=2.0.0"
74
74
  sphinx-autoapi = ">=3.0"
75
75
  sphinx-immaterial = ">=0.11"
@@ -9,7 +9,7 @@ from numpy.typing import NDArray
9
9
 
10
10
  _PKG_NAME: str = Path(__file__).parent.stem
11
11
 
12
- VERSION = "2024.739104.1"
12
+ VERSION = "2024.739105.4"
13
13
 
14
14
  __version__ = VERSION
15
15
 
@@ -34,9 +34,11 @@ ArrayBoolean: TypeAlias = NDArray[np.bool_]
34
34
  ArrayDouble: TypeAlias = NDArray[np.double]
35
35
  ArrayBIGINT: TypeAlias = NDArray[np.int64]
36
36
 
37
+ DEFAULT_REC_RATE = 0.85
38
+
37
39
 
38
40
  @enum.unique
39
- class RECTypes(enum.StrEnum):
41
+ class RECForm(enum.StrEnum):
40
42
  """Recapture rate - derivation methods."""
41
43
 
42
44
  INOUT = "inside-out"
@@ -13,7 +13,13 @@ import numpy as np
13
13
  from attrs import Attribute, field, frozen, validators
14
14
  from mpmath import mp, mpf # type: ignore
15
15
 
16
- from .. import VERSION, ArrayDouble, RECTypes, UPPAggrSelector # noqa: TID252
16
+ from .. import ( # noqa: TID252
17
+ DEFAULT_REC_RATE,
18
+ VERSION,
19
+ ArrayDouble,
20
+ RECForm,
21
+ UPPAggrSelector,
22
+ )
17
23
  from . import guidelines_boundary_functions as gbfn
18
24
 
19
25
  __version__ = VERSION
@@ -86,7 +92,7 @@ class GuidelinesThresholds:
86
92
  """
87
93
 
88
94
  def __attrs_post_init__(self, /) -> None:
89
- # In the 2023 Guidlines, the agencies do not define a
95
+ # In the 2023 Guidelines, the agencies do not define a
90
96
  # negative presumption, or safeharbor. Practically speaking,
91
97
  # given resource constraints and loss aversion, it is likely
92
98
  # that staff only investigates mergers that meet the presumption;
@@ -128,7 +134,7 @@ class GuidelinesThresholds:
128
134
  )
129
135
 
130
136
  # imputed_presumption is relevant for 2010 Guidelines
131
- # merger to symmettry in numbers-equivalent of post-merger HHI
137
+ # merger to symmetry in numbers-equivalent of post-merger HHI
132
138
  object.__setattr__(
133
139
  self,
134
140
  "imputed_presumption",
@@ -223,14 +229,14 @@ def _divr_value_validator(
223
229
 
224
230
  def _rec_spec_validator(
225
231
  _instance: DiversionRatioBoundary,
226
- _attribute: Attribute[RECTypes],
227
- _value: RECTypes,
232
+ _attribute: Attribute[RECForm],
233
+ _value: RECForm,
228
234
  /,
229
235
  ) -> None:
230
- if _value == RECTypes.OUTIN and _instance.recapture_rate:
236
+ if _value == RECForm.OUTIN and _instance.recapture_rate:
231
237
  raise ValueError(
232
238
  f"Invalid recapture specification, {_value!r}. "
233
- "You may consider specifying `mergeron.RECTypes.INOUT` here, and "
239
+ "You may consider specifying `mergeron.RECForm.INOUT` here, and "
234
240
  'assigning the default recapture rate as attribute, "recapture_rate" of '
235
241
  "this `DiversionRatioBoundarySpec` object."
236
242
  )
@@ -262,27 +268,24 @@ class DiversionRatioBoundary:
262
268
  )
263
269
 
264
270
  recapture_rate: float = field(
265
- kw_only=False, default=0.85, validator=validators.instance_of(float)
271
+ kw_only=False, default=DEFAULT_REC_RATE, validator=validators.instance_of(float)
266
272
  )
267
273
 
268
- recapture_form: RECTypes | None = field(
274
+ recapture_form: RECForm | None = field(
269
275
  kw_only=True,
270
- default=RECTypes.INOUT,
271
- validator=(
272
- validators.instance_of((type(None), RECTypes)),
273
- _rec_spec_validator,
274
- ),
276
+ default=RECForm.INOUT,
277
+ validator=(validators.instance_of((type(None), RECForm)), _rec_spec_validator),
275
278
  )
276
279
  """
277
280
  The form of the recapture rate.
278
281
 
279
- When :attr:`mergeron.RECTypes.INOUT`, the recapture rate for
282
+ When :attr:`mergeron.RECForm.INOUT`, the recapture rate for
280
283
  he product having the smaller market-share is assumed to equal the default,
281
284
  and the recapture rate for the product with the larger market-share is
282
285
  computed assuming MNL demand. Fixed recapture rates are specified as
283
- :attr:`mergeron.RECTypes.FIXED`. (To specify that recapture rates be
286
+ :attr:`mergeron.RECForm.FIXED`. (To specify that recapture rates be
284
287
  constructed from the generated purchase-probabilities for products in
285
- the market and for the outside good, specify :attr:`mergeron.RECTypes.OUTIN`.)
288
+ the market and for the outside good, specify :attr:`mergeron.RECForm.OUTIN`.)
286
289
 
287
290
  The GUPPI boundary is a continuum of diversion ratio boundaries conditional on
288
291
  price-cost margins, :math:`d_{ij} = g_i * p_i / (m_j * p_j)`,
@@ -373,7 +376,11 @@ class DiversionRatioBoundary:
373
376
 
374
377
 
375
378
  def guppi_from_delta(
376
- _delta_bound: float = 0.01, /, *, m_star: float = 1.00, r_bar: float = 0.8
379
+ _delta_bound: float = 0.01,
380
+ /,
381
+ *,
382
+ m_star: float = 1.00,
383
+ r_bar: float = DEFAULT_REC_RATE,
377
384
  ) -> float:
378
385
  """
379
386
  Translate ∆HHI bound to GUPPI bound.
@@ -431,7 +438,11 @@ def critical_share_ratio(
431
438
 
432
439
 
433
440
  def share_from_guppi(
434
- _guppi_bound: float = 0.065, /, *, m_star: float = 1.00, r_bar: float = 0.8
441
+ _guppi_bound: float = 0.065,
442
+ /,
443
+ *,
444
+ m_star: float = 1.00,
445
+ r_bar: float = DEFAULT_REC_RATE,
435
446
  ) -> float:
436
447
  """
437
448
  Symmetric-firm share for given GUPPI, margin, and recapture rate.
@@ -5,7 +5,7 @@ from typing import Any, Literal, TypedDict
5
5
  import numpy as np
6
6
  from mpmath import mp, mpf # type: ignore
7
7
 
8
- from .. import VERSION, ArrayBIGINT, ArrayDouble # noqa: TID252
8
+ from .. import DEFAULT_REC_RATE, VERSION, ArrayBIGINT, ArrayDouble # noqa: TID252
9
9
 
10
10
  __version__ = VERSION
11
11
 
@@ -211,7 +211,7 @@ def hhi_post_contrib_boundary(
211
211
 
212
212
  def shrratio_boundary_wtd_avg(
213
213
  _delta_star: float = 0.075,
214
- _r_val: float = 0.85,
214
+ _r_val: float = DEFAULT_REC_RATE,
215
215
  /,
216
216
  *,
217
217
  agg_method: Literal[
@@ -420,7 +420,7 @@ def shrratio_boundary_wtd_avg(
420
420
 
421
421
  def shrratio_boundary_xact_avg(
422
422
  _delta_star: float = 0.075,
423
- _r_val: float = 0.85,
423
+ _r_val: float = DEFAULT_REC_RATE,
424
424
  /,
425
425
  *,
426
426
  recapture_form: Literal["inside-out", "proportional"] = "inside-out",
@@ -579,7 +579,7 @@ def shrratio_boundary_xact_avg(
579
579
 
580
580
  def shrratio_boundary_min(
581
581
  _delta_star: float = 0.075,
582
- _r_val: float = 0.85,
582
+ _r_val: float = DEFAULT_REC_RATE,
583
583
  /,
584
584
  *,
585
585
  recapture_form: str = "inside-out",
@@ -645,7 +645,7 @@ def shrratio_boundary_min(
645
645
 
646
646
 
647
647
  def shrratio_boundary_max(
648
- _delta_star: float = 0.075, _r_val: float = 0.85, /, *, prec: int = 10
648
+ _delta_star: float = 0.075, _r_val: float = DEFAULT_REC_RATE, /, *, prec: int = 10
649
649
  ) -> GuidelinesBoundary:
650
650
  """
651
651
  Share combinations on the minimum GUPPI boundary with symmetric
@@ -16,7 +16,7 @@ from mpmath import mp, mpf # type: ignore
16
16
  from scipy.spatial.distance import minkowski as distance_function # type: ignore
17
17
  from sympy import lambdify, simplify, solve, symbols # type: ignore
18
18
 
19
- from .. import VERSION, ArrayDouble # noqa: TID252
19
+ from .. import DEFAULT_REC_RATE, VERSION, ArrayDouble # noqa: TID252
20
20
  from .guidelines_boundary_functions import (
21
21
  GuidelinesBoundary,
22
22
  _shrratio_boundary_intcpt,
@@ -105,7 +105,7 @@ def hhi_delta_boundary_qdtr(_dh_val: float = 0.01, /) -> GuidelinesBoundaryCalla
105
105
 
106
106
  def shrratio_boundary_qdtr_wtd_avg(
107
107
  _delta_star: float = 0.075,
108
- _r_val: float = 0.85,
108
+ _r_val: float = DEFAULT_REC_RATE,
109
109
  /,
110
110
  *,
111
111
  weighting: Literal["own-share", "cross-product-share"] | None = "own-share",
@@ -224,7 +224,7 @@ def shrratio_boundary_qdtr_wtd_avg(
224
224
 
225
225
  def shrratio_boundary_distance(
226
226
  _delta_star: float = 0.075,
227
- _r_val: float = 0.85,
227
+ _r_val: float = DEFAULT_REC_RATE,
228
228
  /,
229
229
  *,
230
230
  agg_method: Literal["arithmetic mean", "distance"] = "arithmetic mean",
@@ -15,13 +15,14 @@ from attrs import Attribute, cmp_using, field, frozen, validators
15
15
  from numpy.random import SeedSequence
16
16
 
17
17
  from .. import ( # noqa: TID252
18
+ DEFAULT_REC_RATE,
18
19
  VERSION,
19
20
  ArrayBIGINT,
20
21
  ArrayBoolean,
21
22
  ArrayDouble,
22
23
  ArrayFloat,
23
24
  ArrayINT,
24
- RECTypes,
25
+ RECForm,
25
26
  UPPAggrSelector,
26
27
  )
27
28
  from ..core.pseudorandom_numbers import DIST_PARMS_DEFAULT # noqa: TID252
@@ -57,7 +58,7 @@ class PriceSpec(tuple[bool, str | None], enum.ReprEnum):
57
58
 
58
59
 
59
60
  @enum.unique
60
- class SHRDistributions(enum.StrEnum):
61
+ class SHRDistribution(enum.StrEnum):
61
62
  """Market share distributions."""
62
63
 
63
64
  UNI = "Uniform"
@@ -98,26 +99,26 @@ class ShareSpec:
98
99
  A key feature of market-share specification in this package is that
99
100
  the draws represent markets with multiple different firm-counts.
100
101
  Firm-counts are unspecified if the share distribution is
101
- :attr:`mergeron.SHRDistributions.UNI`, for Dirichlet-distributed market-shares,
102
+ :attr:`mergeron.SHRDistribution.UNI`, for Dirichlet-distributed market-shares,
102
103
  the default specification is that firm-counts vary between
103
104
  2 and 7 firms with each value equally likely.
104
105
 
105
106
  Notes
106
107
  -----
107
- If :attr:`mergeron.gen.ShareSpec.dist_type`:code:` == `:attr:`mergeron.gen.SHRDistributions.UNI`,
108
+ If :attr:`mergeron.gen.ShareSpec.dist_type`:code:` == `:attr:`mergeron.gen.SHRDistribution.UNI`,
108
109
  then it is infeasible that
109
- :attr:`mergeron.gen.ShareSpec.recapture_form`:code:` == `:attr:`mergeron.RECTypes.OUTIN`.
110
+ :attr:`mergeron.gen.ShareSpec.recapture_form`:code:` == `:attr:`mergeron.RECForm.OUTIN`.
110
111
  In other words, if firm-counts are unspecified, the recapture rate cannot be
111
112
  estimated using outside good choice probabilities.
112
113
 
113
114
  For a sample with explicit firm counts, market shares must
114
115
  be specified as having a supported Dirichlet distribution
115
- (see :class:`mergeron.gen.SHRDistributions`).
116
+ (see :class:`mergeron.gen.SHRDistribution`).
116
117
 
117
118
  """
118
119
 
119
- dist_type: SHRDistributions
120
- """See :class:`SHRDistributions`"""
120
+ dist_type: SHRDistribution
121
+ """See :class:`SHRDistribution`"""
121
122
 
122
123
  dist_parms: ArrayDouble | None = field(
123
124
  default=None, eq=cmp_using(eq=np.array_equal)
@@ -143,32 +144,32 @@ class ShareSpec:
143
144
 
144
145
  @firm_counts_weights.validator
145
146
  def _check_fcw(_i: ShareSpec, _a: Attribute[ArrayDouble], _v: ArrayDouble) -> None:
146
- if _v is not None and _i.dist_type == SHRDistributions.UNI:
147
+ if _v is not None and _i.dist_type == SHRDistribution.UNI:
147
148
  raise ValueError(
148
149
  "Generated data for markets with specified firm-counts or "
149
150
  "varying firm counts are not feasible for market shares "
150
151
  "with Uniform distribution. Consider revising the "
151
- r"distribution type to {SHRDistributions.DIR_FLAT}, which gives "
152
+ r"distribution type to {SHRDistribution.DIR_FLAT}, which gives "
152
153
  "uniformly distributed draws on the :math:`n+1` simplex "
153
154
  "for firm-count, :math:`n`."
154
155
  )
155
156
 
156
- recapture_form: RECTypes = field(default=RECTypes.INOUT)
157
- """See :class:`mergeron.RECTypes`"""
157
+ recapture_form: RECForm = field(default=RECForm.INOUT)
158
+ """See :class:`mergeron.RECForm`"""
158
159
 
159
160
  @recapture_form.validator
160
- def _check_rf(_i: ShareSpec, _a: Attribute[RECTypes], _v: RECTypes) -> None:
161
- if _v == RECTypes.OUTIN and _i.dist_type == SHRDistributions.UNI:
161
+ def _check_rf(_i: ShareSpec, _a: Attribute[RECForm], _v: RECForm) -> None:
162
+ if _v == RECForm.OUTIN and _i.dist_type == SHRDistribution.UNI:
162
163
  raise ValueError(
163
164
  "Market share specification requires estimation of recapture rate from "
164
165
  "generated data. Either delete recapture rate specification or set it to None."
165
166
  )
166
167
 
167
- recapture_rate: float | None = field(default=0.8)
168
- """A value between 0 and 1, typically 0.8.
168
+ recapture_rate: float | None = field(default=DEFAULT_REC_RATE)
169
+ """A value between 0 and 1.
169
170
 
170
171
  :code:`None` if market share specification requires direct generation of
171
- outside good choice probabilities (:attr:`mergeron.RECTypes.OUTIN`).
172
+ outside good choice probabilities (:attr:`mergeron.RECForm.OUTIN`).
172
173
 
173
174
  The recapture rate is usually calibrated to the numbers-equivalent of the
174
175
  HHI threshold for the presumtion of harm from unilateral competitive effects
@@ -191,7 +192,7 @@ class ShareSpec:
191
192
  def _check_rr(_i: ShareSpec, _a: Attribute[float], _v: float) -> None:
192
193
  if _v and not (0 < _v <= 1):
193
194
  raise ValueError("Recapture rate must lie in the interval, [0, 1).")
194
- elif _v is None and _i.recapture_form != RECTypes.OUTIN:
195
+ elif _v is None and _i.recapture_form != RECForm.OUTIN:
195
196
  raise ValueError(
196
197
  f"Recapture specification, {_i.recapture_form!r} requires that "
197
198
  "the market sample specification inclues a recapture rate in the "
@@ -200,7 +201,7 @@ class ShareSpec:
200
201
 
201
202
 
202
203
  @enum.unique
203
- class PCMDistributions(enum.StrEnum):
204
+ class PCMDistribution(enum.StrEnum):
204
205
  """Margin distributions."""
205
206
 
206
207
  UNI = "Uniform"
@@ -210,7 +211,7 @@ class PCMDistributions(enum.StrEnum):
210
211
 
211
212
 
212
213
  @enum.unique
213
- class FM2Constants(enum.StrEnum):
214
+ class FM2Constraint(enum.StrEnum):
214
215
  """Firm 2 margins - derivation methods."""
215
216
 
216
217
  IID = "i.i.d"
@@ -234,8 +235,8 @@ class PCMSpec:
234
235
 
235
236
  """
236
237
 
237
- dist_type: PCMDistributions = field(kw_only=False, default=PCMDistributions.UNI)
238
- """See :class:`PCMDistributions`"""
238
+ dist_type: PCMDistribution = field(kw_only=False, default=PCMDistribution.UNI)
239
+ """See :class:`PCMDistribution`"""
239
240
 
240
241
  dist_parms: ArrayDouble | None = field(kw_only=False, default=None)
241
242
  """Parameter specification for tailoring PCM distribution
@@ -260,9 +261,9 @@ class PCMSpec:
260
261
  "are not valid with margin distribution, {_dist_type_pcm!r}"
261
262
  )
262
263
  elif (
263
- _i.dist_type == PCMDistributions.BETA and len(_v) != len(("a", "b"))
264
+ _i.dist_type == PCMDistribution.BETA and len(_v) != len(("a", "b"))
264
265
  ) or (
265
- _i.dist_type == PCMDistributions.BETA_BND
266
+ _i.dist_type == PCMDistribution.BETA_BND
266
267
  and len(_v) != len(("mu", "sigma", "max", "min"))
267
268
  ):
268
269
  raise ValueError(
@@ -270,18 +271,20 @@ class PCMSpec:
270
271
  f'for PCM with distribution, "{_i.dist_type}" is incorrect.'
271
272
  )
272
273
 
273
- elif _i.dist_type == PCMDistributions.EMPR and _v is not None:
274
+ elif _i.dist_type == PCMDistribution.EMPR and _v is not None:
274
275
  raise ValueError(
275
276
  f"Empirical distribution does not require additional parameters; "
276
277
  f'"given value, {_v!r} is ignored."'
277
278
  )
278
279
 
279
- firm2_pcm_constraint: FM2Constants = field(kw_only=False, default=FM2Constants.IID)
280
- """See :class:`FM2Constants`"""
280
+ firm2_pcm_constraint: FM2Constraint = field(
281
+ kw_only=False, default=FM2Constraint.IID
282
+ )
283
+ """See :class:`FM2Constraint`"""
281
284
 
282
285
 
283
286
  @enum.unique
284
- class SSZConstants(float, enum.ReprEnum):
287
+ class SSZConstant(float, enum.ReprEnum):
285
288
  """
286
289
  Scale factors to offset sample size reduction.
287
290