megadetector 5.0.7__tar.gz → 5.0.8__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- {megadetector-5.0.7/megadetector.egg-info → megadetector-5.0.8}/PKG-INFO +10 -12
- {megadetector-5.0.7 → megadetector-5.0.8}/README-package.md +9 -11
- {megadetector-5.0.7 → megadetector-5.0.8}/README.md +34 -30
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/data_preparation/manage_local_batch.py +28 -14
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/combine_api_outputs.py +2 -2
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/compare_batch_results.py +1 -1
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/convert_output_format.py +24 -6
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/load_api_results.py +1 -3
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/md_to_labelme.py +118 -51
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/merge_detections.py +30 -5
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/postprocess_batch_results.py +24 -12
- megadetector-5.0.8/api/batch_processing/postprocessing/remap_detection_categories.py +163 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/render_detection_confusion_matrix.py +15 -12
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/repeat_detection_elimination/repeat_detections_core.py +2 -2
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/cct_json_utils.py +7 -2
- megadetector-5.0.8/data_management/coco_to_labelme.py +263 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/coco_to_yolo.py +7 -4
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/databases/integrity_check_json_db.py +68 -59
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/databases/subset_json_db.py +1 -1
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/get_image_sizes.py +44 -26
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/animl_results_to_md_results.py +1 -3
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/noaa_seals_2019.py +1 -1
- megadetector-5.0.8/data_management/labelme_to_coco.py +507 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/labelme_to_yolo.py +95 -52
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/lila/create_lila_blank_set.py +106 -23
- megadetector-5.0.8/data_management/lila/download_lila_subset.py +243 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/lila/generate_lila_per_image_labels.py +1 -1
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/lila/lila_common.py +8 -38
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/read_exif.py +65 -16
- megadetector-5.0.8/data_management/remap_coco_categories.py +84 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/resize_coco_dataset.py +3 -22
- megadetector-5.0.8/data_management/wi_download_csv_to_coco.py +239 -0
- megadetector-5.0.8/data_management/yolo_to_coco.py +436 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/detection/run_detector_batch.py +12 -3
- {megadetector-5.0.7 → megadetector-5.0.8}/detection/run_inference_with_yolov5_val.py +10 -3
- {megadetector-5.0.7 → megadetector-5.0.8}/detection/run_tiled_inference.py +2 -2
- {megadetector-5.0.7 → megadetector-5.0.8}/detection/tf_detector.py +2 -1
- {megadetector-5.0.7 → megadetector-5.0.8}/detection/video_utils.py +1 -1
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/ct_utils.py +22 -3
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/md_tests.py +11 -2
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/path_utils.py +206 -32
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/url_utils.py +66 -1
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/write_html_image_list.py +12 -3
- {megadetector-5.0.7 → megadetector-5.0.8}/md_visualization/visualization_utils.py +363 -72
- {megadetector-5.0.7 → megadetector-5.0.8}/md_visualization/visualize_db.py +33 -10
- {megadetector-5.0.7 → megadetector-5.0.8/megadetector.egg-info}/PKG-INFO +10 -12
- {megadetector-5.0.7 → megadetector-5.0.8}/megadetector.egg-info/SOURCES.txt +4 -1
- {megadetector-5.0.7 → megadetector-5.0.8}/pyproject.toml +1 -1
- megadetector-5.0.7/data_management/labelme_to_coco.py +0 -398
- megadetector-5.0.7/data_management/lila/download_lila_subset.py +0 -175
- megadetector-5.0.7/data_management/yolo_to_coco.py +0 -236
- megadetector-5.0.7/md_visualization/visualize_megadb.py +0 -183
- {megadetector-5.0.7 → megadetector-5.0.8}/LICENSE +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/api_core/batch_service/score.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/api_core/server.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/api_core/server_api_config.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/api_core/server_app_config.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/api_core/server_batch_job_manager.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/api_core/server_job_status_table.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/api_core/server_orchestration.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/api_core/server_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/api_core_support/aggregate_results_manually.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/api_support/summarize_daily_activity.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/data_preparation/manage_video_batch.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/integration/digiKam/setup.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/integration/digiKam/xmp_integration.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/integration/eMammal/test_scripts/config_template.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/add_max_conf.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/categorize_detections_by_size.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/md_to_coco.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/repeat_detection_elimination/find_repeat_detections.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/separate_detections_into_folders.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/subset_json_detector_output.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/top_folders_to_bottom.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/api_backend.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/config.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/data_management/annotations/annotation_constants.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/detection/detector_training/copy_checkpoints.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/detection/detector_training/model_main_tf2.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/detection/process_video.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/detection/pytorch_detector.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/detection/run_detector.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/detection/run_detector_batch.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/detection/run_inference_with_yolov5_val.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/detection/run_tiled_inference.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/detection/tf_detector.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/detection/video_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_utils/azure_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_utils/ct_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_utils/directory_listing.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_utils/matlab_porting_tools.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_utils/path_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_utils/process_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_utils/sas_blob_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_utils/string_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_utils/url_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_utils/write_html_image_list.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/animal_detection_api/md_visualization/visualization_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/api/synchronous/api_core/tests/load_test.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/aggregate_classifier_probs.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/analyze_failed_images.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/cache_batchapi_outputs.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/create_classification_dataset.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/crop_detections.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/csv_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/detect_and_crop.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/efficientnet/__init__.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/efficientnet/model.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/efficientnet/utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/evaluate_model.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/identify_mislabeled_candidates.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/json_to_azcopy_list.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/json_validator.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/map_classification_categories.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/merge_classification_detection_output.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/prepare_classification_script.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/prepare_classification_script_mc.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/run_classifier.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/save_mislabeled.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/train_classifier.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/train_classifier_tf.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/classification/train_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/annotations/annotation_constants.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/cct_json_to_filename_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/cct_to_csv.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/cct_to_md.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/cct_to_wi.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/databases/add_width_and_height_to_db.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/databases/combine_coco_camera_traps_files.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/databases/remove_corrupted_images_from_db.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/generate_crops_from_cct.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/add_nacti_sizes.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/add_timestamps_to_icct.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/auckland_doc_test_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/auckland_doc_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/awc_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/bellevue_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/cacophony-thermal-importer.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/carrizo_shrubfree_2018.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/carrizo_trail_cam_2017.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/cct_field_adjustments.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/channel_islands_to_cct.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/eMammal/eMammal_helpers.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/eMammal/make_eMammal_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/ena24_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/filenames_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/helena_to_cct.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/idaho-camera-traps.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/idfg_iwildcam_lila_prep.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/jb_csv_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/mcgill_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/missouri_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/nacti_fieldname_adjustments.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/pc_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/plot_wni_giraffes.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/prepare-noaa-fish-data-for-lila.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/prepare_zsl_imerit.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/rspb_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/save_the_elephants_survey_A.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/save_the_elephants_survey_B.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/snapshot_safari_importer.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/snapshot_safari_importer_reprise.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/snapshot_serengeti_lila.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/sulross_get_exif.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/timelapse_csv_set_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/ubc_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/umn_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/wellington_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/wi_to_json.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/importers/zamba_results_to_md_results.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/lila/add_locations_to_island_camera_traps.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/lila/add_locations_to_nacti.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/lila/create_lila_test_set.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/lila/create_links_to_md_results_files.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/lila/get_lila_annotation_counts.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/lila/get_lila_image_counts.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/lila/test_lila_metadata_urls.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/ocr_tools.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/remove_exif.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/data_management/yolo_output_to_md_output.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/detection/detector_training/copy_checkpoints.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/detection/detector_training/model_main_tf2.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/detection/process_video.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/detection/pytorch_detector.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/detection/run_detector.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/azure_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/directory_listing.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/process_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/sas_blob_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/split_locations_into_train_val.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/md_utils/string_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/md_visualization/plot_utils.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/md_visualization/render_images_with_thumbnails.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/md_visualization/visualize_detector_output.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/megadetector.egg-info/dependency_links.txt +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/megadetector.egg-info/requires.txt +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/megadetector.egg-info/top_level.txt +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/setup.cfg +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/taxonomy_mapping/map_new_lila_datasets.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/taxonomy_mapping/prepare_lila_taxonomy_release.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/taxonomy_mapping/preview_lila_taxonomy.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/taxonomy_mapping/retrieve_sample_image.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/taxonomy_mapping/simple_image_download.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/taxonomy_mapping/species_lookup.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/taxonomy_mapping/taxonomy_csv_checker.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/taxonomy_mapping/taxonomy_graph.py +0 -0
- {megadetector-5.0.7 → megadetector-5.0.8}/taxonomy_mapping/validate_lila_category_mappings.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: megadetector
|
|
3
|
-
Version: 5.0.
|
|
3
|
+
Version: 5.0.8
|
|
4
4
|
Summary: MegaDetector is an AI model that helps conservation folks spend less time doing boring things with camera trap images.
|
|
5
5
|
Author-email: Your friendly neighborhood MegaDetector team <cameratraps@lila.science>
|
|
6
6
|
Maintainer-email: Your friendly neighborhood MegaDetector team <cameratraps@lila.science>
|
|
@@ -60,7 +60,7 @@ If you want to learn more about what MegaDetector is all about, head over to the
|
|
|
60
60
|
|
|
61
61
|
### If you are an ecologist...
|
|
62
62
|
|
|
63
|
-
If you are an ecologist looking to use MegaDetector to help you get through your camera trap images, you probably don't want this package. We recommend starting with our "[Getting started with MegaDetector](https://github.com/agentmorris/MegaDetector/blob/main/collaborations.md)" page, then digging in to the [MegaDetector User Guide](https://github.com/agentmorris/MegaDetector/blob/main/megadetector.md), which will walk you through the process of using MegaDetector. That journey will <i>not</i> involve this package.
|
|
63
|
+
If you are an ecologist looking to use MegaDetector to help you get through your camera trap images, you probably don't want this package. We recommend starting with our "[Getting started with MegaDetector](https://github.com/agentmorris/MegaDetector/blob/main/collaborations.md)" page, then digging in to the [MegaDetector User Guide](https://github.com/agentmorris/MegaDetector/blob/main/megadetector.md), which will walk you through the process of using MegaDetector. That journey will <i>not</i> involve this Python package.
|
|
64
64
|
|
|
65
65
|
### If you are a computer-vision-y type...
|
|
66
66
|
|
|
@@ -95,15 +95,13 @@ temporary_filename = url_utils.download_url(image_url)
|
|
|
95
95
|
|
|
96
96
|
image = vis_utils.load_image(temporary_filename)
|
|
97
97
|
|
|
98
|
-
# This will automatically download MDv5a
|
|
99
|
-
# you can also specify a filename explicitly, or set the $MDV5A
|
|
100
|
-
# environment variable to point to the model file.
|
|
98
|
+
# This will automatically download MDv5a; you can also specify a filename.
|
|
101
99
|
model = run_detector.load_detector('MDV5A')
|
|
102
100
|
|
|
103
101
|
result = model.generate_detections_one_image(image)
|
|
104
102
|
|
|
105
103
|
detections_above_threshold = [d for d in result['detections'] if d['conf'] > 0.2]
|
|
106
|
-
print('Found {}
|
|
104
|
+
print('Found {} detections above threshold'.format(len(detections_above_threshold)))
|
|
107
105
|
```
|
|
108
106
|
|
|
109
107
|
#### Run MegaDetector on a folder of images
|
|
@@ -120,14 +118,14 @@ output_file = os.path.expanduser('~/megadetector_output_test.json')
|
|
|
120
118
|
# Recursively find images
|
|
121
119
|
image_file_names = path_utils.find_images(image_folder,recursive=True)
|
|
122
120
|
|
|
123
|
-
# This will automatically download MDv5a
|
|
124
|
-
# you can also specify a filename explicitly, or set the $MDV5A
|
|
125
|
-
# environment variable to point to the model file.
|
|
121
|
+
# This will automatically download MDv5a; you can also specify a filename.
|
|
126
122
|
results = load_and_run_detector_batch('MDV5A', image_file_names)
|
|
127
123
|
|
|
128
|
-
# Write results
|
|
129
|
-
|
|
130
|
-
|
|
124
|
+
# Write results to a format that Timelapse and other downstream tools like.
|
|
125
|
+
write_results_to_file(results,
|
|
126
|
+
output_file,
|
|
127
|
+
relative_path_base=image_folder,
|
|
128
|
+
detector_file=detector_filename)
|
|
131
129
|
```
|
|
132
130
|
|
|
133
131
|
## Contact
|
|
@@ -9,7 +9,7 @@ If you want to learn more about what MegaDetector is all about, head over to the
|
|
|
9
9
|
|
|
10
10
|
### If you are an ecologist...
|
|
11
11
|
|
|
12
|
-
If you are an ecologist looking to use MegaDetector to help you get through your camera trap images, you probably don't want this package. We recommend starting with our "[Getting started with MegaDetector](https://github.com/agentmorris/MegaDetector/blob/main/collaborations.md)" page, then digging in to the [MegaDetector User Guide](https://github.com/agentmorris/MegaDetector/blob/main/megadetector.md), which will walk you through the process of using MegaDetector. That journey will <i>not</i> involve this package.
|
|
12
|
+
If you are an ecologist looking to use MegaDetector to help you get through your camera trap images, you probably don't want this package. We recommend starting with our "[Getting started with MegaDetector](https://github.com/agentmorris/MegaDetector/blob/main/collaborations.md)" page, then digging in to the [MegaDetector User Guide](https://github.com/agentmorris/MegaDetector/blob/main/megadetector.md), which will walk you through the process of using MegaDetector. That journey will <i>not</i> involve this Python package.
|
|
13
13
|
|
|
14
14
|
### If you are a computer-vision-y type...
|
|
15
15
|
|
|
@@ -44,15 +44,13 @@ temporary_filename = url_utils.download_url(image_url)
|
|
|
44
44
|
|
|
45
45
|
image = vis_utils.load_image(temporary_filename)
|
|
46
46
|
|
|
47
|
-
# This will automatically download MDv5a
|
|
48
|
-
# you can also specify a filename explicitly, or set the $MDV5A
|
|
49
|
-
# environment variable to point to the model file.
|
|
47
|
+
# This will automatically download MDv5a; you can also specify a filename.
|
|
50
48
|
model = run_detector.load_detector('MDV5A')
|
|
51
49
|
|
|
52
50
|
result = model.generate_detections_one_image(image)
|
|
53
51
|
|
|
54
52
|
detections_above_threshold = [d for d in result['detections'] if d['conf'] > 0.2]
|
|
55
|
-
print('Found {}
|
|
53
|
+
print('Found {} detections above threshold'.format(len(detections_above_threshold)))
|
|
56
54
|
```
|
|
57
55
|
|
|
58
56
|
#### Run MegaDetector on a folder of images
|
|
@@ -69,14 +67,14 @@ output_file = os.path.expanduser('~/megadetector_output_test.json')
|
|
|
69
67
|
# Recursively find images
|
|
70
68
|
image_file_names = path_utils.find_images(image_folder,recursive=True)
|
|
71
69
|
|
|
72
|
-
# This will automatically download MDv5a
|
|
73
|
-
# you can also specify a filename explicitly, or set the $MDV5A
|
|
74
|
-
# environment variable to point to the model file.
|
|
70
|
+
# This will automatically download MDv5a; you can also specify a filename.
|
|
75
71
|
results = load_and_run_detector_batch('MDV5A', image_file_names)
|
|
76
72
|
|
|
77
|
-
# Write results
|
|
78
|
-
|
|
79
|
-
|
|
73
|
+
# Write results to a format that Timelapse and other downstream tools like.
|
|
74
|
+
write_results_to_file(results,
|
|
75
|
+
output_file,
|
|
76
|
+
relative_path_base=image_folder,
|
|
77
|
+
detector_file=detector_filename)
|
|
80
78
|
```
|
|
81
79
|
|
|
82
80
|
## Contact
|
|
@@ -4,35 +4,16 @@
|
|
|
4
4
|
|
|
5
5
|
## Table of contents
|
|
6
6
|
|
|
7
|
-
1. [
|
|
8
|
-
2. [What's MegaDetector all about?](#whats-megadetector-all-about)
|
|
7
|
+
1. [What's MegaDetector all about?](#whats-megadetector-all-about)
|
|
9
8
|
3. [How do I get started with MegaDetector?](#how-do-i-get-started-with-megadetector)
|
|
10
9
|
4. [Who is using MegaDetector?](#who-is-using-megadetector)
|
|
11
10
|
5. [Repo contents](#repo-contents)
|
|
12
11
|
6. [Contact](#contact)
|
|
13
12
|
7. [Gratuitous camera trap picture](#gratuitous-camera-trap-picture)
|
|
14
13
|
|
|
15
|
-
|
|
16
|
-
## Repo overview
|
|
17
|
-
|
|
18
|
-
This repo contains the tools for training and running [MegaDetector](megadetector.md), an object detection model that does a pretty good job finding animals, people, and vehicles (and therefore is pretty good at finding empty images) in camera trap images in a variety of terrestrial ecosystems.
|
|
19
|
-
|
|
20
|
-
The core functionality provided is:
|
|
21
|
-
|
|
22
|
-
- Training and running [MegaDetector](megadetector.md).
|
|
23
|
-
- Training and running some [species classifiers](classification) that are used in conjunction with MegaDetector.
|
|
24
|
-
- Tools to [convert](data_management) frequently-used camera trap metadata formats into a common format.
|
|
25
|
-
- A [batch processing API](https://github.com/agentmorris/MegaDetector/tree/main/api/batch_processing) that runs MegaDetector on large image collections, to accelerate population surveys.
|
|
26
|
-
- A [real-time API](https://github.com/agentmorris/MegaDetector/tree/main/api/synchronous) that runs MegaDetector (and some species classifiers) synchronously, primarily to support biosecurity applications.
|
|
27
|
-
|
|
28
|
-
MegaDetector was initially developed by the [Microsoft AI for Earth program](https://www.microsoft.com/en-us/ai/ai-for-earth); this repo was forked from the microsoft/cameratraps repo and is maintained by the original MegaDetector developers (who are no longer at Microsoft, but are absolutely fantastically eternally grateful to Microsoft for the investment and commitment that made MegaDetector happen).
|
|
29
|
-
|
|
30
|
-
|
|
31
14
|
## What's MegaDetector all about?
|
|
32
15
|
|
|
33
|
-
[MegaDetector](megadetector.md) is an
|
|
34
|
-
|
|
35
|
-
This repo does not host the data used to train MegaDetector, but we work with our collaborators to make data and annotations available whenever possible on [lila.science](http://lila.science). See the [MegaDetector training data](megadetector.md#can-you-share-the-training-data) section to learn more about the data used to train MegaDetector.
|
|
16
|
+
[MegaDetector](megadetector.md) is an AI model that identifies animals, people, and vehicles in camera trap images (which also makes it useful for eliminating blank images). This model is trained on several million images from a variety of ecosystems.
|
|
36
17
|
|
|
37
18
|
Here's a “teaser” image of what MegaDetector output looks like:
|
|
38
19
|
|
|
@@ -41,11 +22,11 @@ Here's a “teaser” image of what MegaDetector output looks like:
|
|
|
41
22
|
|
|
42
23
|
## How do I get started with MegaDetector?
|
|
43
24
|
|
|
44
|
-
If you
|
|
45
|
-
|
|
46
|
-
If you're already familiar with MegaDetector and you're ready to run it on your data
|
|
47
|
-
|
|
48
|
-
If you
|
|
25
|
+
* If you are looking for a convenient tool to run MegaDetector, you don't need anything from this repository: check out [EcoAssist](https://github.com/PetervanLunteren/EcoAssist?tab=readme-ov-file).
|
|
26
|
+
* If you're just <i>considering</i> the use of AI in your workflow, and you aren't even sure yet whether MegaDetector would be useful to you, we recommend reading the "[getting started with MegaDetector](collaborations.md)" page.
|
|
27
|
+
* If you're already familiar with MegaDetector and you're ready to run it on your data, see the [MegaDetector User Guide](megadetector.md) for instructions on running MegaDetector.
|
|
28
|
+
* If you're a programmer-type looking to use tools from this repo, check out the [Python package](https://pypi.org/project/megadetector/) that provides access to everything in this repo (yes, you guessed it, "pip install megadetector").
|
|
29
|
+
* If you have any questions, or you want to tell us that MegaDetector was amazing/terrible on your images, <a href="mailto:cameratraps@lila.science">email us</a>!
|
|
49
30
|
|
|
50
31
|
MegaDetector is just one of many tools that aims to make conservation biologists more efficient with AI. If you want to learn about other ways to use AI to accelerate camera trap workflows, check out our of the field, affectionately titled “[Everything I know about machine learning and camera traps](https://agentmorris.github.io/camera-trap-ml-survey/)”.
|
|
51
32
|
|
|
@@ -57,6 +38,7 @@ We work with ecologists all over the world to help them spend less time annotati
|
|
|
57
38
|
Here are a few of the organizations that have used MegaDetector... we're only listing organizations who (a) we know about and (b) have given us permission to refer to them here (or have posted publicly about their use of MegaDetector), so if you're using MegaDetector or other tools from this repo and would like to be added to this list, <a href="mailto:cameratraps@lila.science">email us</a>!
|
|
58
39
|
|
|
59
40
|
* [Arizona Department of Environmental Quality](http://azdeq.gov/)
|
|
41
|
+
* [Biometrio.earth](https://biometrio.earth/)
|
|
60
42
|
* [Blackbird Environmental](https://blackbirdenv.com/)
|
|
61
43
|
* [Camelot](https://camelotproject.org/)
|
|
62
44
|
* [Canadian Parks and Wilderness Society (CPAWS) Northern Alberta Chapter](https://cpawsnab.org/)
|
|
@@ -65,10 +47,10 @@ Here are a few of the organizations that have used MegaDetector... we're only li
|
|
|
65
47
|
* [Dudek Camera Trap AI Image Toolkit (AIT)](https://dudek.com/services/wildlife-camera-trap-ai-image-processing-and-management/)
|
|
66
48
|
* [EcoLogic Consultants Ltd.](https://www.consult-ecologic.com/)
|
|
67
49
|
* [Estación Biológica de Doñana](http://www.ebd.csic.es/inicio)
|
|
68
|
-
* [
|
|
69
|
-
* [Island Conservation](https://www.islandconservation.org/)
|
|
50
|
+
* [Indigenous Desert Alliance](https://www.indigenousdesertalliance.com/)
|
|
70
51
|
* [Myall Lakes Dingo Project](https://carnivorecoexistence.info/myall-lakes-dingo-project/)
|
|
71
52
|
* [Norwegian Institute for Nature Research](https://www.nina.no/english/Home)
|
|
53
|
+
* [Okala](https://www.okala.io/)
|
|
72
54
|
* [Point No Point Treaty Council](https://pnptc.org/)
|
|
73
55
|
* [Ramat Hanadiv Nature Park](https://www.ramat-hanadiv.org.il/en/)
|
|
74
56
|
* [SPEA (Portuguese Society for the Study of Birds)](https://spea.pt/en/)
|
|
@@ -94,10 +76,12 @@ Here are a few of the organizations that have used MegaDetector... we're only li
|
|
|
94
76
|
* [Cross-Cultural Ecology Lab](https://crossculturalecology.net/), Macquarie University
|
|
95
77
|
* [DC Cat Count](https://hub.dccatcount.org/), led by the Humane Rescue Alliance
|
|
96
78
|
* [Department of Fish and Wildlife Sciences](https://www.uidaho.edu/cnr/departments/fish-and-wildlife-sciences), University of Idaho
|
|
79
|
+
* [Department of Society & Conservation](https://www.umt.edu/environment/about/departments/socon/), W.A. Franke College of Forestry & Conservation, University of Montana
|
|
97
80
|
* [Department of Wildlife Ecology and Conservation](https://wec.ifas.ufl.edu/), University of Florida
|
|
98
81
|
* [Ecology and Conservation of Amazonian Vertebrates Research Group](https://www.researchgate.net/lab/Fernanda-Michalski-Lab-4), Federal University of Amapá
|
|
99
82
|
* [Gola Forest Programma](https://www.rspb.org.uk/our-work/conservation/projects/scientific-support-for-the-gola-forest-programme/), Royal Society for the Protection of Birds (RSPB)
|
|
100
83
|
* [Graeme Shannon's Research Group](https://wildliferesearch.co.uk/group-1), Bangor University
|
|
84
|
+
* [Grizzly Bear Recovery Program](https://www.fws.gov/office/grizzly-bear-recovery-program), U.S. Fish & Wildlife Service
|
|
101
85
|
* [Hamaarag](https://hamaarag.org.il/), The Steinhardt Museum of Natural History, Tel Aviv University
|
|
102
86
|
* [Institut des Science de la Forêt Tempérée](https://isfort.uqo.ca/) (ISFORT), Université du Québec en Outaouais
|
|
103
87
|
* [Lab of Dr. Bilal Habib](https://bhlab.in/about), the Wildlife Institute of India
|
|
@@ -111,6 +95,7 @@ Here are a few of the organizations that have used MegaDetector... we're only li
|
|
|
111
95
|
* [Seattle Urban Carnivore Project](https://www.zoo.org/seattlecarnivores), Woodland Park Zoo
|
|
112
96
|
* [Serra dos Órgãos National Park](https://www.icmbio.gov.br/parnaserradosorgaos/), ICMBio
|
|
113
97
|
* [Snapshot USA](https://emammal.si.edu/snapshot-usa), Smithsonian
|
|
98
|
+
* [TROPECOLNET project](https://www.anabenitezlopez.com/research/global-change-biology/tropecolnet/), Museo Nacional de Ciencias Naturales
|
|
114
99
|
* [Wildlife Coexistence Lab](https://wildlife.forestry.ubc.ca/), University of British Columbia
|
|
115
100
|
* [Wildlife Research](https://www.dfw.state.or.us/wildlife/research/index.asp), Oregon Department of Fish and Wildlife
|
|
116
101
|
* [Wildlife Division](https://www.michigan.gov/dnr/about/contact/wildlife), Michigan Department of Natural Resources
|
|
@@ -122,9 +107,12 @@ Here are a few of the organizations that have used MegaDetector... we're only li
|
|
|
122
107
|
* [School of Natural Sciences](https://www.utas.edu.au/natural-sciences), University of Tasmania ([story](https://www.utas.edu.au/about/news-and-stories/articles/2022/1204-innovative-camera-network-keeps-close-eye-on-tassie-wildlife))
|
|
123
108
|
* [Kenai National Wildlife Refuge](https://www.fws.gov/refuge/kenai), U.S. Fish & Wildlife Service ([story](https://www.peninsulaclarion.com/sports/refuge-notebook-new-technology-increases-efficiency-of-refuge-cameras/))
|
|
124
109
|
|
|
125
|
-
* [
|
|
110
|
+
* [Idaho Department of Fish and Game](https://idfg.idaho.gov/) ([fancy PBS video](https://www.youtube.com/watch?v=uEsL8EZKpbA&t=261s&ab_channel=OutdoorIdaho))
|
|
111
|
+
* [Australian Wildlife Conservancy](https://www.australianwildlife.org/) (blog posts [1](https://www.australianwildlife.org/cutting-edge-technology-delivering-efficiency-gains-in-conservation/), [2](https://www.australianwildlife.org/efficiency-gains-at-the-cutting-edge-of-technology/), [3](https://www.australianwildlife.org/federal-grant-to-fund-ai-supported-wildlife-recognisers))
|
|
126
112
|
* [Bavarian Forest National Park](https://www.nationalpark-bayerischer-wald.bayern.de/english/index.htm) ([story](https://customers.microsoft.com/en-au/story/1667539539271247797-nationalparkbayerischerwald-azure-en))
|
|
113
|
+
* [Environs Kimberley](https://www.environskimberley.org.au) ([blog post](https://www.environskimberley.org.au/ai_megadetector))
|
|
127
114
|
* [Felidae Conservation Fund](https://felidaefund.org/) ([WildePod platform](https://wildepod.org/)) ([blog post](https://abhaykashyap.com/blog/ai-powered-camera-trap-image-annotation-system/))
|
|
115
|
+
* [Island Conservation](https://www.islandconservation.org/) (blog posts [1](https://www.islandconservation.org/conservation-machine-learning/),[2](https://news.lenovo.com/island-conservation-machine-learning-solutions-nvidia-island-ecosystems/?sprinklrid=12869857824&linkId=356951919)) ([video](https://www.lenovo.com/content/dam/lenovo/iso/customer-references-coe/one-lenovo-customer-stories/wfh/videos/WFH-One-Lenovo-ENG-subtitles.mp4))
|
|
128
116
|
* [Alberta Biodiversity Monitoring Institute (ABMI)](https://www.abmi.ca/home.html) ([WildTrax platform](https://www.wildtrax.ca/)) (blog posts [1](https://wildcams.ca/blog/the-abmi-visits-the-zoo/),[2](http://blog.abmi.ca/2023/06/14/making-wildtrax-its-not-a-kind-of-magic-behind-the-screen/))
|
|
129
117
|
* [Shan Shui Conservation Center](http://en.shanshui.org/) ([blog post](https://mp.weixin.qq.com/s/iOIQF3ckj0-rEG4yJgerYw?fbclid=IwAR0alwiWbe3udIcFvqqwm7y5qgr9hZpjr871FZIa-ErGUukZ7yJ3ZhgCevs)) ([translated blog post](https://mp-weixin-qq-com.translate.goog/s/iOIQF3ckj0-rEG4yJgerYw?fbclid=IwAR0alwiWbe3udIcFvqqwm7y5qgr9hZpjr871FZIa-ErGUukZ7yJ3ZhgCevs&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=wapp)) ([Web demo](https://cameratrap-ai.hinature.cn/home))
|
|
130
118
|
* [Irvine Ranch Conservancy](http://www.irconservancy.org/) ([story](https://www.ocregister.com/2022/03/30/ai-software-is-helping-researchers-focus-on-learning-about-ocs-wild-animals/))
|
|
@@ -134,8 +122,9 @@ Here are a few of the organizations that have used MegaDetector... we're only li
|
|
|
134
122
|
* [Trapper](https://trapper-project.readthedocs.io/en/latest/overview.html) ([tutorial](https://trapper-project.readthedocs.io/en/latest/tutorial.html))
|
|
135
123
|
|
|
136
124
|
* [Road Ecology Center](https://roadecology.ucdavis.edu/), University of California, Davis ([Wildlife Observer Network platform](https://wildlifeobserver.net/))
|
|
137
|
-
* [The Nature Conservancy in California](https://www.nature.org/en-us/about-us/where-we-work/united-states/california/) ([Animl platform](https://github.com/tnc-ca-geo/animl-frontend))
|
|
125
|
+
* [The Nature Conservancy in California](https://www.nature.org/en-us/about-us/where-we-work/united-states/california/) ([Animl platform](https://github.com/tnc-ca-geo/animl-frontend)) ([story](https://www.vision-systems.com/non-factory/environment-agriculture/article/14304433/the-nature-conservancy-brings-cameras-ai-to-invasive-species-prevention))
|
|
138
126
|
* [San Diego Zoo Wildlife Alliance](https://science.sandiegozoo.org/) ([Animl R package](https://github.com/conservationtechlab/animl))
|
|
127
|
+
* [TerrOïko](https://www.terroiko.fr/) ([OCAPI platform](https://www.terroiko.fr/ocapi))
|
|
139
128
|
|
|
140
129
|
Also see:
|
|
141
130
|
|
|
@@ -145,10 +134,25 @@ Also see:
|
|
|
145
134
|
|
|
146
135
|
* The list of papers tagged "MegaDetector" on our [list of papers about ML and camera traps](https://agentmorris.github.io/camera-trap-ml-survey/#camera-trap-ml-papers)
|
|
147
136
|
|
|
137
|
+
|
|
148
138
|
## Repo contents
|
|
149
139
|
|
|
150
140
|
This repo is organized into the following folders...
|
|
151
141
|
|
|
142
|
+
This repo contains the tools for training and running [MegaDetector](megadetector.md), an object detection model that does a pretty good job finding animals, people, and vehicles (and therefore is pretty good at finding empty images) in camera trap images in a variety of terrestrial ecosystems.
|
|
143
|
+
|
|
144
|
+
The core functionality provided is:
|
|
145
|
+
|
|
146
|
+
- Training and running [MegaDetector](megadetector.md).
|
|
147
|
+
- Training and running some [species classifiers](classification) that are used in conjunction with MegaDetector.
|
|
148
|
+
- Tools to [convert](data_management) frequently-used camera trap metadata formats into a common format.
|
|
149
|
+
- A [batch processing API](https://github.com/agentmorris/MegaDetector/tree/main/api/batch_processing) that runs MegaDetector on large image collections, to accelerate population surveys.
|
|
150
|
+
- A [real-time API](https://github.com/agentmorris/MegaDetector/tree/main/api/synchronous) that runs MegaDetector (and some species classifiers) synchronously, primarily to support biosecurity applications.
|
|
151
|
+
|
|
152
|
+
This repo does not host the data used to train MegaDetector, but we work with our collaborators to make data and annotations available whenever possible on [lila.science](http://lila.science). See the [MegaDetector training data](megadetector.md#can-you-share-the-training-data) section to learn more about the data used to train MegaDetector.
|
|
153
|
+
|
|
154
|
+
MegaDetector was initially developed by the [Microsoft AI for Earth program](https://www.microsoft.com/en-us/ai/ai-for-earth); this repo was forked from the microsoft/cameratraps repo and is maintained by the original MegaDetector developers (who are no longer at Microsoft, but are absolutely fantastically eternally grateful to Microsoft for the investment and commitment that made MegaDetector happen).
|
|
155
|
+
|
|
152
156
|
|
|
153
157
|
### api
|
|
154
158
|
|
|
@@ -86,6 +86,8 @@ from api.batch_processing.postprocessing.postprocess_batch_results import (
|
|
|
86
86
|
from detection.run_detector import get_detector_version_from_filename
|
|
87
87
|
from md_utils.ct_utils import image_file_to_camera_folder
|
|
88
88
|
|
|
89
|
+
## Inference options
|
|
90
|
+
|
|
89
91
|
# To specify a non-default confidence threshold for including detections in the .json file
|
|
90
92
|
json_threshold = None
|
|
91
93
|
|
|
@@ -109,6 +111,11 @@ quiet_mode = True
|
|
|
109
111
|
# will use its default size, which is 1280 * 1.3, which is almost always what you want.
|
|
110
112
|
image_size = None
|
|
111
113
|
|
|
114
|
+
# Should we include image size, timestamp, and/or EXIF data in MD output?
|
|
115
|
+
include_image_size = False
|
|
116
|
+
include_image_timestamp = False
|
|
117
|
+
include_exif_data = False
|
|
118
|
+
|
|
112
119
|
# Only relevant when running on CPU
|
|
113
120
|
ncores = 1
|
|
114
121
|
|
|
@@ -187,7 +194,7 @@ augment = False
|
|
|
187
194
|
|
|
188
195
|
## Constants related to tiled inference
|
|
189
196
|
|
|
190
|
-
use_tiled_inference =
|
|
197
|
+
use_tiled_inference = False
|
|
191
198
|
|
|
192
199
|
# Should we delete tiles after each job? Only set this to False for debugging;
|
|
193
200
|
# large jobs will take up a lot of space if you keep tiles around after each task.
|
|
@@ -234,7 +241,7 @@ checkpoint_frequency = 10000
|
|
|
234
241
|
approx_images_per_second = estimate_md_images_per_second(model_file)
|
|
235
242
|
|
|
236
243
|
# Rough estimate for the inference time cost of augmentation
|
|
237
|
-
if augment:
|
|
244
|
+
if augment and (approx_images_per_second is not None):
|
|
238
245
|
approx_images_per_second = approx_images_per_second * 0.7
|
|
239
246
|
|
|
240
247
|
base_task_name = organization_name_short + '-' + job_date + job_description_string + '-' + \
|
|
@@ -268,6 +275,10 @@ filename_base = os.path.join(base_output_folder_name, base_task_name)
|
|
|
268
275
|
combined_api_output_folder = os.path.join(filename_base, 'combined_api_outputs')
|
|
269
276
|
postprocessing_output_folder = os.path.join(filename_base, 'preview')
|
|
270
277
|
|
|
278
|
+
combined_api_output_file = os.path.join(
|
|
279
|
+
combined_api_output_folder,
|
|
280
|
+
'{}_detections.json'.format(base_task_name))
|
|
281
|
+
|
|
271
282
|
os.makedirs(filename_base, exist_ok=True)
|
|
272
283
|
os.makedirs(combined_api_output_folder, exist_ok=True)
|
|
273
284
|
os.makedirs(postprocessing_output_folder, exist_ok=True)
|
|
@@ -494,7 +505,14 @@ for i_task,task in enumerate(task_info):
|
|
|
494
505
|
|
|
495
506
|
overwrite_handling_string = '--overwrite_handling {}'.format(overwrite_handling)
|
|
496
507
|
cmd = f'{cuda_string} python run_detector_batch.py "{model_file}" "{chunk_file}" "{output_fn}" {checkpoint_frequency_string} {checkpoint_path_string} {use_image_queue_string} {ncores_string} {quiet_string} {image_size_string} {confidence_threshold_string} {overwrite_handling_string}'
|
|
497
|
-
|
|
508
|
+
|
|
509
|
+
if include_image_size:
|
|
510
|
+
cmd += ' --include_image_size'
|
|
511
|
+
if include_image_timestamp:
|
|
512
|
+
cmd += ' --include_image_timestamp'
|
|
513
|
+
if include_exif_data:
|
|
514
|
+
cmd += ' --include_exif_data'
|
|
515
|
+
|
|
498
516
|
cmd_file = os.path.join(filename_base,'run_chunk_{}_gpu_{}{}'.format(str(i_task).zfill(3),
|
|
499
517
|
str(gpu_number).zfill(2),script_extension))
|
|
500
518
|
|
|
@@ -747,10 +765,6 @@ for im in combined_results['images']:
|
|
|
747
765
|
else:
|
|
748
766
|
im['file'] = im['file'].replace(input_path + '/','',1)
|
|
749
767
|
|
|
750
|
-
combined_api_output_file = os.path.join(
|
|
751
|
-
combined_api_output_folder,
|
|
752
|
-
'{}_detections.json'.format(base_task_name))
|
|
753
|
-
|
|
754
768
|
with open(combined_api_output_file,'w') as f:
|
|
755
769
|
json.dump(combined_results,f,indent=1)
|
|
756
770
|
|
|
@@ -793,7 +807,7 @@ options.api_output_file = combined_api_output_file
|
|
|
793
807
|
options.output_dir = output_base
|
|
794
808
|
ppresults = process_batch_results(options)
|
|
795
809
|
html_output_file = ppresults.output_html_file
|
|
796
|
-
path_utils.open_file(html_output_file,attempt_to_open_in_wsl_host=True)
|
|
810
|
+
path_utils.open_file(html_output_file,attempt_to_open_in_wsl_host=True,browser_name='chrome')
|
|
797
811
|
# import clipboard; clipboard.copy(html_output_file)
|
|
798
812
|
|
|
799
813
|
|
|
@@ -823,7 +837,7 @@ options.otherDetectionsThreshold = options.confidenceMin
|
|
|
823
837
|
|
|
824
838
|
options.bRenderDetectionTiles = True
|
|
825
839
|
options.maxOutputImageWidth = 2000
|
|
826
|
-
options.detectionTilesMaxCrops =
|
|
840
|
+
options.detectionTilesMaxCrops = 250
|
|
827
841
|
|
|
828
842
|
# options.lineThickness = 5
|
|
829
843
|
# options.boxExpansion = 8
|
|
@@ -930,7 +944,7 @@ options.output_dir = output_base
|
|
|
930
944
|
ppresults = process_batch_results(options)
|
|
931
945
|
html_output_file = ppresults.output_html_file
|
|
932
946
|
|
|
933
|
-
path_utils.open_file(html_output_file,attempt_to_open_in_wsl_host=True)
|
|
947
|
+
path_utils.open_file(html_output_file,attempt_to_open_in_wsl_host=True,browser_name='chrome')
|
|
934
948
|
# import clipboard; clipboard.copy(html_output_file)
|
|
935
949
|
|
|
936
950
|
|
|
@@ -2003,7 +2017,7 @@ print('Processing {} to {}'.format(base_task_name, output_base))
|
|
|
2003
2017
|
options.api_output_file = sequence_smoothed_classification_file
|
|
2004
2018
|
options.output_dir = output_base
|
|
2005
2019
|
ppresults = process_batch_results(options)
|
|
2006
|
-
path_utils.open_file(ppresults.output_html_file,attempt_to_open_in_wsl_host=True)
|
|
2020
|
+
path_utils.open_file(ppresults.output_html_file,attempt_to_open_in_wsl_host=True,browser_name='chrome')
|
|
2007
2021
|
# import clipboard; clipboard.copy(ppresults.output_html_file)
|
|
2008
2022
|
|
|
2009
2023
|
#% Zip .json files
|
|
@@ -2071,7 +2085,7 @@ for i, j in itertools.combinations(list(range(0,len(filenames))),2):
|
|
|
2071
2085
|
results = compare_batch_results(options)
|
|
2072
2086
|
|
|
2073
2087
|
from md_utils.path_utils import open_file
|
|
2074
|
-
open_file(results.html_output_file,attempt_to_open_in_wsl_host=True)
|
|
2088
|
+
open_file(results.html_output_file,attempt_to_open_in_wsl_host=True,browser_name='chrome')
|
|
2075
2089
|
|
|
2076
2090
|
|
|
2077
2091
|
#%% Merge in high-confidence detections from another results file
|
|
@@ -2125,7 +2139,7 @@ options.output_dir = output_base_large_boxes
|
|
|
2125
2139
|
|
|
2126
2140
|
ppresults = process_batch_results(options)
|
|
2127
2141
|
html_output_file = ppresults.output_html_file
|
|
2128
|
-
path_utils.open_file(html_output_file,attempt_to_open_in_wsl_host=True)
|
|
2142
|
+
path_utils.open_file(html_output_file,attempt_to_open_in_wsl_host=True,browser_name='chrome')
|
|
2129
2143
|
|
|
2130
2144
|
|
|
2131
2145
|
#%% .json splitting
|
|
@@ -2280,7 +2294,7 @@ import nbformat as nbf
|
|
|
2280
2294
|
if os.name == 'nt':
|
|
2281
2295
|
git_base = r'c:\git'
|
|
2282
2296
|
else:
|
|
2283
|
-
git_base = os.path.
|
|
2297
|
+
git_base = os.path.expanduser('~/git')
|
|
2284
2298
|
|
|
2285
2299
|
input_py_file = git_base + '/MegaDetector/api/batch_processing/data_preparation/manage_local_batch.py'
|
|
2286
2300
|
assert os.path.isfile(input_py_file)
|
{megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/combine_api_outputs.py
RENAMED
|
@@ -48,7 +48,7 @@ def combine_api_output_files(input_files: List[str],
|
|
|
48
48
|
input_files: list of str, paths to JSON detection files
|
|
49
49
|
output_file: optional str, path to write merged JSON
|
|
50
50
|
require_uniqueness: bool, whether to require that the images in
|
|
51
|
-
each
|
|
51
|
+
each list of images be unique
|
|
52
52
|
"""
|
|
53
53
|
|
|
54
54
|
def print_if_verbose(s):
|
|
@@ -84,7 +84,7 @@ def combine_api_output_dictionaries(input_dicts: Iterable[Mapping[str, Any]],
|
|
|
84
84
|
input_dicts: list of dicts, each dict is the JSON of the detections
|
|
85
85
|
output file from the Batch Processing API
|
|
86
86
|
require_uniqueness: bool, whether to require that the images in
|
|
87
|
-
each
|
|
87
|
+
each input dict be unique
|
|
88
88
|
|
|
89
89
|
Returns: dict, represents the merged JSON
|
|
90
90
|
"""
|
|
@@ -291,7 +291,7 @@ def pairwise_compare_batch_results(options,output_index,pairwise_options):
|
|
|
291
291
|
filenames_b_set = set([im['file'] for im in images_b])
|
|
292
292
|
|
|
293
293
|
if len(images_a) != len(images_b):
|
|
294
|
-
s = 'set A has {}
|
|
294
|
+
s = 'set A has {} images, set B has {}'.format(len(images_a),len(images_b))
|
|
295
295
|
if options.error_on_non_matching_lists:
|
|
296
296
|
raise ValueError(s)
|
|
297
297
|
else:
|
|
@@ -4,8 +4,8 @@
|
|
|
4
4
|
#
|
|
5
5
|
# Converts between file formats output by our batch processing API. Currently
|
|
6
6
|
# supports json <--> csv conversion, but this should be the landing place for any
|
|
7
|
-
# conversion - including between
|
|
8
|
-
# future.
|
|
7
|
+
# conversion - including between hypothetical alternative .json versions - that we support
|
|
8
|
+
# in the future.
|
|
9
9
|
#
|
|
10
10
|
########
|
|
11
11
|
|
|
@@ -30,10 +30,13 @@ CONF_DIGITS = 3
|
|
|
30
30
|
#%% Conversion functions
|
|
31
31
|
|
|
32
32
|
def convert_json_to_csv(input_path,output_path=None,min_confidence=None,
|
|
33
|
-
omit_bounding_boxes=False,output_encoding=None
|
|
33
|
+
omit_bounding_boxes=False,output_encoding=None,
|
|
34
|
+
overwrite=True):
|
|
34
35
|
"""
|
|
35
36
|
Convert .json to .csv
|
|
36
37
|
|
|
38
|
+
If output_path is None, will convert x.json to x.csv.
|
|
39
|
+
|
|
37
40
|
TODO: this function should obviously be using Pandas or some other sensible structured
|
|
38
41
|
representation of tabular data. Even a list of dicts. This implementation is quite
|
|
39
42
|
brittle and depends on adding fields to every row in exactly the right order.
|
|
@@ -42,6 +45,10 @@ def convert_json_to_csv(input_path,output_path=None,min_confidence=None,
|
|
|
42
45
|
if output_path is None:
|
|
43
46
|
output_path = os.path.splitext(input_path)[0]+'.csv'
|
|
44
47
|
|
|
48
|
+
if os.path.isfile(output_path) and (not overwrite):
|
|
49
|
+
print('File {} exists, skipping json --> csv conversion'.format(output_path))
|
|
50
|
+
return
|
|
51
|
+
|
|
45
52
|
print('Loading json results from {}...'.format(input_path))
|
|
46
53
|
json_output = json.load(open(input_path))
|
|
47
54
|
|
|
@@ -73,7 +80,7 @@ def convert_json_to_csv(input_path,output_path=None,min_confidence=None,
|
|
|
73
80
|
|
|
74
81
|
n_classification_categories = len(classification_category_ids)
|
|
75
82
|
|
|
76
|
-
# There are several fields for which we add columns
|
|
83
|
+
# There are several .json fields for which we add .csv columns; other random bespoke fields
|
|
77
84
|
# will be ignored.
|
|
78
85
|
optional_fields = ['width','height','datetime','exif_metadata']
|
|
79
86
|
optional_fields_present = set()
|
|
@@ -104,7 +111,7 @@ def convert_json_to_csv(input_path,output_path=None,min_confidence=None,
|
|
|
104
111
|
if 'failure' in im and im['failure'] is not None:
|
|
105
112
|
row = [image_id, 'failure', im['failure']]
|
|
106
113
|
rows.append(row)
|
|
107
|
-
print('Skipping failed image {} ({})'.format(im['file'],im['failure']))
|
|
114
|
+
# print('Skipping failed image {} ({})'.format(im['file'],im['failure']))
|
|
108
115
|
continue
|
|
109
116
|
|
|
110
117
|
max_conf = ct_utils.get_max_conf(im)
|
|
@@ -193,12 +200,21 @@ def convert_json_to_csv(input_path,output_path=None,min_confidence=None,
|
|
|
193
200
|
writer.writerow(header)
|
|
194
201
|
writer.writerows(rows)
|
|
195
202
|
|
|
203
|
+
# ...def convert_json_to_csv(...)
|
|
204
|
+
|
|
196
205
|
|
|
197
|
-
def convert_csv_to_json(input_path,output_path=None):
|
|
206
|
+
def convert_csv_to_json(input_path,output_path=None,overwrite=True):
|
|
207
|
+
"""
|
|
208
|
+
Convert .csv to .json. If output_path is None, will convert x.csv to x.json.
|
|
209
|
+
"""
|
|
198
210
|
|
|
199
211
|
if output_path is None:
|
|
200
212
|
output_path = os.path.splitext(input_path)[0]+'.json'
|
|
201
213
|
|
|
214
|
+
if os.path.isfile(output_path) and (not overwrite):
|
|
215
|
+
print('File {} exists, skipping csv --> json conversion'.format(output_path))
|
|
216
|
+
return
|
|
217
|
+
|
|
202
218
|
# Format spec:
|
|
203
219
|
#
|
|
204
220
|
# https://github.com/agentmorris/MegaDetector/tree/master/api/batch_processing
|
|
@@ -259,6 +275,8 @@ def convert_csv_to_json(input_path,output_path=None):
|
|
|
259
275
|
json_out['images'] = images
|
|
260
276
|
|
|
261
277
|
json.dump(json_out,open(output_path,'w'),indent=1)
|
|
278
|
+
|
|
279
|
+
# ...def convert_csv_to_json(...)
|
|
262
280
|
|
|
263
281
|
|
|
264
282
|
#%% Interactive driver
|
{megadetector-5.0.7 → megadetector-5.0.8}/api/batch_processing/postprocessing/load_api_results.py
RENAMED
|
@@ -64,11 +64,9 @@ def load_api_results(api_output_path: str, normalize_paths: bool = True,
|
|
|
64
64
|
if k != 'images':
|
|
65
65
|
other_fields[k] = v
|
|
66
66
|
|
|
67
|
-
# Normalize paths to simplify comparisons later
|
|
68
67
|
if normalize_paths:
|
|
69
68
|
for image in detection_results['images']:
|
|
70
|
-
image['file'] = os.path.normpath(image['file'])
|
|
71
|
-
# image['file'] = image['file'].replace('\\','/')
|
|
69
|
+
image['file'] = os.path.normpath(image['file'])
|
|
72
70
|
|
|
73
71
|
if force_forward_slashes:
|
|
74
72
|
for image in detection_results['images']:
|