mdod 1.0.9__tar.gz → 3.0.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mdod-1.0.9 → mdod-3.0.0}/PKG-INFO +8 -47
- mdod-3.0.0/README.md +30 -0
- {mdod-1.0.9 → mdod-3.0.0}/mdod.egg-info/PKG-INFO +8 -47
- {mdod-1.0.9 → mdod-3.0.0}/mdod.egg-info/SOURCES.txt +0 -2
- mdod-3.0.0/mdod.egg-info/top_level.txt +1 -0
- {mdod-1.0.9 → mdod-3.0.0}/setup.py +1 -1
- mdod-1.0.9/README.md +0 -69
- mdod-1.0.9/mdod/__init__.py +0 -5
- mdod-1.0.9/mdod/mdod.py +0 -39
- mdod-1.0.9/mdod.egg-info/top_level.txt +0 -1
- {mdod-1.0.9 → mdod-3.0.0}/LICENSE.txt +0 -0
- {mdod-1.0.9 → mdod-3.0.0}/mdod.egg-info/dependency_links.txt +0 -0
- {mdod-1.0.9 → mdod-3.0.0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mdod
|
3
|
-
Version:
|
3
|
+
Version: 3.0.0
|
4
4
|
Summary: MDOD, Multi-Dimensional data Outlier Detection
|
5
5
|
Home-page: https://github.com/mddod/mdod
|
6
6
|
Author: Z Shen
|
@@ -14,17 +14,20 @@ Description-Content-Type: text/markdown
|
|
14
14
|
License-File: LICENSE.txt
|
15
15
|
|
16
16
|
# mdod
|
17
|
+
|
17
18
|
MDOD, Multi-Dimensional data Outlier Detection
|
18
19
|
|
19
20
|
Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm.
|
20
21
|
|
21
|
-
# MDOD paper
|
22
|
-
|
22
|
+
# MDOD paper
|
23
|
+
|
24
|
+
MDOD paper is published in ICAIIC 2024 as title "Outlier Detect using Vector Cosine Similarity by Adding a Dimension"
|
23
25
|
|
24
26
|
https://doi.org/10.1109/ICAIIC60209.2024.10463442
|
25
27
|
|
26
28
|
# Installation:
|
27
|
-
|
29
|
+
|
30
|
+
pip install mdod
|
28
31
|
|
29
32
|
or
|
30
33
|
|
@@ -35,50 +38,8 @@ cd mdod
|
|
35
38
|
python setup.py install
|
36
39
|
|
37
40
|
# usage example:
|
38
|
-
import numpy as np
|
39
|
-
|
40
|
-
import mdod
|
41
|
-
|
42
|
-
localFile = 'TestDataset.txt'
|
43
|
-
|
44
|
-
dets= np.loadtxt(localFile,delimiter=',')
|
45
|
-
|
46
|
-
nd = 1
|
47
|
-
|
48
|
-
sn = 15
|
49
|
-
|
50
|
-
result = mdod.md(dets,nd,sn)
|
51
|
-
|
52
|
-
print (result)
|
53
|
-
|
54
|
-
# TestDataset.txt format:
|
55
|
-
data1,data2,data3,data4,data5,data6
|
56
41
|
|
57
|
-
|
58
|
-
|
59
|
-
data1,data2,data3,data4,data5,data6
|
60
|
-
|
61
|
-
...
|
62
|
-
|
63
|
-
# dets format:
|
64
|
-
[[data1 data2 data3 data4 data5 data6]
|
65
|
-
|
66
|
-
[data1 data2 data3 data4 data5 data6]
|
67
|
-
|
68
|
-
[data1 data2 data3 data4 data5 data6]
|
69
|
-
|
70
|
-
...]
|
71
|
-
|
72
|
-
# result format:
|
73
|
-
[value1, '[data1 data2 data3 data4 data5 data6]', '0']
|
74
|
-
|
75
|
-
[value2, '[data1 data2 data3 data4 data5 data6]', '1']
|
76
|
-
|
77
|
-
[value3, '[data1 data2 data3 data4 data5 data6]', '2']
|
42
|
+
Please visit https://github.com/mddod/mdod, or https://mddod.github.io/
|
78
43
|
|
79
|
-
...
|
80
44
|
|
81
|
-
# file exampls:
|
82
|
-
Please visit https://github.com/mddod/mdod, or https://mddod.github.io/
|
83
45
|
|
84
|
-
|
mdod-3.0.0/README.md
ADDED
@@ -0,0 +1,30 @@
|
|
1
|
+
# mdod
|
2
|
+
|
3
|
+
MDOD, Multi-Dimensional data Outlier Detection
|
4
|
+
|
5
|
+
Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm.
|
6
|
+
|
7
|
+
# MDOD paper
|
8
|
+
|
9
|
+
MDOD paper is published in ICAIIC 2024 as title "Outlier Detect using Vector Cosine Similarity by Adding a Dimension"
|
10
|
+
|
11
|
+
https://doi.org/10.1109/ICAIIC60209.2024.10463442
|
12
|
+
|
13
|
+
# Installation:
|
14
|
+
|
15
|
+
pip install mdod
|
16
|
+
|
17
|
+
or
|
18
|
+
|
19
|
+
git clone https://github.com/mddod/mdod.git
|
20
|
+
|
21
|
+
cd mdod
|
22
|
+
|
23
|
+
python setup.py install
|
24
|
+
|
25
|
+
# usage example:
|
26
|
+
|
27
|
+
Please visit https://github.com/mddod/mdod, or https://mddod.github.io/
|
28
|
+
|
29
|
+
|
30
|
+
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mdod
|
3
|
-
Version:
|
3
|
+
Version: 3.0.0
|
4
4
|
Summary: MDOD, Multi-Dimensional data Outlier Detection
|
5
5
|
Home-page: https://github.com/mddod/mdod
|
6
6
|
Author: Z Shen
|
@@ -14,17 +14,20 @@ Description-Content-Type: text/markdown
|
|
14
14
|
License-File: LICENSE.txt
|
15
15
|
|
16
16
|
# mdod
|
17
|
+
|
17
18
|
MDOD, Multi-Dimensional data Outlier Detection
|
18
19
|
|
19
20
|
Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm.
|
20
21
|
|
21
|
-
# MDOD paper
|
22
|
-
|
22
|
+
# MDOD paper
|
23
|
+
|
24
|
+
MDOD paper is published in ICAIIC 2024 as title "Outlier Detect using Vector Cosine Similarity by Adding a Dimension"
|
23
25
|
|
24
26
|
https://doi.org/10.1109/ICAIIC60209.2024.10463442
|
25
27
|
|
26
28
|
# Installation:
|
27
|
-
|
29
|
+
|
30
|
+
pip install mdod
|
28
31
|
|
29
32
|
or
|
30
33
|
|
@@ -35,50 +38,8 @@ cd mdod
|
|
35
38
|
python setup.py install
|
36
39
|
|
37
40
|
# usage example:
|
38
|
-
import numpy as np
|
39
|
-
|
40
|
-
import mdod
|
41
|
-
|
42
|
-
localFile = 'TestDataset.txt'
|
43
|
-
|
44
|
-
dets= np.loadtxt(localFile,delimiter=',')
|
45
|
-
|
46
|
-
nd = 1
|
47
|
-
|
48
|
-
sn = 15
|
49
|
-
|
50
|
-
result = mdod.md(dets,nd,sn)
|
51
|
-
|
52
|
-
print (result)
|
53
|
-
|
54
|
-
# TestDataset.txt format:
|
55
|
-
data1,data2,data3,data4,data5,data6
|
56
41
|
|
57
|
-
|
58
|
-
|
59
|
-
data1,data2,data3,data4,data5,data6
|
60
|
-
|
61
|
-
...
|
62
|
-
|
63
|
-
# dets format:
|
64
|
-
[[data1 data2 data3 data4 data5 data6]
|
65
|
-
|
66
|
-
[data1 data2 data3 data4 data5 data6]
|
67
|
-
|
68
|
-
[data1 data2 data3 data4 data5 data6]
|
69
|
-
|
70
|
-
...]
|
71
|
-
|
72
|
-
# result format:
|
73
|
-
[value1, '[data1 data2 data3 data4 data5 data6]', '0']
|
74
|
-
|
75
|
-
[value2, '[data1 data2 data3 data4 data5 data6]', '1']
|
76
|
-
|
77
|
-
[value3, '[data1 data2 data3 data4 data5 data6]', '2']
|
42
|
+
Please visit https://github.com/mddod/mdod, or https://mddod.github.io/
|
78
43
|
|
79
|
-
...
|
80
44
|
|
81
|
-
# file exampls:
|
82
|
-
Please visit https://github.com/mddod/mdod, or https://mddod.github.io/
|
83
45
|
|
84
|
-
|
@@ -0,0 +1 @@
|
|
1
|
+
|
mdod-1.0.9/README.md
DELETED
@@ -1,69 +0,0 @@
|
|
1
|
-
# mdod
|
2
|
-
MDOD, Multi-Dimensional data Outlier Detection
|
3
|
-
|
4
|
-
Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm.
|
5
|
-
|
6
|
-
# MDOD paper
|
7
|
-
MDOD paper is published in ICAIIC 2024 as title "Outlier Detect using Vector Cosine Similarity by Adding a Dimension"
|
8
|
-
|
9
|
-
https://doi.org/10.1109/ICAIIC60209.2024.10463442
|
10
|
-
|
11
|
-
# Installation:
|
12
|
-
pip install mdod
|
13
|
-
|
14
|
-
or
|
15
|
-
|
16
|
-
git clone https://github.com/mddod/mdod.git
|
17
|
-
|
18
|
-
cd mdod
|
19
|
-
|
20
|
-
python setup.py install
|
21
|
-
|
22
|
-
# usage example:
|
23
|
-
import numpy as np
|
24
|
-
|
25
|
-
import mdod
|
26
|
-
|
27
|
-
localFile = 'TestDataset.txt'
|
28
|
-
|
29
|
-
dets= np.loadtxt(localFile,delimiter=',')
|
30
|
-
|
31
|
-
nd = 1
|
32
|
-
|
33
|
-
sn = 15
|
34
|
-
|
35
|
-
result = mdod.md(dets,nd,sn)
|
36
|
-
|
37
|
-
print (result)
|
38
|
-
|
39
|
-
# TestDataset.txt format:
|
40
|
-
data1,data2,data3,data4,data5,data6
|
41
|
-
|
42
|
-
data1,data2,data3,data4,data5,data6
|
43
|
-
|
44
|
-
data1,data2,data3,data4,data5,data6
|
45
|
-
|
46
|
-
...
|
47
|
-
|
48
|
-
# dets format:
|
49
|
-
[[data1 data2 data3 data4 data5 data6]
|
50
|
-
|
51
|
-
[data1 data2 data3 data4 data5 data6]
|
52
|
-
|
53
|
-
[data1 data2 data3 data4 data5 data6]
|
54
|
-
|
55
|
-
...]
|
56
|
-
|
57
|
-
# result format:
|
58
|
-
[value1, '[data1 data2 data3 data4 data5 data6]', '0']
|
59
|
-
|
60
|
-
[value2, '[data1 data2 data3 data4 data5 data6]', '1']
|
61
|
-
|
62
|
-
[value3, '[data1 data2 data3 data4 data5 data6]', '2']
|
63
|
-
|
64
|
-
...
|
65
|
-
|
66
|
-
# file exampls:
|
67
|
-
Please visit https://github.com/mddod/mdod, or https://mddod.github.io/
|
68
|
-
|
69
|
-
|
mdod-1.0.9/mdod/__init__.py
DELETED
mdod-1.0.9/mdod/mdod.py
DELETED
@@ -1,39 +0,0 @@
|
|
1
|
-
# -*-coding: utf-8- -*-
|
2
|
-
#MDOD, Multi-Dimensional data Outlier Detection
|
3
|
-
# Author: Z Shen<626456708@qq.com>
|
4
|
-
# License: BSD 3-Clause License
|
5
|
-
|
6
|
-
import numpy as np
|
7
|
-
|
8
|
-
def md(dets0, nd, sn):
|
9
|
-
VCS_list = []
|
10
|
-
i = 0
|
11
|
-
|
12
|
-
for line0 in dets0:
|
13
|
-
VCSResult_list = []
|
14
|
-
line0_arr = np.array(line0, dtype=float)
|
15
|
-
|
16
|
-
for j, line1 in enumerate(dets0):
|
17
|
-
if j == i:
|
18
|
-
continue
|
19
|
-
|
20
|
-
line1_arr = np.array(line1, dtype=float)
|
21
|
-
|
22
|
-
DenominatorLeft = np.sqrt(np.sum((line0_arr - line0_arr) ** 2) + (nd - 0) ** 2)
|
23
|
-
DenominatorRight = np.sqrt(np.sum((line0_arr - line1_arr) ** 2) + (nd - 0) ** 2)
|
24
|
-
DenominatorSum = DenominatorLeft * DenominatorRight
|
25
|
-
|
26
|
-
NumeratorSum = np.sum(np.sqrt((line0_arr - line0_arr) ** 2) * np.sqrt((line0_arr - line1_arr) ** 2))
|
27
|
-
NumeratorPlus = np.sqrt((nd - 0) ** 2) * np.sqrt((nd - 0) ** 2)
|
28
|
-
NumeratorSum += NumeratorPlus
|
29
|
-
|
30
|
-
VCSResult = 0 if DenominatorSum == 0 else NumeratorSum / DenominatorSum
|
31
|
-
VCSResult_list.append(VCSResult)
|
32
|
-
|
33
|
-
VCSResult_list.sort(reverse=True)
|
34
|
-
VCSTotal = sum(VCSResult_list[:min(sn, len(VCSResult_list))])
|
35
|
-
|
36
|
-
VCS_list.append([VCSTotal, line0.tolist(), i])
|
37
|
-
i += 1
|
38
|
-
|
39
|
-
return VCS_list
|
@@ -1 +0,0 @@
|
|
1
|
-
mdod
|
File without changes
|
File without changes
|
File without changes
|