mdod 1.0.2__tar.gz → 1.0.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mdod-1.0.9/PKG-INFO ADDED
@@ -0,0 +1,84 @@
1
+ Metadata-Version: 2.1
2
+ Name: mdod
3
+ Version: 1.0.9
4
+ Summary: MDOD, Multi-Dimensional data Outlier Detection
5
+ Home-page: https://github.com/mddod/mdod
6
+ Author: Z Shen
7
+ Author-email: 626456708@qq.com
8
+ License: BSD 3-Clause License
9
+ Classifier: Development Status :: 5 - Production/Stable
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: Programming Language :: Python
12
+ Classifier: Programming Language :: Python :: 3
13
+ Description-Content-Type: text/markdown
14
+ License-File: LICENSE.txt
15
+
16
+ # mdod
17
+ MDOD, Multi-Dimensional data Outlier Detection
18
+
19
+ Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm.
20
+
21
+ # MDOD paper
22
+ MDOD paper is published in ICAIIC 2024 as title "Outlier Detect using Vector Cosine Similarity by Adding a Dimension"
23
+
24
+ https://doi.org/10.1109/ICAIIC60209.2024.10463442
25
+
26
+ # Installation:
27
+ pip install mdod
28
+
29
+ or
30
+
31
+ git clone https://github.com/mddod/mdod.git
32
+
33
+ cd mdod
34
+
35
+ python setup.py install
36
+
37
+ # usage example:
38
+ import numpy as np
39
+
40
+ import mdod
41
+
42
+ localFile = 'TestDataset.txt'
43
+
44
+ dets= np.loadtxt(localFile,delimiter=',')
45
+
46
+ nd = 1
47
+
48
+ sn = 15
49
+
50
+ result = mdod.md(dets,nd,sn)
51
+
52
+ print (result)
53
+
54
+ # TestDataset.txt format:
55
+ data1,data2,data3,data4,data5,data6
56
+
57
+ data1,data2,data3,data4,data5,data6
58
+
59
+ data1,data2,data3,data4,data5,data6
60
+
61
+ ...
62
+
63
+ # dets format:
64
+ [[data1 data2 data3 data4 data5 data6]
65
+
66
+ [data1 data2 data3 data4 data5 data6]
67
+
68
+ [data1 data2 data3 data4 data5 data6]
69
+
70
+ ...]
71
+
72
+ # result format:
73
+ [value1, '[data1 data2 data3 data4 data5 data6]', '0']
74
+
75
+ [value2, '[data1 data2 data3 data4 data5 data6]', '1']
76
+
77
+ [value3, '[data1 data2 data3 data4 data5 data6]', '2']
78
+
79
+ ...
80
+
81
+ # file exampls:
82
+ Please visit https://github.com/mddod/mdod, or https://mddod.github.io/
83
+
84
+
@@ -0,0 +1,84 @@
1
+ Metadata-Version: 2.1
2
+ Name: mdod
3
+ Version: 1.0.9
4
+ Summary: MDOD, Multi-Dimensional data Outlier Detection
5
+ Home-page: https://github.com/mddod/mdod
6
+ Author: Z Shen
7
+ Author-email: 626456708@qq.com
8
+ License: BSD 3-Clause License
9
+ Classifier: Development Status :: 5 - Production/Stable
10
+ Classifier: Intended Audience :: Developers
11
+ Classifier: Programming Language :: Python
12
+ Classifier: Programming Language :: Python :: 3
13
+ Description-Content-Type: text/markdown
14
+ License-File: LICENSE.txt
15
+
16
+ # mdod
17
+ MDOD, Multi-Dimensional data Outlier Detection
18
+
19
+ Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm.
20
+
21
+ # MDOD paper
22
+ MDOD paper is published in ICAIIC 2024 as title "Outlier Detect using Vector Cosine Similarity by Adding a Dimension"
23
+
24
+ https://doi.org/10.1109/ICAIIC60209.2024.10463442
25
+
26
+ # Installation:
27
+ pip install mdod
28
+
29
+ or
30
+
31
+ git clone https://github.com/mddod/mdod.git
32
+
33
+ cd mdod
34
+
35
+ python setup.py install
36
+
37
+ # usage example:
38
+ import numpy as np
39
+
40
+ import mdod
41
+
42
+ localFile = 'TestDataset.txt'
43
+
44
+ dets= np.loadtxt(localFile,delimiter=',')
45
+
46
+ nd = 1
47
+
48
+ sn = 15
49
+
50
+ result = mdod.md(dets,nd,sn)
51
+
52
+ print (result)
53
+
54
+ # TestDataset.txt format:
55
+ data1,data2,data3,data4,data5,data6
56
+
57
+ data1,data2,data3,data4,data5,data6
58
+
59
+ data1,data2,data3,data4,data5,data6
60
+
61
+ ...
62
+
63
+ # dets format:
64
+ [[data1 data2 data3 data4 data5 data6]
65
+
66
+ [data1 data2 data3 data4 data5 data6]
67
+
68
+ [data1 data2 data3 data4 data5 data6]
69
+
70
+ ...]
71
+
72
+ # result format:
73
+ [value1, '[data1 data2 data3 data4 data5 data6]', '0']
74
+
75
+ [value2, '[data1 data2 data3 data4 data5 data6]', '1']
76
+
77
+ [value3, '[data1 data2 data3 data4 data5 data6]', '2']
78
+
79
+ ...
80
+
81
+ # file exampls:
82
+ Please visit https://github.com/mddod/mdod, or https://mddod.github.io/
83
+
84
+
@@ -1,17 +1,19 @@
1
1
  from setuptools import setup, find_packages
2
2
 
3
+ with open("README.md", "r", encoding="utf-8") as fh:
4
+ long_description = fh.read()
5
+
3
6
  setup(
4
7
  name="mdod",
5
- version="1.0.2",
8
+ version="1.0.9",
6
9
  packages=find_packages(),
7
10
  package_data={"": ["*"]},
8
- install_requires=[
9
- '',
10
- ],
11
+ install_requires=[],
11
12
  author="Z Shen",
12
13
  author_email="626456708@qq.com",
13
14
  description="MDOD, Multi-Dimensional data Outlier Detection",
14
- long_description="Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm. For details please read README.md , visit https://github.com/mddod/mdod, or https://mddod.github.io/",
15
+ long_description=long_description,
16
+ long_description_content_type="text/markdown",
15
17
  license="BSD 3-Clause License",
16
18
  url="https://github.com/mddod/mdod",
17
19
  classifiers=[
mdod-1.0.2/PKG-INFO DELETED
@@ -1,17 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: mdod
3
- Version: 1.0.2
4
- Summary: MDOD, Multi-Dimensional data Outlier Detection
5
- Home-page: https://github.com/mddod/mdod
6
- Author: Z Shen
7
- Author-email: 626456708@qq.com
8
- License: BSD 3-Clause License
9
- Platform: UNKNOWN
10
- Classifier: Development Status :: 5 - Production/Stable
11
- Classifier: Intended Audience :: Developers
12
- Classifier: Programming Language :: Python
13
- Classifier: Programming Language :: Python :: 3
14
- License-File: LICENSE.txt
15
-
16
- Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm. For details please read README.md , visit https://github.com/mddod/mdod, or https://mddod.github.io/
17
-
@@ -1,17 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: mdod
3
- Version: 1.0.2
4
- Summary: MDOD, Multi-Dimensional data Outlier Detection
5
- Home-page: https://github.com/mddod/mdod
6
- Author: Z Shen
7
- Author-email: 626456708@qq.com
8
- License: BSD 3-Clause License
9
- Platform: UNKNOWN
10
- Classifier: Development Status :: 5 - Production/Stable
11
- Classifier: Intended Audience :: Developers
12
- Classifier: Programming Language :: Python
13
- Classifier: Programming Language :: Python :: 3
14
- License-File: LICENSE.txt
15
-
16
- Python library for Multi-Dimensional data Outlier/Anomaly Detection algorithm. For details please read README.md , visit https://github.com/mddod/mdod, or https://mddod.github.io/
17
-
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes