mdbq 4.1.10__tar.gz → 4.1.12__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (46) hide show
  1. {mdbq-4.1.10 → mdbq-4.1.12}/PKG-INFO +2 -2
  2. mdbq-4.1.12/mdbq/__version__.py +1 -0
  3. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/mysql/uploader.py +281 -30
  4. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq.egg-info/PKG-INFO +2 -2
  5. mdbq-4.1.10/mdbq/__version__.py +0 -1
  6. {mdbq-4.1.10 → mdbq-4.1.12}/README.txt +0 -0
  7. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/__init__.py +0 -0
  8. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/auth/__init__.py +0 -0
  9. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/auth/auth_backend.py +0 -0
  10. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/auth/crypto.py +0 -0
  11. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/auth/rate_limiter.py +0 -0
  12. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/js/__init__.py +0 -0
  13. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/js/jc.py +0 -0
  14. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/log/__init__.py +0 -0
  15. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/log/mylogger.py +0 -0
  16. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/myconf/__init__.py +0 -0
  17. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/myconf/myconf.py +0 -0
  18. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/mysql/__init__.py +0 -0
  19. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/mysql/deduplicator.py +0 -0
  20. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/mysql/mysql.py +0 -0
  21. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/mysql/s_query.py +0 -0
  22. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/mysql/unique_.py +0 -0
  23. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/other/__init__.py +0 -0
  24. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/other/download_sku_picture.py +0 -0
  25. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/other/error_handler.py +0 -0
  26. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/other/otk.py +0 -0
  27. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/other/pov_city.py +0 -0
  28. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/other/ua_sj.py +0 -0
  29. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/pbix/__init__.py +0 -0
  30. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/pbix/pbix_refresh.py +0 -0
  31. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/pbix/refresh_all.py +0 -0
  32. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/redis/__init__.py +0 -0
  33. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/redis/getredis.py +0 -0
  34. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/redis/redis_cache.py +0 -0
  35. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/route/__init__.py +0 -0
  36. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/route/analytics.py +0 -0
  37. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/route/monitor.py +0 -0
  38. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/route/routes.py +0 -0
  39. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/selenium/__init__.py +0 -0
  40. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/selenium/get_driver.py +0 -0
  41. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq/spider/__init__.py +0 -0
  42. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq.egg-info/SOURCES.txt +0 -0
  43. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq.egg-info/dependency_links.txt +0 -0
  44. {mdbq-4.1.10 → mdbq-4.1.12}/mdbq.egg-info/top_level.txt +0 -0
  45. {mdbq-4.1.10 → mdbq-4.1.12}/setup.cfg +0 -0
  46. {mdbq-4.1.10 → mdbq-4.1.12}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: mdbq
3
- Version: 4.1.10
3
+ Version: 4.1.12
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -0,0 +1 @@
1
+ VERSION = '4.1.12'
@@ -111,6 +111,7 @@ class MySQLUploader:
111
111
  :param read_timeout: 读取超时(秒),默认为30
112
112
  :param write_timeout: 写入超时(秒),默认为30
113
113
  :param ssl: SSL配置字典,默认为None
114
+ :param auto_creat_missing_cols: 自动添加缺失列,默认为False,建议手动维护表结构
114
115
  """
115
116
  self.username = username
116
117
  self.password = password
@@ -134,6 +135,7 @@ class MySQLUploader:
134
135
  self._table_metadata_cache = {}
135
136
  self.metadata_cache_ttl = 300 # 5分钟缓存时间
136
137
  self.pool = self._create_connection_pool() # 创建连接池
138
+ self.auto_creat_missing_cols = False # 自动添加缺失列,正常不要自动添加,建议手动维护表结构
137
139
 
138
140
  def _create_connection_pool(self) -> PooledDB:
139
141
  """
@@ -695,15 +697,16 @@ class MySQLUploader:
695
697
  break
696
698
 
697
699
  if not allow_null:
698
- logger.warning("该列不允许为空值", {
699
- "": db_name,
700
- "": table_name,
701
- "allow_null": allow_null,
702
- "": col_name,
703
- "": original_value,
704
- "兜底值": fallback
705
- })
706
- return fallback # 直接返回兜底值,而不是抛出异常
700
+ # 注释掉,这里可能会产生大量日志
701
+ # logger.debug("该列不允许为空值", {
702
+ # "": db_name,
703
+ # "": table_name,
704
+ # "allow_null": allow_null,
705
+ # "": col_name,
706
+ # "": original_value,
707
+ # "兜底值": fallback
708
+ # })
709
+ return fallback # 直接返回兜底值
707
710
 
708
711
  return None # 允许空值时返回None
709
712
 
@@ -799,7 +802,13 @@ class MySQLUploader:
799
802
 
800
803
  # 统一处理空值
801
804
  if is_empty_value:
802
- return self._get_fallback_value(column_type_lower, allow_null, db_name, table_name, col_name, value)
805
+ fallback_value = self._get_fallback_value(column_type_lower, allow_null, db_name, table_name, col_name, value)
806
+ # 如果返回了兜底值(非None),直接返回,不再进行后续验证
807
+ # 因为兜底值已经是根据列类型设计的合适值
808
+ if fallback_value is not None:
809
+ return fallback_value
810
+ # 如果返回None(允许空值的情况),继续后续处理
811
+ return None
803
812
 
804
813
  # JSON类型验证和转换
805
814
  if 'json' in column_type_lower:
@@ -1072,14 +1081,41 @@ class MySQLUploader:
1072
1081
  '列': self._shorten_for_log(table_columns),
1073
1082
  })
1074
1083
  raise ValueError(f"获取列失败 `{db_name}`.`{table_name}`")
1075
- for col in set_typ:
1076
- if col not in table_columns:
1077
- logger.error('列不存在', {
1084
+ # 检查并自动添加缺失的列
1085
+ missing_columns = [col for col in set_typ if col not in table_columns]
1086
+ if missing_columns:
1087
+ if not self.auto_creat_missing_cols:
1088
+ logger.error('列不存在且不支持自动添加,请手动维护表结构,并补齐缺失列', {
1078
1089
  '库': db_name,
1079
1090
  '表': table_name,
1080
- '': col,
1091
+ '缺失列数': len(missing_columns),
1092
+ '缺失列': missing_columns,
1081
1093
  })
1082
- raise ValueError(f"列不存在: `{col}` -> `{db_name}`.`{table_name}`")
1094
+ raise ValueError(f"列不存在: `{missing_columns}` -> `{db_name}`.`{table_name}`")
1095
+ else:
1096
+ # 表有缺失列时报错,建议不允许自动添加,手动检查数据一致性,以免产生不必要的表错误
1097
+ # 自动添加缺失的列
1098
+ for col in missing_columns:
1099
+ try:
1100
+ self._add_column_to_table(db_name, table_name, col, set_typ[col], allow_null)
1101
+ logger.info('自动添加缺失列', {
1102
+ '库': db_name,
1103
+ '表': table_name,
1104
+ '列': col,
1105
+ '类型': set_typ[col]
1106
+ })
1107
+ except Exception as e:
1108
+ logger.error('添加列失败', {
1109
+ '库': db_name,
1110
+ '表': table_name,
1111
+ '列': col,
1112
+ '类型': set_typ[col],
1113
+ '错误': str(e)
1114
+ })
1115
+ raise ValueError(f"添加列失败: `{col}` -> `{db_name}`.`{table_name}`: {str(e)}")
1116
+
1117
+ # 重新获取表列信息
1118
+ table_columns = self._get_table_columns(db_name, table_name)
1083
1119
  if date_column and date_column in table_columns:
1084
1120
  try:
1085
1121
  self._ensure_index(db_name, table_name, date_column)
@@ -1183,12 +1219,17 @@ class MySQLUploader:
1183
1219
  set_typ: Dict[str, str],
1184
1220
  allow_null: bool = False,
1185
1221
  db_name: str = None,
1186
- table_name: str = None,
1222
+ table_name: str = None,
1223
+ auto_timestamps: bool = False
1187
1224
  ) -> Tuple[List[Dict], Dict[str, str]]:
1188
1225
  """
1189
1226
  准备要上传的数据,验证并转换数据类型
1190
1227
  根据set_typ自动处理所有数据类型的列:补齐缺失的列并丢弃多余的列
1191
1228
  """
1229
+ # 处理自动时间戳功能
1230
+ if auto_timestamps:
1231
+ data, set_typ = self._process_auto_timestamps(data, set_typ, db_name, table_name)
1232
+
1192
1233
  # set_typ的键清洗
1193
1234
  if not set_typ:
1194
1235
  set_typ = {}
@@ -1300,21 +1341,67 @@ class MySQLUploader:
1300
1341
  prepared_row[col_name] = self._validate_value(None, filtered_set_typ[col_name], allow_null, db_name, table_name, col_name)
1301
1342
  except ValueError as e:
1302
1343
  if not allow_null:
1303
- error_msg = f"行号:{row_idx} -> 缺失列: `{col_name}`, 且不允许空值"
1304
- logger.error(error_msg, {'row': self._shorten_for_log(row)})
1305
- raise ValueError(error_msg)
1306
- prepared_row[col_name] = None
1344
+ # 如果不允许空值但验证失败,尝试使用兜底值
1345
+ try:
1346
+ fallback_value = self._get_fallback_value(filtered_set_typ[col_name].lower(), allow_null, db_name, table_name, col_name, None)
1347
+ if fallback_value is not None:
1348
+ prepared_row[col_name] = fallback_value
1349
+ logger.warning(f"行号:{row_idx} -> 缺失列: `{col_name}`, 使用兜底值: {fallback_value}", {'row': self._shorten_for_log(row)})
1350
+ else:
1351
+ error_msg = f"行号:{row_idx} -> 缺失列: `{col_name}`, 且不允许空值"
1352
+ logger.error(error_msg, {'row': self._shorten_for_log(row)})
1353
+ raise ValueError(error_msg)
1354
+ except Exception:
1355
+ error_msg = f"行号:{row_idx} -> 缺失列: `{col_name}`, 且不允许空值"
1356
+ logger.error(error_msg, {'row': self._shorten_for_log(row)})
1357
+ raise ValueError(error_msg)
1358
+ else:
1359
+ prepared_row[col_name] = None
1307
1360
  else:
1308
1361
  try:
1309
1362
  prepared_row[col_name] = self._validate_value(row[col_name], filtered_set_typ[col_name], allow_null, db_name, table_name, col_name)
1310
1363
  except ValueError as e:
1311
- logger.error('数据验证失败', {
1312
- '列': col_name,
1313
- '行': row_idx,
1314
- '报错': str(e),
1315
- 'row': self._shorten_for_log(row),
1316
- })
1317
- raise ValueError(f"行:{row_idx}, 列:`{col_name}`-> 报错: {str(e)}")
1364
+ # 如果数据验证失败,检查是否为空值且不允许空值,尝试使用兜底值
1365
+ original_value = row[col_name]
1366
+ is_empty_original = (original_value is None or
1367
+ original_value == '' or
1368
+ (not isinstance(original_value, (list, dict)) and
1369
+ pd.isna(original_value) if hasattr(pd, 'isna') else False))
1370
+
1371
+ if is_empty_original and not allow_null:
1372
+ try:
1373
+ fallback_value = self._get_fallback_value(filtered_set_typ[col_name].lower(), allow_null, db_name, table_name, col_name, original_value)
1374
+ if fallback_value is not None:
1375
+ prepared_row[col_name] = fallback_value
1376
+ logger.warning(f"行:{row_idx}, 列:`{col_name}` -> 原值验证失败,使用兜底值: {fallback_value}", {
1377
+ '原值': original_value,
1378
+ '兜底值': fallback_value,
1379
+ 'row': self._shorten_for_log(row)
1380
+ })
1381
+ else:
1382
+ logger.error('数据验证失败', {
1383
+ '列': col_name,
1384
+ '行': row_idx,
1385
+ '报错': str(e),
1386
+ 'row': self._shorten_for_log(row),
1387
+ })
1388
+ raise ValueError(f"行:{row_idx}, 列:`{col_name}`-> 报错: {str(e)}")
1389
+ except Exception:
1390
+ logger.error('数据验证失败', {
1391
+ '列': col_name,
1392
+ '行': row_idx,
1393
+ '报错': str(e),
1394
+ 'row': self._shorten_for_log(row),
1395
+ })
1396
+ raise ValueError(f"行:{row_idx}, 列:`{col_name}`-> 报错: {str(e)}")
1397
+ else:
1398
+ logger.error('数据验证失败', {
1399
+ '列': col_name,
1400
+ '行': row_idx,
1401
+ '报错': str(e),
1402
+ 'row': self._shorten_for_log(row),
1403
+ })
1404
+ raise ValueError(f"行:{row_idx}, 列:`{col_name}`-> 报错: {str(e)}")
1318
1405
  prepared_data.append(prepared_row)
1319
1406
  return prepared_data, filtered_set_typ
1320
1407
 
@@ -1334,7 +1421,8 @@ class MySQLUploader:
1334
1421
  indexes: Optional[List[str]] = None,
1335
1422
  update_on_duplicate: bool = False,
1336
1423
  transaction_mode: str = "batch",
1337
- unique_keys: Optional[List[List[str]]] = None
1424
+ unique_keys: Optional[List[List[str]]] = None,
1425
+ auto_timestamps: bool = False
1338
1426
  ):
1339
1427
  """
1340
1428
  上传数据到数据库的主入口方法
@@ -1357,6 +1445,7 @@ class MySQLUploader:
1357
1445
  - 'batch' : 整批提交事务(性能最优)
1358
1446
  - 'hybrid' : 混合模式(每N行提交,平衡性能与安全性)
1359
1447
  :param unique_keys: 唯一约束列表,每个元素为列名列表,支持多列组合唯一约束。格式:[['col1', 'col2'], ['col3']] 或 None
1448
+ :param auto_timestamps: 是否自动添加创建时间和更新时间列,默认为False。启用后会自动添加'创建时间'和'更新时间'两列
1360
1449
  :raises: 可能抛出各种验证和数据库相关异常
1361
1450
 
1362
1451
  ---
@@ -1401,6 +1490,17 @@ class MySQLUploader:
1401
1490
  - 只要 update_on_duplicate=True 且表存在唯一约束(如 unique_keys),无论 check_duplicate 是否为 True,都会更新旧数据(即 ON DUPLICATE KEY UPDATE 生效)。
1402
1491
  - 如需"覆盖"行为,务必设置 update_on_duplicate=True,不管 check_duplicate 是否为 True。
1403
1492
  - 如需"跳过"行为,设置 update_on_duplicate=False 即可。
1493
+
1494
+ ---
1495
+ auto_timestamps 参数:
1496
+
1497
+ - 当 auto_timestamps=True 时,系统会自动添加'创建时间'和'更新时间'两列
1498
+ - 如果原始数据中已存在这两列,系统会先移除原始数据中的这些列,然后添加新的时间戳
1499
+ - '创建时间':记录数据首次插入的时间,使用当前时间戳
1500
+ - '更新时间':记录数据最后更新的时间,插入时与创建时间相同,更新时会自动更新为当前时间
1501
+ - 时间戳列的数据类型为 DATETIME,格式为 'YYYY-MM-DD HH:MM:SS'
1502
+ - 这两列会自动添加到 set_typ 中,无需手动指定
1503
+ - 建议在需要审计数据变更历史的表中启用此功能
1404
1504
  """
1405
1505
  # upload_start = time.time()
1406
1506
  # 检查data参数是否为None
@@ -1410,7 +1510,7 @@ class MySQLUploader:
1410
1510
  '表': table_name,
1411
1511
  })
1412
1512
  raise ValueError("data参数不能为None,请传入有效的数据")
1413
-
1513
+
1414
1514
  if isinstance(data, list) or (hasattr(data, 'shape') and hasattr(data, '__len__')):
1415
1515
  initial_row_count = len(data)
1416
1516
  else:
@@ -1471,7 +1571,7 @@ class MySQLUploader:
1471
1571
  raise ValueError("分表方式必须是 'year' 或 'month' 或 'None'")
1472
1572
 
1473
1573
  # 准备数据
1474
- prepared_data, filtered_set_typ = self._prepare_data(data, set_typ, allow_null, db_name, table_name)
1574
+ prepared_data, filtered_set_typ = self._prepare_data(data, set_typ, allow_null, db_name, table_name, auto_timestamps)
1475
1575
 
1476
1576
  # 检查数据库是否存在
1477
1577
  if not self._check_database_exists(db_name):
@@ -2080,6 +2180,70 @@ class MySQLUploader:
2080
2180
  except Exception as e:
2081
2181
  logger.error('创建索引失败', {'库': db_name, '表': table_name, '列': column, '错误': str(e)})
2082
2182
  raise
2183
+
2184
+ @_execute_with_retry
2185
+ def _add_column_to_table(self, db_name: str, table_name: str, column: str, column_type: str, allow_null: bool = False):
2186
+ """
2187
+ 添加列到指定表。
2188
+
2189
+ :param db_name: 数据库名
2190
+ :param table_name: 表名
2191
+ :param column: 需要添加的列名
2192
+ :param column_type: 列的数据类型
2193
+ :param allow_null: 是否允许空值,默认为False
2194
+ """
2195
+ db_name = self._validate_identifier(db_name, is_database=True)
2196
+ table_name = self._validate_identifier(table_name)
2197
+ column = self._validate_identifier(column)
2198
+
2199
+ # 构建ALTER TABLE语句
2200
+ null_constraint = "NULL" if allow_null else "NOT NULL"
2201
+
2202
+ # 为新添加的列设置默认值
2203
+ default_value = ""
2204
+ if not allow_null:
2205
+ column_type_lower = column_type.lower()
2206
+ if any(t in column_type_lower for t in ['int', 'bigint', 'tinyint', 'smallint', 'mediumint']):
2207
+ default_value = " DEFAULT 0"
2208
+ elif any(t in column_type_lower for t in ['decimal', 'float', 'double']):
2209
+ default_value = " DEFAULT 0.0"
2210
+ elif any(t in column_type_lower for t in ['varchar', 'text', 'char', 'mediumtext', 'longtext']):
2211
+ default_value = " DEFAULT 'none'"
2212
+ elif 'date' in column_type_lower:
2213
+ if 'datetime' in column_type_lower or 'timestamp' in column_type_lower:
2214
+ default_value = " DEFAULT '1970-01-01 00:00:00'"
2215
+ else:
2216
+ default_value = " DEFAULT '1970-01-01'"
2217
+ elif 'json' in column_type_lower:
2218
+ default_value = " DEFAULT '{}'"
2219
+
2220
+ sql = f'ALTER TABLE `{db_name}`.`{table_name}` ADD COLUMN `{column}` {column_type} {null_constraint}{default_value}'
2221
+
2222
+ conn = None
2223
+ try:
2224
+ with self._get_connection() as conn:
2225
+ with conn.cursor() as cursor:
2226
+ cursor.execute(sql)
2227
+ conn.commit()
2228
+ logger.debug('已为表添加列', {
2229
+ '库': db_name,
2230
+ '表': table_name,
2231
+ '列': column,
2232
+ '类型': column_type,
2233
+ '允许空值': allow_null
2234
+ })
2235
+ except Exception as e:
2236
+ logger.error('添加列失败', {
2237
+ '库': db_name,
2238
+ '表': table_name,
2239
+ '列': column,
2240
+ '类型': column_type,
2241
+ '错误': str(e),
2242
+ 'SQL': sql
2243
+ })
2244
+ if conn is not None:
2245
+ conn.rollback()
2246
+ raise
2083
2247
 
2084
2248
  def __enter__(self):
2085
2249
  return self
@@ -2431,6 +2595,93 @@ class MySQLUploader:
2431
2595
 
2432
2596
  return result_df
2433
2597
 
2598
+ def _process_auto_timestamps(
2599
+ self,
2600
+ data: Union[Dict, List[Dict], pd.DataFrame],
2601
+ set_typ: Dict[str, str],
2602
+ db_name: str,
2603
+ table_name: str
2604
+ ) -> Tuple[Union[Dict, List[Dict], pd.DataFrame], Dict[str, str]]:
2605
+ """
2606
+ 处理自动时间戳功能
2607
+
2608
+ :param data: 原始数据
2609
+ :param set_typ: 列类型定义
2610
+ :param db_name: 数据库名
2611
+ :param table_name: 表名
2612
+ :return: 处理后的数据和更新后的set_typ
2613
+ """
2614
+
2615
+ # 定义时间戳列名
2616
+ created_col = '创建时间'
2617
+ updated_col = '更新时间'
2618
+ current_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
2619
+
2620
+ # 复制set_typ以避免修改原始对象
2621
+ updated_set_typ = set_typ.copy()
2622
+
2623
+ # 添加时间戳列到set_typ
2624
+ updated_set_typ[created_col] = 'DATETIME'
2625
+ updated_set_typ[updated_col] = 'DATETIME'
2626
+
2627
+ # 处理DataFrame格式的数据
2628
+ if hasattr(data, 'shape') and hasattr(data, 'columns'):
2629
+ import pandas as pd
2630
+ df = data.copy()
2631
+
2632
+ # 移除原始数据中可能存在的时间戳列
2633
+ columns_to_remove = []
2634
+ for col in df.columns:
2635
+ if col in [created_col, updated_col]:
2636
+ columns_to_remove.append(col)
2637
+ logger.warning('移除原始数据中的时间戳列', {
2638
+ '库': db_name,
2639
+ '表': table_name,
2640
+ '列': col,
2641
+ '原因': '与自动时间戳功能冲突'
2642
+ })
2643
+
2644
+ if columns_to_remove:
2645
+ df = df.drop(columns=columns_to_remove)
2646
+
2647
+ # 添加时间戳列
2648
+ df[created_col] = current_time
2649
+ df[updated_col] = current_time
2650
+
2651
+ return df, updated_set_typ
2652
+
2653
+ # 处理字典或字典列表格式的数据
2654
+ else:
2655
+ # 确保data是列表格式
2656
+ if isinstance(data, dict):
2657
+ data_list = [data]
2658
+ is_single_dict = True
2659
+ else:
2660
+ data_list = data
2661
+ is_single_dict = False
2662
+
2663
+ # 处理每一行数据
2664
+ processed_data = []
2665
+ for row in data_list:
2666
+ new_row = {}
2667
+
2668
+ # 复制原始数据,但跳过可能存在的时间戳列
2669
+ for key, value in row.items():
2670
+ if key not in [created_col, updated_col]:
2671
+ new_row[key] = value
2672
+
2673
+ # 添加时间戳
2674
+ new_row[created_col] = current_time
2675
+ new_row[updated_col] = current_time
2676
+
2677
+ processed_data.append(new_row)
2678
+
2679
+ # 如果原始数据是单个字典,返回单个字典
2680
+ if is_single_dict:
2681
+ return processed_data[0], updated_set_typ
2682
+ else:
2683
+ return processed_data, updated_set_typ
2684
+
2434
2685
 
2435
2686
  def main():
2436
2687
  dir_path = os.path.expanduser("~")
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: mdbq
3
- Version: 4.1.10
3
+ Version: 4.1.12
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -1 +0,0 @@
1
- VERSION = '4.1.10'
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes