mdbq 3.2.10__tar.gz → 3.2.12__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. {mdbq-3.2.10 → mdbq-3.2.12}/PKG-INFO +1 -1
  2. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/aggregation/aggregation.py +113 -18
  3. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/aggregation/query_data.py +31 -32
  4. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/mysql/mysql.py +365 -80
  5. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq.egg-info/PKG-INFO +1 -1
  6. {mdbq-3.2.10 → mdbq-3.2.12}/setup.py +1 -1
  7. {mdbq-3.2.10 → mdbq-3.2.12}/README.txt +0 -0
  8. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/__init__.py +0 -0
  9. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/__version__.py +0 -0
  10. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/aggregation/__init__.py +0 -0
  11. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/aggregation/df_types.py +0 -0
  12. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/aggregation/mysql_types.py +0 -0
  13. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/aggregation/optimize_data.py +0 -0
  14. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/aggregation/query_data_bak.py +0 -0
  15. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/aggregation/query_data_bak20241124.py +0 -0
  16. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/bdup/__init__.py +0 -0
  17. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/bdup/bdup.py +0 -0
  18. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/clean/__init__.py +0 -0
  19. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/clean/clean_upload.py +0 -0
  20. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/clean/data_clean.py +0 -0
  21. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/company/__init__.py +0 -0
  22. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/company/copysh.py +0 -0
  23. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/config/__init__.py +0 -0
  24. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/config/get_myconf.py +0 -0
  25. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/config/myconfig.py +0 -0
  26. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/config/products.py +0 -0
  27. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/config/set_support.py +0 -0
  28. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/config/update_conf.py +0 -0
  29. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/dataframe/__init__.py +0 -0
  30. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/dataframe/converter.py +0 -0
  31. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/log/__init__.py +0 -0
  32. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/log/mylogger.py +0 -0
  33. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/mongo/__init__.py +0 -0
  34. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/mongo/mongo.py +0 -0
  35. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/mysql/__init__.py +0 -0
  36. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/mysql/recheck_mysql.py +0 -0
  37. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/mysql/s_query.py +0 -0
  38. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/mysql/year_month_day.py +0 -0
  39. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/other/__init__.py +0 -0
  40. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/other/download_sku_picture.py +0 -0
  41. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/other/porxy.py +0 -0
  42. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/other/pov_city.py +0 -0
  43. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/other/sku_picture.py +0 -0
  44. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/other/ua_sj.py +0 -0
  45. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/pbix/__init__.py +0 -0
  46. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/pbix/pbix_refresh.py +0 -0
  47. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/pbix/refresh_all.py +0 -0
  48. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/pbix/refresh_all_old.py +0 -0
  49. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/req_post/__init__.py +0 -0
  50. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/req_post/req_tb.py +0 -0
  51. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/spider/__init__.py +0 -0
  52. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq/spider/aikucun.py +0 -0
  53. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq.egg-info/SOURCES.txt +0 -0
  54. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq.egg-info/dependency_links.txt +0 -0
  55. {mdbq-3.2.10 → mdbq-3.2.12}/mdbq.egg-info/top_level.txt +0 -0
  56. {mdbq-3.2.10 → mdbq-3.2.12}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.2.10
3
+ Version: 3.2.12
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -52,6 +52,16 @@ if not username:
52
52
  print(f'找不到主机:')
53
53
 
54
54
 
55
+ def get_encoding(path):
56
+ """
57
+ 获取文件的编码方式, 读取速度比较慢,非必要不要使用
58
+ """
59
+ with open(path, 'rb') as f:
60
+ f1 = f.read()
61
+ encod = chardet.detect(f1).get('encoding')
62
+ return encod
63
+
64
+
55
65
  class DatabaseUpdateBak:
56
66
  """
57
67
  清洗文件,并入库,被 tg.py 调用
@@ -1236,20 +1246,22 @@ def one_file_to_mysql(file, db_name, table_name):
1236
1246
  if file.endswith('.xlsx'):
1237
1247
  df = pd.read_excel(file)
1238
1248
  else:
1239
- df = pd.read_csv(file, encoding='utf-8_sig', header=0, na_filter=False, float_precision='high')
1249
+ encod = get_encoding(file)
1250
+ df = pd.read_csv(file, encoding=encod, header=0, na_filter=False, float_precision='high')
1240
1251
  # df.replace(to_replace=[','], value='', regex=True, inplace=True) # 替换掉特殊字符
1241
1252
  m = mysql.MysqlUpload(username=username, password=password, host=host, port=port)
1253
+ # df.pop('id')
1242
1254
  m.df_to_mysql(
1243
1255
  df=df,
1244
1256
  db_name=db_name,
1245
1257
  table_name=table_name,
1246
1258
  # icm_update=['sku_id'], # 增量更新, 在聚合数据中使用,其他不要用
1247
- move_insert=False, # 先删除,再插入
1259
+ move_insert=True, # 先删除,再插入
1248
1260
  df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1249
1261
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1250
1262
  count=None,
1251
1263
  filename=None, # 用来追踪处理进度
1252
- # reset_id=False, # 是否重置自增列
1264
+ reset_id=True, # 是否重置自增列
1253
1265
  # set_typ=set_typ,
1254
1266
  )
1255
1267
 
@@ -1312,32 +1324,115 @@ def cut_as_year_month(as_month=False):
1312
1324
  df.to_csv(os.path.join(root, new_name), encoding='utf-8_sig', index=False, header=True)
1313
1325
 
1314
1326
 
1327
+ def doc_to_sql(write_data=False, read_data=False):
1328
+ if not write_data and not read_data:
1329
+ return
1330
+ # filename = '关于做好2024年世界互联网大会乌镇峰会期间寄递渠道安全保障工作的通知.pdf'
1331
+ path = '/Users/xigua/数据中心/微信pdf文件/2024-10'
1332
+
1333
+ if not os.path.isdir(path):
1334
+ print(f'不存在的文件夹: {path}')
1335
+ return
1336
+ m_engine = mysql.MysqlUpload(
1337
+ username=username,
1338
+ password=password,
1339
+ host=host,
1340
+ port=port,
1341
+ charset='utf8mb4'
1342
+ )
1343
+ if write_data:
1344
+ for root, dirs, files in os.walk(path, topdown=False):
1345
+ for name in files:
1346
+ if '~$' in name or '.DS' in name or '.localized' in name or 'baidu' in name:
1347
+ continue
1348
+ if name.endswith('.pdf') or name.endswith('.pptx'):
1349
+ file_size = os.stat(os.path.join(root, name)).st_size
1350
+ if file_size > 1024 * 1024 * 1024:
1351
+ file_size = file_size / 1024 / 1024 / 1024
1352
+ file_size = f'{file_size:.2f} GB'
1353
+ elif file_size > 1024 * 1024:
1354
+ file_size = file_size / 1024 / 1024
1355
+ file_size = f'{file_size:.2f} MB'
1356
+ else:
1357
+ file_size = file_size / 1024
1358
+ file_size = f'{file_size:.2f} KB'
1359
+ mod_time = os.path.getmtime(os.path.join(root, name))
1360
+ local_time = time.localtime(mod_time)
1361
+ mod_time_formatted = time.strftime('%Y-%m-%d %H:%M:%S', local_time)
1362
+
1363
+ # 读取PDF文件为二进制数据
1364
+ with open(os.path.join(path, name), 'rb') as file:
1365
+ pdf_data = file.read()
1366
+ dict_data = {
1367
+ '日期': datetime.datetime.today().strftime('%Y-%m-%d'),
1368
+ '数据来源': '微信',
1369
+ '文件名称': name,
1370
+ '文件大小': file_size,
1371
+ '修改时间': mod_time_formatted,
1372
+ '数据主体': pdf_data,
1373
+ '扩展名': os.path.splitext(name)[-1],
1374
+ '更新时间': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
1375
+ }
1376
+ set_typ = {
1377
+ '日期': 'date',
1378
+ '数据来源': 'varchar(100)',
1379
+ '文件名称': 'varchar(255)',
1380
+ '文件大小': 'varchar(20)',
1381
+ '修改时间': 'timestamp',
1382
+ '数据主体': 'longblob',
1383
+ '扩展名': 'varchar(50)',
1384
+ '更新时间': 'timestamp',
1385
+ }
1386
+ m_engine.doc_to_sql(
1387
+ db_name='pdf文件',
1388
+ table_name='微信pdf文件',
1389
+ remove_by_key=['文件名称'],
1390
+ dict_data=dict_data,
1391
+ set_typ=set_typ,
1392
+ allow_not_null=False,
1393
+ filename=name,
1394
+ reset_id=True,
1395
+ )
1396
+ if read_data:
1397
+ filename=''
1398
+ save_path = '/Users/xigua/Downloads'
1399
+ m_engine.read_doc_data(
1400
+ db_name='pdf文件',
1401
+ table_name='微信pdf文件',
1402
+ column='文件名称',
1403
+ filename=filename,
1404
+ save_path=save_path,
1405
+ )
1406
+
1315
1407
  if __name__ == '__main__':
1408
+ doc_to_sql(
1409
+ write_data=True,
1410
+ read_data=False,
1411
+ )
1316
1412
  # cut_as_year_month(as_month=False)
1317
1413
 
1318
1414
  # username = 'root'
1319
1415
  # password = ''
1320
1416
  # host = ''
1321
1417
  # port = ''
1322
- #
1418
+
1323
1419
  # # 上传 1 个文件到数据库
1324
1420
  # one_file_to_mysql(
1325
- # file=r'/Users/xigua/Downloads/城市等级.csv',
1326
- # db_name='属性设置3',
1327
- # table_name='城市等级',
1421
+ # file=r'/Users/xigua/Downloads/日期表.csv',
1422
+ # db_name='聚合数据test',
1423
+ # table_name='日期表',
1328
1424
  # )
1329
1425
 
1330
1426
 
1331
- col = 1
1332
- if col:
1333
- # 上传一个目录到指定数据库
1334
- db_name = '爱库存2'
1335
- table_name = '商品spu榜单'
1336
- upload_dir(
1337
- path=r'/Users/xigua/Downloads/数据上传中心',
1338
- db_name=db_name,
1339
- collection_name=table_name,
1340
- )
1341
-
1427
+ # col = 1
1428
+ # if col:
1429
+ # # 上传一个目录到指定数据库
1430
+ # db_name = '爱库存2'
1431
+ # table_name = '商品spu榜单'
1432
+ # upload_dir(
1433
+ # path=r'/Users/xigua/Downloads/数据上传中心',
1434
+ # db_name=db_name,
1435
+ # collection_name=table_name,
1436
+ # )
1342
1437
 
1343
1438
 
@@ -59,6 +59,7 @@ class MysqlDatasQuery:
59
59
  self.update_service = True # 调试时加,true: 将数据写入 mysql 服务器
60
60
  self.pf_datas = []
61
61
  self.pf_datas_jd = [] # 京东聚合销售表
62
+ self.output = set_support.SetSupport(dirname='support')
62
63
 
63
64
  @staticmethod
64
65
  def try_except(func): # 在类内部定义一个异常处理方法
@@ -196,9 +197,8 @@ class MysqlDatasQuery:
196
197
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
197
198
  count=None,
198
199
  filename=None, # 用来追踪处理进度
199
- reset_id=False, # 是否重置自增列
200
+ reset_id=True, # 是否重置自增列
200
201
  set_typ=set_typ,
201
-
202
202
  )
203
203
 
204
204
  # df_pic:商品排序索引表, 给 powerbi 中的主推款排序用的,(从上月1号到今天的总花费进行排序)
@@ -337,7 +337,7 @@ class MysqlDatasQuery:
337
337
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
338
338
  count=None,
339
339
  filename=None, # 用来追踪处理进度
340
- reset_id=False, # 是否重置自增列
340
+ reset_id=True, # 是否重置自增列
341
341
  set_typ=set_typ,
342
342
  )
343
343
  return True
@@ -477,7 +477,7 @@ class MysqlDatasQuery:
477
477
  df['人群分类'].fillna('', inplace=True)
478
478
  if '人群分类' in df.columns.tolist():
479
479
  # 这行决定了,从文件中读取的分类信息优先级高于内部函数的分类规则
480
- # 这个 lambda 适配人群名字中带有特定标识的分类,强匹配
480
+ # 这个 lambda 适配人群名字中带有特定标识的分类,强匹配,自定义命名
481
481
  df['人群分类'] = df.apply(
482
482
  lambda x: self.set_crowd(keyword=str(x['人群名字']), as_file=False) if x['人群分类'] == ''
483
483
  else x['人群分类'], axis=1
@@ -527,7 +527,7 @@ class MysqlDatasQuery:
527
527
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
528
528
  count=None,
529
529
  filename=None, # 用来追踪处理进度
530
- reset_id=False, # 是否重置自增列
530
+ reset_id=True, # 是否重置自增列
531
531
  set_typ=set_typ,
532
532
  )
533
533
  return True
@@ -663,7 +663,7 @@ class MysqlDatasQuery:
663
663
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
664
664
  count=None,
665
665
  filename=None, # 用来追踪处理进度
666
- reset_id=False, # 是否重置自增列
666
+ reset_id=True, # 是否重置自增列
667
667
  set_typ=set_typ,
668
668
  )
669
669
  return True
@@ -787,7 +787,7 @@ class MysqlDatasQuery:
787
787
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
788
788
  count=None,
789
789
  filename=None, # 用来追踪处理进度
790
- reset_id=False, # 是否重置自增列
790
+ reset_id=True, # 是否重置自增列
791
791
  set_typ=set_typ,
792
792
  )
793
793
  return True
@@ -900,7 +900,7 @@ class MysqlDatasQuery:
900
900
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
901
901
  count=None,
902
902
  filename=None, # 用来追踪处理进度
903
- reset_id=False, # 是否重置自增列
903
+ reset_id=True, # 是否重置自增列
904
904
  set_typ=set_typ,
905
905
  )
906
906
  return True
@@ -957,7 +957,7 @@ class MysqlDatasQuery:
957
957
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
958
958
  count=None,
959
959
  filename=None, # 用来追踪处理进度
960
- reset_id=False, # 是否重置自增列
960
+ reset_id=True, # 是否重置自增列
961
961
  set_typ=set_typ,
962
962
  )
963
963
  return True
@@ -1016,7 +1016,6 @@ class MysqlDatasQuery:
1016
1016
  filename=None, # 用来追踪处理进度
1017
1017
  reset_id=False, # 是否重置自增列
1018
1018
  set_typ=set_typ,
1019
-
1020
1019
  )
1021
1020
  return True
1022
1021
 
@@ -1123,7 +1122,7 @@ class MysqlDatasQuery:
1123
1122
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1124
1123
  count=None,
1125
1124
  filename=None, # 用来追踪处理进度
1126
- reset_id=False, # 是否重置自增列
1125
+ reset_id=True, # 是否重置自增列
1127
1126
  set_typ=set_typ,
1128
1127
  )
1129
1128
  return True
@@ -1172,7 +1171,6 @@ class MysqlDatasQuery:
1172
1171
  filename=None, # 用来追踪处理进度
1173
1172
  reset_id=False, # 是否重置自增列
1174
1173
  set_typ=set_typ,
1175
-
1176
1174
  )
1177
1175
  return True
1178
1176
 
@@ -1276,7 +1274,7 @@ class MysqlDatasQuery:
1276
1274
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1277
1275
  count=None,
1278
1276
  filename=None, # 用来追踪处理进度
1279
- reset_id=False, # 是否重置自增列
1277
+ reset_id=True, # 是否重置自增列
1280
1278
  set_typ=set_typ,
1281
1279
 
1282
1280
  )
@@ -1311,7 +1309,7 @@ class MysqlDatasQuery:
1311
1309
  # drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1312
1310
  # count=None,
1313
1311
  # filename=None, # 用来追踪处理进度
1314
- # reset_id=False, # 是否重置自增列
1312
+ # reset_id=True, # 是否重置自增列
1315
1313
  # set_typ=set_typ,
1316
1314
  #
1317
1315
  # )
@@ -1380,7 +1378,7 @@ class MysqlDatasQuery:
1380
1378
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1381
1379
  count=None,
1382
1380
  filename=None, # 用来追踪处理进度
1383
- reset_id=False, # 是否重置自增列
1381
+ reset_id=True, # 是否重置自增列
1384
1382
  set_typ=set_typ,
1385
1383
 
1386
1384
  )
@@ -1482,7 +1480,7 @@ class MysqlDatasQuery:
1482
1480
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1483
1481
  count=None,
1484
1482
  filename=None, # 用来追踪处理进度
1485
- reset_id=False, # 是否重置自增列
1483
+ reset_id=True, # 是否重置自增列
1486
1484
  set_typ=set_typ,
1487
1485
 
1488
1486
  )
@@ -1557,7 +1555,7 @@ class MysqlDatasQuery:
1557
1555
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1558
1556
  count=None,
1559
1557
  filename=None, # 用来追踪处理进度
1560
- reset_id=False, # 是否重置自增列
1558
+ reset_id=True, # 是否重置自增列
1561
1559
  set_typ=set_typ,
1562
1560
  )
1563
1561
  return True
@@ -1623,7 +1621,7 @@ class MysqlDatasQuery:
1623
1621
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1624
1622
  count=None,
1625
1623
  filename=None, # 用来追踪处理进度
1626
- reset_id=False, # 是否重置自增列
1624
+ reset_id=True, # 是否重置自增列
1627
1625
  set_typ=set_typ,
1628
1626
 
1629
1627
  )
@@ -1707,9 +1705,8 @@ class MysqlDatasQuery:
1707
1705
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1708
1706
  count=None,
1709
1707
  filename=None, # 用来追踪处理进度
1710
- reset_id=False, # 是否重置自增列
1708
+ reset_id=True, # 是否重置自增列
1711
1709
  set_typ=set_typ,
1712
-
1713
1710
  )
1714
1711
  return True
1715
1712
 
@@ -1898,6 +1895,7 @@ class MysqlDatasQuery:
1898
1895
  start_date, end_date = self.months_data(num=self.months)
1899
1896
  projection = {
1900
1897
  '日期': 1,
1898
+ '场景id': 1,
1901
1899
  '场景名字': 1,
1902
1900
  '花费': 1,
1903
1901
  '展现量': 1,
@@ -1921,10 +1919,10 @@ class MysqlDatasQuery:
1921
1919
  if len(df_tm) > 0:
1922
1920
  df_tm.rename(columns={'场景名字': '营销场景'}, inplace=True)
1923
1921
  df_tm = df_tm.groupby(
1924
- ['日期', '店铺名称', '营销场景', '花费'],
1922
+ ['日期', '店铺名称', '场景id', '营销场景', '花费', '展现量'],
1925
1923
  as_index=False).agg(
1926
1924
  **{
1927
- '展现量': ('展现量', np.max),
1925
+ # '展现量': ('展现量', np.max),
1928
1926
  '点击量': ('点击量', np.max),
1929
1927
  '加购量': ('总购物车数', np.max),
1930
1928
  '成交笔数': ('总成交笔数', np.max),
@@ -1945,10 +1943,10 @@ class MysqlDatasQuery:
1945
1943
  if len(df_tb) > 0:
1946
1944
  df_tb.rename(columns={'场景名字': '营销场景'}, inplace=True)
1947
1945
  df_tb = df_tb.groupby(
1948
- ['日期', '店铺名称', '营销场景', '花费'],
1946
+ ['日期', '店铺名称', '场景id', '营销场景', '花费', '展现量'],
1949
1947
  as_index=False).agg(
1950
1948
  **{
1951
- '展现量': ('展现量', np.max),
1949
+ # '展现量': ('展现量', np.max),
1952
1950
  '点击量': ('点击量', np.max),
1953
1951
  '加购量': ('总购物车数', np.max),
1954
1952
  '成交笔数': ('总成交笔数', np.max),
@@ -2207,7 +2205,7 @@ class MysqlDatasQuery:
2207
2205
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2208
2206
  count=None,
2209
2207
  filename=None, # 用来追踪处理进度
2210
- reset_id=False, # 是否重置自增列
2208
+ reset_id=True, # 是否重置自增列
2211
2209
  set_typ=set_typ,
2212
2210
 
2213
2211
  )
@@ -2324,7 +2322,7 @@ class MysqlDatasQuery:
2324
2322
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2325
2323
  count=None,
2326
2324
  filename=None, # 用来追踪处理进度
2327
- reset_id=False, # 是否重置自增列
2325
+ reset_id=True, # 是否重置自增列
2328
2326
  set_typ=set_typ,
2329
2327
 
2330
2328
  )
@@ -2377,7 +2375,7 @@ class MysqlDatasQuery:
2377
2375
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2378
2376
  count=None,
2379
2377
  filename=None, # 用来追踪处理进度
2380
- reset_id=False, # 是否重置自增列
2378
+ reset_id=True, # 是否重置自增列
2381
2379
  set_typ=set_typ,
2382
2380
 
2383
2381
  )
@@ -2490,7 +2488,7 @@ class MysqlDatasQuery:
2490
2488
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2491
2489
  count=None,
2492
2490
  filename=None, # 用来追踪处理进度
2493
- reset_id=False, # 是否重置自增列
2491
+ reset_id=True, # 是否重置自增列
2494
2492
  set_typ=set_typ,
2495
2493
  )
2496
2494
  return True
@@ -2739,6 +2737,7 @@ class MysqlDatasQuery:
2739
2737
  '机会',
2740
2738
  '推荐',
2741
2739
  '智能定向',
2740
+ 'AI',
2742
2741
  ]
2743
2742
  },
2744
2743
  {
@@ -2900,7 +2899,7 @@ class MysqlDatasQuery:
2900
2899
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
2901
2900
  count=None,
2902
2901
  filename=None, # 用来追踪处理进度
2903
- reset_id=False, # 是否重置自增列
2902
+ reset_id=True, # 是否重置自增列
2904
2903
  set_typ=set_typ,
2905
2904
  )
2906
2905
  return True
@@ -3010,7 +3009,7 @@ class MysqlDatasQuery:
3010
3009
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3011
3010
  count=None,
3012
3011
  filename=None, # 用来追踪处理进度
3013
- reset_id=False, # 是否重置自增列
3012
+ reset_id=True, # 是否重置自增列
3014
3013
  set_typ=set_typ,
3015
3014
  )
3016
3015
  return True
@@ -3081,7 +3080,7 @@ class MysqlDatasQuery:
3081
3080
  drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
3082
3081
  count=None,
3083
3082
  filename=None, # 用来追踪处理进度
3084
- reset_id=False, # 是否重置自增列
3083
+ reset_id=True, # 是否重置自增列
3085
3084
  set_typ=set_typ,
3086
3085
  )
3087
3086
  return True
@@ -3310,7 +3309,7 @@ if __name__ == '__main__':
3310
3309
  # future_to_function = {
3311
3310
  # executor.submit(
3312
3311
  # func_query,
3313
- # months=3,
3312
+ # months=1,
3314
3313
  # less_dict=[],
3315
3314
  # ),
3316
3315
  # }