mdbq 3.0.5__tar.gz → 3.0.7__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. {mdbq-3.0.5 → mdbq-3.0.7}/PKG-INFO +1 -1
  2. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/aggregation/query_data.py +65 -79
  3. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/dataframe/converter.py +1 -1
  4. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq.egg-info/PKG-INFO +1 -1
  5. {mdbq-3.0.5 → mdbq-3.0.7}/setup.py +1 -1
  6. {mdbq-3.0.5 → mdbq-3.0.7}/README.txt +0 -0
  7. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/__init__.py +0 -0
  8. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/__version__.py +0 -0
  9. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/aggregation/__init__.py +0 -0
  10. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/aggregation/aggregation.py +0 -0
  11. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/aggregation/df_types.py +0 -0
  12. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/aggregation/mysql_types.py +0 -0
  13. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/aggregation/optimize_data.py +0 -0
  14. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/aggregation/query_data_bak.py +0 -0
  15. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/bdup/__init__.py +0 -0
  16. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/bdup/bdup.py +0 -0
  17. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/clean/__init__.py +0 -0
  18. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/clean/clean_upload.py +0 -0
  19. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/clean/data_clean.py +0 -0
  20. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/company/__init__.py +0 -0
  21. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/company/copysh.py +0 -0
  22. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/config/__init__.py +0 -0
  23. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/config/get_myconf.py +0 -0
  24. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/config/myconfig.py +0 -0
  25. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/config/products.py +0 -0
  26. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/config/set_support.py +0 -0
  27. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/config/update_conf.py +0 -0
  28. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/dataframe/__init__.py +0 -0
  29. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/log/__init__.py +0 -0
  30. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/log/mylogger.py +0 -0
  31. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/mongo/__init__.py +0 -0
  32. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/mongo/mongo.py +0 -0
  33. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/mysql/__init__.py +0 -0
  34. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/mysql/mysql.py +0 -0
  35. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/mysql/recheck_mysql.py +0 -0
  36. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/mysql/s_query.py +0 -0
  37. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/mysql/year_month_day.py +0 -0
  38. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/other/__init__.py +0 -0
  39. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/other/porxy.py +0 -0
  40. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/other/pov_city.py +0 -0
  41. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/other/sku_picture.py +0 -0
  42. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/other/ua_sj.py +0 -0
  43. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/pbix/__init__.py +0 -0
  44. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/pbix/pbix_refresh.py +0 -0
  45. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/pbix/refresh_all.py +0 -0
  46. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/pbix/refresh_all_old.py +0 -0
  47. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/req_post/__init__.py +0 -0
  48. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/req_post/req_tb.py +0 -0
  49. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/spider/__init__.py +0 -0
  50. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq/spider/aikucun.py +0 -0
  51. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq.egg-info/SOURCES.txt +0 -0
  52. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq.egg-info/dependency_links.txt +0 -0
  53. {mdbq-3.0.5 → mdbq-3.0.7}/mdbq.egg-info/top_level.txt +0 -0
  54. {mdbq-3.0.5 → mdbq-3.0.7}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.0.5
3
+ Version: 3.0.7
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -100,15 +100,15 @@ class MysqlDatasQuery:
100
100
  }, inplace=True)
101
101
  df = df.astype({
102
102
  '商品id': str,
103
- '花费': float,
104
- '展现量': int,
105
- '点击量': int,
106
- '加购量': int,
107
- '成交笔数': int,
108
- '成交金额': float,
109
- '自然流量曝光量': int,
110
- '直接成交笔数': int,
111
- '直接成交金额': float,
103
+ '花费': 'float64',
104
+ '展现量': 'int64',
105
+ '点击量': 'int64',
106
+ '加购量': 'int64',
107
+ '成交笔数': 'int64',
108
+ '成交金额': 'float64',
109
+ '自然流量曝光量': 'int64',
110
+ '直接成交笔数': 'int64',
111
+ '直接成交金额': 'float64',
112
112
  }, errors='raise')
113
113
  if is_maximize:
114
114
  df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
@@ -356,14 +356,14 @@ class MysqlDatasQuery:
356
356
  df.fillna(0, inplace=True)
357
357
  df = df.astype({
358
358
  '商品id': str,
359
- '花费': float,
360
- '展现量': int,
361
- '点击量': int,
362
- '加购量': int,
363
- '成交笔数': int,
364
- '成交金额': float,
365
- '直接成交笔数': int,
366
- '直接成交金额': float,
359
+ '花费': 'float64',
360
+ '展现量': 'int64',
361
+ '点击量': 'int64',
362
+ '加购量': 'int64',
363
+ '成交笔数': 'int64',
364
+ '成交金额': 'int64',
365
+ '直接成交笔数': 'int64',
366
+ '直接成交金额': 'float64',
367
367
  }, errors='raise')
368
368
  if is_maximize:
369
369
  df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '展现量', '点击量', '人群名字'],
@@ -541,14 +541,14 @@ class MysqlDatasQuery:
541
541
  df.fillna(0, inplace=True)
542
542
  df = df.astype({
543
543
  '商品id': str,
544
- '花费': float,
545
- '展现量': int,
546
- '点击量': int,
547
- '加购量': int,
548
- '成交笔数': int,
549
- '成交金额': float,
550
- '直接成交笔数': int,
551
- '直接成交金额': float,
544
+ '花费': 'float64',
545
+ '展现量': 'int64',
546
+ '点击量': 'int64',
547
+ '加购量': 'int64',
548
+ '成交笔数': 'int64',
549
+ '成交金额': 'float64',
550
+ '直接成交笔数': 'int64',
551
+ '直接成交金额': 'float64',
552
552
  }, errors='raise')
553
553
  if is_maximize:
554
554
  df = df.groupby(
@@ -672,14 +672,14 @@ class MysqlDatasQuery:
672
672
  df['营销场景'] = '超级直播'
673
673
  df.fillna(0, inplace=True)
674
674
  df = df.astype({
675
- '花费': float,
676
- # '点击量': int,
677
- '加购量': int,
678
- '成交笔数': int,
679
- '成交金额': float,
680
- '进店量': int,
681
- '粉丝关注量': int,
682
- '观看次数': int,
675
+ '花费': 'float64',
676
+ # '点击量': 'int64',
677
+ '加购量': 'int64',
678
+ '成交笔数': 'int64',
679
+ '成交金额': 'float64',
680
+ '进店量': 'int64',
681
+ '粉丝关注量': 'int64',
682
+ '观看次数': 'int64',
683
683
  }, errors='raise')
684
684
  if is_maximize:
685
685
  df = df.groupby(['日期', '店铺名称', '营销场景', '人群名字', '计划名字', '花费', '观看次数', '展现量'],
@@ -788,14 +788,14 @@ class MysqlDatasQuery:
788
788
  '搜索访客数': '品牌搜索人数'
789
789
  }, inplace=True)
790
790
  df = df.astype({
791
- '花费': float,
792
- '展现量': int,
793
- '点击量': int,
794
- '加购量': int,
795
- '成交笔数': int,
796
- '成交金额': float,
797
- '品牌搜索量': int,
798
- '品牌搜索人数': int,
791
+ '花费': 'float64',
792
+ '展现量': 'int64',
793
+ '点击量': 'int64',
794
+ '加购量': 'int64',
795
+ '成交笔数': 'int64',
796
+ '成交金额': 'int64',
797
+ '品牌搜索量': 'int64',
798
+ '品牌搜索人数': 'int64',
799
799
  }, errors='raise')
800
800
  if is_maximize:
801
801
  df = df.groupby(['日期', '店铺名称', '报表类型', '花费', '展现量', '点击量'], as_index=False).agg(
@@ -2590,7 +2590,7 @@ class MysqlDatasQuery:
2590
2590
  df = pd.merge(tg, syj, how='left', left_on=['日期', '店铺名称', '商品id'], right_on=['日期', '店铺名称', '宝贝id'])
2591
2591
  df.drop(labels='宝贝id', axis=1, inplace=True)
2592
2592
 
2593
- df['商品id'] = df['商品id'].astype(int)
2593
+ df['商品id'] = df['商品id'].astype('int64')
2594
2594
  df = df.groupby(
2595
2595
  ['日期', '店铺名称', '商品id'],
2596
2596
  as_index=False).agg(
@@ -2606,7 +2606,7 @@ class MysqlDatasQuery:
2606
2606
  )
2607
2607
  # print(df.info())
2608
2608
 
2609
- idbm['宝贝id'] = idbm['宝贝id'].astype(int)
2609
+ idbm['宝贝id'] = idbm['宝贝id'].astype('int64')
2610
2610
  # 1. id 编码表合并图片表
2611
2611
  df_cb = pd.merge(idbm, pic, how='left', left_on='宝贝id', right_on='商品id')
2612
2612
  df_cb = df_cb[['宝贝id', '商家编码', '商品图片']]
@@ -2703,26 +2703,26 @@ class MysqlDatasQuery:
2703
2703
  zb.fillna(0, inplace=True) # astype 之前要填充空值
2704
2704
  tg.fillna(0, inplace=True)
2705
2705
  zb = zb.astype({
2706
- '花费': float,
2707
- '展现量': int,
2708
- '点击量': int,
2709
- '加购量': int,
2710
- '成交笔数': int,
2711
- '成交金额': float,
2712
- '直接成交笔数': int,
2713
- '直接成交金额': float,
2706
+ '花费': 'float64',
2707
+ '展现量': 'int64',
2708
+ '点击量': 'int64',
2709
+ '加购量': 'int64',
2710
+ '成交笔数': 'int64',
2711
+ '成交金额': 'float64',
2712
+ '直接成交笔数': 'int64',
2713
+ '直接成交金额': 'float64',
2714
2714
  }, errors='raise')
2715
2715
  tg = tg.astype({
2716
2716
  '商品id': str,
2717
- '花费': float,
2718
- '展现量': int,
2719
- '点击量': int,
2720
- '加购量': int,
2721
- '成交笔数': int,
2722
- '成交金额': float,
2723
- '直接成交笔数': int,
2724
- '直接成交金额': float,
2725
- '自然流量曝光量': int,
2717
+ '花费': 'float64',
2718
+ '展现量': 'int64',
2719
+ '点击量': 'int64',
2720
+ '加购量': 'int64',
2721
+ '成交笔数': 'int64',
2722
+ '成交金额': 'float64',
2723
+ '直接成交笔数': 'int64',
2724
+ '直接成交金额': 'float64',
2725
+ '自然流量曝光量': 'int64',
2726
2726
  }, errors='raise')
2727
2727
  # tg = tg.groupby(['日期', '推广渠道', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
2728
2728
  # **{'加购量': ('加购量', np.max),
@@ -2738,7 +2738,7 @@ class MysqlDatasQuery:
2738
2738
  df = df.astype(
2739
2739
  {
2740
2740
  '商品id': str,
2741
- '自然流量曝光量': int,
2741
+ '自然流量曝光量': 'int64',
2742
2742
  }
2743
2743
  )
2744
2744
  [df[col].apply(lambda x: '0' if str(x) == '' else x) for col in df.columns.tolist()]
@@ -2917,26 +2917,17 @@ def main(days=100, months=3):
2917
2917
  p = products.Products()
2918
2918
  p.to_mysql()
2919
2919
 
2920
- # 2. 清理非聚合数据库
2920
+ # 2. 数据聚合
2921
2921
  system = platform.system() # 本机系统
2922
2922
  host_name = socket.gethostname() # 本机名
2923
2923
  conf = myconfig.main()
2924
2924
  db_list = conf[system][host_name]['mysql']['数据库集']
2925
- not_juhe_db_list = [item for item in db_list if item != '聚合数据']
2926
- optimize_data.op_data(
2927
- db_name_lists=not_juhe_db_list,
2928
- days=31, # 原始数据不需要设置清理太长
2929
- is_mongo=False,
2930
- is_mysql=True,
2931
- )
2932
-
2933
- # 3. 数据聚合
2934
2925
  query_(months=months)
2935
2926
  time.sleep(60)
2936
2927
 
2937
- # 4. 清理聚合数据
2928
+ # 3. 清理聚合数据
2938
2929
  optimize_data.op_data(
2939
- db_name_lists=['聚合数据'],
2930
+ db_name_lists=db_list,
2940
2931
  days=days,
2941
2932
  is_mongo=False,
2942
2933
  is_mysql=True,
@@ -2979,7 +2970,7 @@ def query_(months=1, less_dict=[]):
2979
2970
 
2980
2971
 
2981
2972
  if __name__ == '__main__':
2982
- # main(days=130, months=3)
2973
+ main(days=150, months=3)
2983
2974
  # query_(months=1)
2984
2975
 
2985
2976
  # # 4. 清理聚合数据
@@ -2989,8 +2980,3 @@ if __name__ == '__main__':
2989
2980
  # is_mongo=False,
2990
2981
  # is_mysql=True,
2991
2982
  # )
2992
-
2993
- sdq = MysqlDatasQuery() # 实例化数据处理类
2994
- sdq.months = 6 # 设置数据周期, 1 表示近 2 个月
2995
- sdq.update_service = True # 调试时加,true: 将数据写入 mysql 服务器
2996
- sdq.tg_by_day(db_name='聚合数据', table_name='多店推广场景_按日聚合')
@@ -55,7 +55,7 @@ class DataFrameConverter(object):
55
55
  if (col.endswith('占比') or col.endswith('率') or col.endswith('同比')
56
56
  or col.endswith('环比') or col.lower().endswith('roi')
57
57
  or col.endswith('产出比')):
58
- df = df.astype({col: float}, errors='raise')
58
+ df = df.astype({col: 'float64'}, errors='raise')
59
59
 
60
60
  # 尝试转换合适的数据类型
61
61
  if df[col].dtype == 'object':
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 3.0.5
3
+ Version: 3.0.7
4
4
  Home-page: https://pypi.org/project/mdbq
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -3,7 +3,7 @@
3
3
  from setuptools import setup, find_packages
4
4
 
5
5
  setup(name='mdbq',
6
- version='3.0.5',
6
+ version='3.0.7',
7
7
  author='xigua, ',
8
8
  author_email="2587125111@qq.com",
9
9
  url='https://pypi.org/project/mdbq',
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes