mdbq 3.0.3__py3-none-any.whl → 3.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mdbq/aggregation/query_data.py
CHANGED
@@ -172,8 +172,8 @@ class MysqlDatasQuery:
|
|
172
172
|
df=df,
|
173
173
|
db_name=db_name,
|
174
174
|
table_name=table_name,
|
175
|
-
icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
176
|
-
move_insert=
|
175
|
+
# icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
176
|
+
move_insert=True, # 先删除,再插入
|
177
177
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
178
178
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
179
179
|
count=None,
|
@@ -309,8 +309,8 @@ class MysqlDatasQuery:
|
|
309
309
|
df=df,
|
310
310
|
db_name=db_name,
|
311
311
|
table_name=table_name,
|
312
|
-
icm_update=['日期', '宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
|
313
|
-
move_insert=
|
312
|
+
# icm_update=['日期', '宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
|
313
|
+
move_insert=True, # 先删除,再插入
|
314
314
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
315
315
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
316
316
|
count=None,
|
@@ -493,8 +493,8 @@ class MysqlDatasQuery:
|
|
493
493
|
df=df,
|
494
494
|
db_name=db_name,
|
495
495
|
table_name=table_name,
|
496
|
-
icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '人群名字'], # 增量更新, 在聚合数据中使用,其他不要用
|
497
|
-
move_insert=
|
496
|
+
# icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '人群名字'], # 增量更新, 在聚合数据中使用,其他不要用
|
497
|
+
move_insert=True, # 先删除,再插入
|
498
498
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
499
499
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
500
500
|
count=None,
|
@@ -623,8 +623,8 @@ class MysqlDatasQuery:
|
|
623
623
|
df=df,
|
624
624
|
db_name=db_name,
|
625
625
|
table_name=table_name,
|
626
|
-
icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '词类型', '词名字_词包名字',], # 增量更新, 在聚合数据中使用,其他不要用
|
627
|
-
move_insert=
|
626
|
+
# icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '词类型', '词名字_词包名字',], # 增量更新, 在聚合数据中使用,其他不要用
|
627
|
+
move_insert=True, # 先删除,再插入
|
628
628
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
629
629
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
630
630
|
count=None,
|
@@ -742,8 +742,8 @@ class MysqlDatasQuery:
|
|
742
742
|
df=df,
|
743
743
|
db_name=db_name,
|
744
744
|
table_name=table_name,
|
745
|
-
icm_update=['日期', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
746
|
-
move_insert=
|
745
|
+
# icm_update=['日期', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
746
|
+
move_insert=True, # 先删除,再插入
|
747
747
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
748
748
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
749
749
|
count=None,
|
@@ -850,8 +850,8 @@ class MysqlDatasQuery:
|
|
850
850
|
df=df,
|
851
851
|
db_name=db_name,
|
852
852
|
table_name=table_name,
|
853
|
-
icm_update=['日期', '报表类型', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
854
|
-
move_insert=
|
853
|
+
# icm_update=['日期', '报表类型', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
854
|
+
move_insert=True, # 先删除,再插入
|
855
855
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
856
856
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
857
857
|
count=None,
|
@@ -1045,8 +1045,8 @@ class MysqlDatasQuery:
|
|
1045
1045
|
df=df,
|
1046
1046
|
db_name=db_name,
|
1047
1047
|
table_name=table_name,
|
1048
|
-
icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
|
1049
|
-
move_insert=
|
1048
|
+
# icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
|
1049
|
+
move_insert=True, # 先删除,再插入
|
1050
1050
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1051
1051
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1052
1052
|
count=None,
|
@@ -1177,8 +1177,8 @@ class MysqlDatasQuery:
|
|
1177
1177
|
df=df,
|
1178
1178
|
db_name=db_name,
|
1179
1179
|
table_name=table_name,
|
1180
|
-
icm_update=['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ], # 增量更新, 在聚合数据中使用,其他不要用
|
1181
|
-
move_insert=
|
1180
|
+
# icm_update=['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ], # 增量更新, 在聚合数据中使用,其他不要用
|
1181
|
+
move_insert=True, # 先删除,再插入
|
1182
1182
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1183
1183
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1184
1184
|
count=None,
|
@@ -1244,8 +1244,8 @@ class MysqlDatasQuery:
|
|
1244
1244
|
df=df,
|
1245
1245
|
db_name=db_name,
|
1246
1246
|
table_name=table_name,
|
1247
|
-
icm_update=['日期', '产品线', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
1248
|
-
move_insert=
|
1247
|
+
# icm_update=['日期', '产品线', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
1248
|
+
move_insert=True, # 先删除,再插入
|
1249
1249
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1250
1250
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1251
1251
|
count=None,
|
@@ -1342,8 +1342,8 @@ class MysqlDatasQuery:
|
|
1342
1342
|
df=df,
|
1343
1343
|
db_name=db_name,
|
1344
1344
|
table_name=table_name,
|
1345
|
-
icm_update=['日期', '产品线', '搜索词', '关键词', '展现数', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
1346
|
-
move_insert=
|
1345
|
+
# icm_update=['日期', '产品线', '搜索词', '关键词', '展现数', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
|
1346
|
+
move_insert=True, # 先删除,再插入
|
1347
1347
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1348
1348
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1349
1349
|
count=None,
|
@@ -1412,8 +1412,8 @@ class MysqlDatasQuery:
|
|
1412
1412
|
df=df,
|
1413
1413
|
db_name=db_name,
|
1414
1414
|
table_name=table_name,
|
1415
|
-
icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
|
1416
|
-
move_insert=
|
1415
|
+
# icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
|
1416
|
+
move_insert=True, # 先删除,再插入
|
1417
1417
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1418
1418
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1419
1419
|
count=None,
|
@@ -1474,8 +1474,8 @@ class MysqlDatasQuery:
|
|
1474
1474
|
df=df,
|
1475
1475
|
db_name=db_name,
|
1476
1476
|
table_name=table_name,
|
1477
|
-
icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
|
1478
|
-
move_insert=
|
1477
|
+
# icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
|
1478
|
+
move_insert=True, # 先删除,再插入
|
1479
1479
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1480
1480
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1481
1481
|
count=None,
|
@@ -1554,8 +1554,8 @@ class MysqlDatasQuery:
|
|
1554
1554
|
df=df,
|
1555
1555
|
db_name=db_name,
|
1556
1556
|
table_name=table_name,
|
1557
|
-
icm_update=['日期', '店铺名称', '词类型', '搜索词'], # 增量更新, 在聚合数据中使用,其他不要用
|
1558
|
-
move_insert=
|
1557
|
+
# icm_update=['日期', '店铺名称', '词类型', '搜索词'], # 增量更新, 在聚合数据中使用,其他不要用
|
1558
|
+
move_insert=True, # 先删除,再插入
|
1559
1559
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
1560
1560
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
1561
1561
|
count=None,
|
@@ -1813,9 +1813,9 @@ class MysqlDatasQuery:
|
|
1813
1813
|
**{
|
1814
1814
|
'展现量': ('展现量', np.sum),
|
1815
1815
|
'点击量': ('点击量', np.sum),
|
1816
|
-
'加购量': ('
|
1817
|
-
'成交笔数': ('
|
1818
|
-
'成交金额': ('
|
1816
|
+
'加购量': ('加购量', np.sum),
|
1817
|
+
'成交笔数': ('成交笔数', np.sum),
|
1818
|
+
'成交金额': ('成交金额', np.sum)
|
1819
1819
|
}
|
1820
1820
|
)
|
1821
1821
|
df_tb_qzt['营销场景'] = '全站推广'
|
@@ -2000,8 +2000,8 @@ class MysqlDatasQuery:
|
|
2000
2000
|
df=df,
|
2001
2001
|
db_name=db_name,
|
2002
2002
|
table_name=table_name,
|
2003
|
-
icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
|
2004
|
-
move_insert=
|
2003
|
+
# icm_update=['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量'], # 增量更新, 在聚合数据中使用,其他不要用
|
2004
|
+
move_insert=True, # 先删除,再插入
|
2005
2005
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
2006
2006
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
2007
2007
|
count=None,
|
@@ -2086,7 +2086,7 @@ class MysqlDatasQuery:
|
|
2086
2086
|
db_name=db_name,
|
2087
2087
|
table_name=table_name,
|
2088
2088
|
icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
|
2089
|
-
move_insert=
|
2089
|
+
move_insert=True, # 先删除,再插入
|
2090
2090
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
2091
2091
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
2092
2092
|
count=None,
|
@@ -2138,7 +2138,7 @@ class MysqlDatasQuery:
|
|
2138
2138
|
df=df,
|
2139
2139
|
db_name=db_name,
|
2140
2140
|
table_name=table_name,
|
2141
|
-
icm_update=['日期', '人群类型', '店铺名称', '人群规模', '广告投入金额'], # 增量更新, 在聚合数据中使用,其他不要用
|
2141
|
+
# icm_update=['日期', '人群类型', '店铺名称', '人群规模', '广告投入金额'], # 增量更新, 在聚合数据中使用,其他不要用
|
2142
2142
|
move_insert=True, # 先删除,再插入
|
2143
2143
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
2144
2144
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
@@ -2247,7 +2247,7 @@ class MysqlDatasQuery:
|
|
2247
2247
|
db_name=db_name,
|
2248
2248
|
table_name=table_name,
|
2249
2249
|
icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
|
2250
|
-
move_insert=
|
2250
|
+
move_insert=True, # 先删除,再插入
|
2251
2251
|
df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
|
2252
2252
|
drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
|
2253
2253
|
count=None,
|
@@ -2979,13 +2979,18 @@ def query_(months=1, less_dict=[]):
|
|
2979
2979
|
|
2980
2980
|
|
2981
2981
|
if __name__ == '__main__':
|
2982
|
-
main(days=130, months=3)
|
2982
|
+
# main(days=130, months=3)
|
2983
2983
|
# query_(months=1)
|
2984
2984
|
|
2985
2985
|
# # 4. 清理聚合数据
|
2986
2986
|
# optimize_data.op_data(
|
2987
2987
|
# db_name_lists=['聚合数据'],
|
2988
|
-
# days=
|
2988
|
+
# days=200,
|
2989
2989
|
# is_mongo=False,
|
2990
2990
|
# is_mysql=True,
|
2991
2991
|
# )
|
2992
|
+
|
2993
|
+
sdq = MysqlDatasQuery() # 实例化数据处理类
|
2994
|
+
sdq.months = 6 # 设置数据周期, 1 表示近 2 个月
|
2995
|
+
sdq.update_service = True # 调试时加,true: 将数据写入 mysql 服务器
|
2996
|
+
sdq.tg_by_day(db_name='聚合数据', table_name='多店推广场景_按日聚合')
|
@@ -5,7 +5,7 @@ mdbq/aggregation/aggregation.py,sha256=mAa4JDFsFRzsM_dFZAkNr_madBB4Ct27-5hDU-21p
|
|
5
5
|
mdbq/aggregation/df_types.py,sha256=U9i3q2eRPTDY8qAPTw7irzu-Tlg4CIySW9uYro81wdk,8125
|
6
6
|
mdbq/aggregation/mysql_types.py,sha256=YTGyrF9vcRgfkQbpT-e-JdJ7c7VF1dDHgyx9YZRES8w,10934
|
7
7
|
mdbq/aggregation/optimize_data.py,sha256=79uwiM2WqNNFxGpE2wKz742PRq-ZGgFjdOV0vgptHdY,3513
|
8
|
-
mdbq/aggregation/query_data.py,sha256=
|
8
|
+
mdbq/aggregation/query_data.py,sha256=yjWmbhEA53i2Tm-pV8NRccuUmqU6HAeX8l3QUP3bERw,132978
|
9
9
|
mdbq/aggregation/query_data_bak.py,sha256=r1FU0C4zjXln7oVSrRkElh4Ehl-9mYhGcq57jLbViUA,104071
|
10
10
|
mdbq/bdup/__init__.py,sha256=AkhsGk81SkG1c8FqDH5tRq-8MZmFobVbN60DTyukYTY,28
|
11
11
|
mdbq/bdup/bdup.py,sha256=LAV0TgnQpc-LB-YuJthxb0U42_VkPidzQzAagan46lU,4234
|
@@ -44,7 +44,7 @@ mdbq/req_post/__init__.py,sha256=jso1oHcy6cJEfa7udS_9uO5X6kZLoPBF8l3wCYmr5dM,18
|
|
44
44
|
mdbq/req_post/req_tb.py,sha256=qg7pet73IgKGmCwxaeUyImJIoeK_pBQT9BBKD7fkBNg,36160
|
45
45
|
mdbq/spider/__init__.py,sha256=RBMFXGy_jd1HXZhngB2T2XTvJqki8P_Fr-pBcwijnew,18
|
46
46
|
mdbq/spider/aikucun.py,sha256=01qJo_Di5Kmi2lG5_HKb0OI283b1-Pgqh-nnA0pX4TY,19038
|
47
|
-
mdbq-3.0.
|
48
|
-
mdbq-3.0.
|
49
|
-
mdbq-3.0.
|
50
|
-
mdbq-3.0.
|
47
|
+
mdbq-3.0.5.dist-info/METADATA,sha256=fA2vV6_FSk6FvR0-Ixr9GraLb7qiDqhUlRWlOKUBbDg,243
|
48
|
+
mdbq-3.0.5.dist-info/WHEEL,sha256=eOLhNAGa2EW3wWl_TU484h7q1UNgy0JXjjoqKoxAAQc,92
|
49
|
+
mdbq-3.0.5.dist-info/top_level.txt,sha256=2FQ-uLnCSB-OwFiWntzmwosW3X2Xqsg0ewh1axsaylA,5
|
50
|
+
mdbq-3.0.5.dist-info/RECORD,,
|
File without changes
|
File without changes
|