mdbq 2.9.7__py3-none-any.whl → 2.9.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,7 +1,6 @@
1
1
  # -*- coding: UTF-8 –*-
2
2
  import re
3
3
  import socket
4
- from mdbq.mongo import mongo
5
4
  from mdbq.mysql import mysql
6
5
  from mdbq.mysql import s_query
7
6
  from mdbq.aggregation import optimize_data
@@ -19,12 +18,6 @@ import os
19
18
  import time
20
19
 
21
20
  """
22
- 程序用于下载数据库(调用 s_query.py 下载并清洗), 并对数据进行聚合清洗, 不会更新数据库信息;
23
-
24
- 添加新库流程:
25
- 1. 在 MysqlDatasQuery 类中创建函数,从数据库取出数据
26
- 2. 在 GroupBy 类中创建函数,处理聚合数据
27
- 3. 在 data_aggregation 类中添加 data_dict 字典键值,回传数据到数据库
28
21
 
29
22
  """
30
23
  username, password, host, port, service_database = None, None, None, None, None,
@@ -40,61 +33,13 @@ elif socket.gethostname() in ['company', 'Mac2.local']:
40
33
  service_database = {'company': 'mysql'}
41
34
  if not username:
42
35
  print(f'找不到主机:')
43
-
44
-
45
-
46
-
47
- class MongoDatasQuery:
48
- """
49
- 从 数据库 中下载数据
50
- self.output: 数据库默认导出目录
51
- self.is_maximize: 是否最大转化数据
52
- """
53
- def __init__(self, target_service):
54
- # target_service 从哪个服务器下载数据
55
- self.months = 0 # 下载几个月数据, 0 表示当月, 1 是上月 1 号至今
56
- # 实例化一个下载类
57
- self.download = mongo.DownMongo(username=username, password=password, host=host, port=port, save_path=None)
58
-
59
- def tg_wxt(self):
60
- self.download.start_date, self.download.end_date = self.months_data(num=self.months)
61
- projection = {
62
- '日期': 1,
63
- '场景名字': 1,
64
- '主体id': 1,
65
- '花费': 1,
66
- '展现量': 1,
67
- '点击量': 1,
68
- '总购物车数': 1,
69
- '总成交笔数': 1,
70
- '总成交金额': 1,
71
- '自然流量曝光量': 1,
72
- '直接成交笔数': 1,
73
- '直接成交金额': 1,
74
- }
75
- df = self.download.data_to_df(
76
- db_name='推广数据2',
77
- collection_name='主体报表',
78
- projection=projection,
79
- )
80
- return df
81
-
82
- @staticmethod
83
- def days_data(days, end_date=None):
84
- """ 读取近 days 天的数据 """
85
- if not end_date:
86
- end_date = datetime.datetime.now()
87
- start_date = end_date - datetime.timedelta(days=days)
88
- return pd.to_datetime(start_date), pd.to_datetime(end_date)
89
-
90
- @staticmethod
91
- def months_data(num=0, end_date=None):
92
- """ 读取近 num 个月的数据, 0 表示读取当月的数据 """
93
- if not end_date:
94
- end_date = datetime.datetime.now()
95
- start_date = end_date - relativedelta(months=num) # n 月以前的今天
96
- start_date = f'{start_date.year}-{start_date.month}-01' # 替换为 n 月以前的第一天
97
- return pd.to_datetime(start_date), pd.to_datetime(end_date)
36
+ m_engine = mysql.MysqlUpload(
37
+ username=username,
38
+ password=password,
39
+ host=host,
40
+ port=port,
41
+ charset='utf8mb4'
42
+ )
98
43
 
99
44
 
100
45
  class MysqlDatasQuery:
@@ -118,8 +63,8 @@ class MysqlDatasQuery:
118
63
 
119
64
  return wrapper
120
65
 
121
- @try_except
122
- def tg_wxt(self):
66
+ # @try_except
67
+ def tg_wxt(self, db_name='聚合数据', table_name='天猫_主体报表', is_maximize=True):
123
68
  start_date, end_date = self.months_data(num=self.months)
124
69
  projection = {
125
70
  '日期': 1,
@@ -143,10 +88,84 @@ class MysqlDatasQuery:
143
88
  end_date=end_date,
144
89
  projection=projection,
145
90
  )
146
- return df
91
+ df.rename(columns={
92
+ '场景名字': '营销场景',
93
+ '主体id': '商品id',
94
+ '总购物车数': '加购量',
95
+ '总成交笔数': '成交笔数',
96
+ '总成交金额': '成交金额'
97
+ }, inplace=True)
98
+ df = df.astype({
99
+ '商品id': str,
100
+ '花费': float,
101
+ '展现量': int,
102
+ '点击量': int,
103
+ '加购量': int,
104
+ '成交笔数': int,
105
+ '成交金额': float,
106
+ '自然流量曝光量': int,
107
+ '直接成交笔数': int,
108
+ '直接成交金额': float,
109
+ }, errors='raise')
110
+ if is_maximize:
111
+ df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
112
+ **{'加购量': ('加购量', np.max),
113
+ '成交笔数': ('成交笔数', np.max),
114
+ '成交金额': ('成交金额', np.max),
115
+ '自然流量曝光量': ('自然流量曝光量', np.max),
116
+ '直接成交笔数': ('直接成交笔数', np.max),
117
+ '直接成交金额': ('直接成交金额', np.max)
118
+ }
119
+ )
120
+ else:
121
+ df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
122
+ **{
123
+ '加购量': ('加购量', np.min),
124
+ '成交笔数': ('成交笔数', np.min),
125
+ '成交金额': ('成交金额', np.min),
126
+ '自然流量曝光量': ('自然流量曝光量', np.min),
127
+ '直接成交笔数': ('直接成交笔数', np.max),
128
+ '直接成交金额': ('直接成交金额', np.max)
129
+ }
130
+ )
131
+ df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
132
+ set_typ = {
133
+ '日期': 'date',
134
+ '推广渠道': 'varchar(100)',
135
+ '店铺名称': 'varchar(100)',
136
+ '营销场景': 'varchar(100)',
137
+ '商品id': 'bigint',
138
+ '花费': 'decimal(12,2)',
139
+ '展现量': 'int',
140
+ '点击量': 'int',
141
+ '加购量': 'int',
142
+ '成交笔数': 'int',
143
+ '成交金额': 'decimal(12,2)',
144
+ '自然流量曝光量': 'int',
145
+ '直接成交笔数': 'int',
146
+ '直接成交金额': 'decimal(12,2)',
147
+ }
148
+ min_date = df['日期'].min()
149
+ max_date = df['日期'].max()
150
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
151
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
152
+ m_engine.df_to_mysql(
153
+ df=df,
154
+ db_name=db_name,
155
+ table_name=table_name,
156
+ icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
157
+ move_insert=False, # 先删除,再插入
158
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
159
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
160
+ count=None,
161
+ filename=None, # 用来追踪处理进度
162
+ reset_id=False, # 是否重置自增列
163
+ set_typ=set_typ,
164
+ )
165
+ return True
147
166
 
148
167
  @try_except
149
- def syj(self):
168
+ def syj(self, db_name='聚合数据', table_name='生意经_宝贝指标'):
150
169
  start_date, end_date = self.months_data(num=self.months)
151
170
  projection = {
152
171
  '日期': 1,
@@ -169,10 +188,63 @@ class MysqlDatasQuery:
169
188
  end_date=end_date,
170
189
  projection=projection,
171
190
  )
172
- return df
191
+ df['宝贝id'] = df['宝贝id'].astype(str)
192
+ df = df.groupby(['日期', '店铺名称', '宝贝id', '行业类目'], as_index=False).agg(
193
+ **{'销售额': ('销售额', np.min),
194
+ '销售量': ('销售量', np.min),
195
+ '订单数': ('订单数', np.min),
196
+ '退货量': ('退货量', np.max),
197
+ '退款额': ('退款额', np.max),
198
+ '退款额_发货后': ('退款额_发货后', np.max),
199
+ '退货量_发货后': ('退货量_发货后', np.max),
200
+ }
201
+ )
202
+ df['件均价'] = df.apply(lambda x: x['销售额'] / x['销售量'] if x['销售量'] > 0 else 0, axis=1).round(
203
+ 0) # 两列运算, 避免除以0
204
+ df['价格带'] = df['件均价'].apply(
205
+ lambda x: '2000+' if x >= 2000
206
+ else '1000+' if x >= 1000
207
+ else '500+' if x >= 500
208
+ else '300+' if x >= 300
209
+ else '300以下'
210
+ )
211
+ set_typ = {
212
+ '日期': 'date',
213
+ '推广渠道': 'varchar(100)',
214
+ '店铺名称': 'varchar(100)',
215
+ '宝贝id': 'bigint',
216
+ '行业类目': 'varchar(255)',
217
+ '销售额': 'decimal(12,2)',
218
+ '销售量': 'int',
219
+ '订单数': 'int',
220
+ '退货量': 'int',
221
+ '退款额': 'decimal(12,2)',
222
+ '退款额_发货后': 'decimal(12,2)',
223
+ '退货量_发货后': 'int',
224
+ '件均价': 'smallint',
225
+ '价格带': 'varchar(100)',
226
+ }
227
+ min_date = df['日期'].min()
228
+ max_date = df['日期'].max()
229
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
230
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
231
+ m_engine.df_to_mysql(
232
+ df=df,
233
+ db_name=db_name,
234
+ table_name=table_name,
235
+ icm_update=['日期', '宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
236
+ move_insert=False, # 先删除,再插入
237
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
238
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
239
+ count=None,
240
+ filename=None, # 用来追踪处理进度
241
+ reset_id=False, # 是否重置自增列
242
+ set_typ=set_typ,
243
+ )
244
+ return True
173
245
 
174
246
  @try_except
175
- def tg_rqbb(self):
247
+ def tg_rqbb(self, db_name='聚合数据', table_name='天猫_人群报表', is_maximize=True):
176
248
  start_date, end_date = self.months_data(num=self.months)
177
249
  projection = {
178
250
  '日期': 1,
@@ -196,10 +268,166 @@ class MysqlDatasQuery:
196
268
  end_date=end_date,
197
269
  projection=projection,
198
270
  )
199
- return df
271
+ df.rename(columns={
272
+ '场景名字': '营销场景',
273
+ '主体id': '商品id',
274
+ '总购物车数': '加购量',
275
+ '总成交笔数': '成交笔数',
276
+ '总成交金额': '成交金额'
277
+ }, inplace=True)
278
+ df.fillna(0, inplace=True)
279
+ df = df.astype({
280
+ '商品id': str,
281
+ '花费': float,
282
+ '展现量': int,
283
+ '点击量': int,
284
+ '加购量': int,
285
+ '成交笔数': int,
286
+ '成交金额': float,
287
+ '直接成交笔数': int,
288
+ '直接成交金额': float,
289
+ }, errors='raise')
290
+ if is_maximize:
291
+ df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '展现量', '点击量', '人群名字'],
292
+ as_index=False).agg(
293
+ **{'加购量': ('加购量', np.max),
294
+ '成交笔数': ('成交笔数', np.max),
295
+ '成交金额': ('成交金额', np.max),
296
+ '直接成交笔数': ('直接成交笔数', np.max),
297
+ '直接成交金额': ('直接成交金额', np.max)
298
+ }
299
+ )
300
+ else:
301
+ df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '展现量', '点击量', '人群名字'],
302
+ as_index=False).agg(
303
+ **{
304
+ '加购量': ('加购量', np.min),
305
+ '成交笔数': ('成交笔数', np.min),
306
+ '成交金额': ('成交金额', np.min),
307
+ '直接成交笔数': ('直接成交笔数', np.max),
308
+ '直接成交金额': ('直接成交金额', np.max)
309
+ }
310
+ )
311
+ df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
312
+ # 1. 匹配 L后面接 2 个或以上数字,不区分大小写,示例:L345
313
+ # 2. 其余情况,L 后面接多个数字的都会被第一条 if 命中,不区分大小写
314
+ df['消费力层级'] = df.apply(
315
+ lambda x:
316
+ ''.join(re.findall(r'(l\d+)', x['人群名字'].upper(), re.IGNORECASE)) if re.findall(r'(l\d{2,})',
317
+ x['人群名字'],
318
+ re.IGNORECASE)
319
+ else 'L5' if re.findall(r'(l\d*5)', x['人群名字'], re.IGNORECASE)
320
+ else 'L4' if re.findall(r'(l\d*4)', x['人群名字'], re.IGNORECASE)
321
+ else 'L3' if re.findall(r'(l\d*3)', x['人群名字'], re.IGNORECASE)
322
+ else 'L2' if re.findall(r'(l\d*2)', x['人群名字'], re.IGNORECASE)
323
+ else 'L1' if re.findall(r'(l\d*1)', x['人群名字'], re.IGNORECASE)
324
+ else '', axis=1)
325
+ # 1. 匹配连续的 4 个数字且后面不能接数字或"元"或汉字,筛掉的人群示例:月均消费6000元|受众20240729175213|xxx2024真皮公文包
326
+ # 2. 匹配 2数字_2数字且前面不能是数字,合法匹配:人群_30_50_促; 非法示例:L345_3040 避免识别出 35~20 岁用户的情况
327
+ # pattern = r'(\d{4})(?!\d|[\u4e00-\u9fa5])' # 匹配 4 个数字,后面不能接数字或汉字
328
+ # pattern = r'(?<![\d\u4e00-\u9fa5])(\d{4})' # 匹配前面不是数字或汉字的 4 个连续数字
329
+
330
+ # 匹配 4 个数字,前面和后面都不能是数字或汉字
331
+ pattern1 = r'(?<![\d\u4e00-\u9fa5])(\d{4})(?!\d|[\u4e00-\u9fa5])'
332
+ # 匹配指定字符,前面不能是数字或 l 或 L 开头
333
+ pattern2 = r'(?<![\dlL])(\d{2}_\d{2})'
334
+ df['用户年龄'] = df.apply(
335
+ lambda x:
336
+ ''.join(re.findall(pattern1, x['人群名字'].upper())) if re.findall(pattern1, x['人群名字'])
337
+ # else ''.join(re.findall(r'[^\d|l|L](\d{2}_\d{2})', x['人群名字'].upper())) if re.findall(r'[^\d|l|L](\d{2}_\d{2})', x['人群名字'])
338
+ else ''.join(re.findall(pattern2, x['人群名字'].upper())) if re.findall(pattern2, x['人群名字'])
339
+ else ''.join(re.findall(r'(\d{2}-\d{2})岁', x['人群名字'].upper())) if re.findall(r'(\d{2}-\d{2})岁',
340
+ x['人群名字'])
341
+ else '', axis=1)
342
+ df['用户年龄'] = df['用户年龄'].apply(
343
+ lambda x: f'{x[:2]}~{x[2:4]}' if str(x).isdigit()
344
+ else str(x).replace('_', '~') if '_' in x
345
+ else str(x).replace('-', '~') if '-' in x
346
+ else x
347
+ )
348
+ # 年龄层不能是 0 开头
349
+ df['用户年龄'] = df['用户年龄'].apply(
350
+ lambda x: '' if str(x).startswith('0') else x)
351
+ # df = df.head(1000)
352
+ # df.to_csv('/Users/xigua/Downloads/test.csv', index=False, header=True, encoding='utf-8_sig')
353
+ # breakpoint()
354
+
355
+ # 下面是添加人群 AIPL 分类
356
+ dir_file = f'\\\\192.168.1.198\\时尚事业部\\01.运营部\\0-电商周报-每周五更新\\分类配置文件.xlsx'
357
+ dir_file2 = '/Volumes/时尚事业部/01.运营部/0-电商周报-每周五更新/分类配置文件.xlsx'
358
+ if platform.system() == 'Windows':
359
+ dir_file3 = 'C:\\同步空间\\BaiduSyncdisk\\原始文件2\\分类配置文件.xlsx'
360
+ else:
361
+ dir_file3 = '/Users/xigua/数据中心/原始文件2/分类配置文件.xlsx'
362
+ if not os.path.isfile(dir_file):
363
+ dir_file = dir_file2
364
+ if not os.path.isfile(dir_file):
365
+ dir_file = dir_file3
366
+ if os.path.isfile(dir_file):
367
+ df_fl = pd.read_excel(dir_file, sheet_name='人群分类', header=0)
368
+ df_fl = df_fl[['人群名字', '人群分类']]
369
+ # 合并并获取分类信息
370
+ df = pd.merge(df, df_fl, left_on=['人群名字'], right_on=['人群名字'], how='left')
371
+ df['人群分类'].fillna('', inplace=True)
372
+ if '人群分类' in df.columns.tolist():
373
+ # 这行决定了,从文件中读取的分类信息优先级高于内部函数的分类规则
374
+ # 这个 lambda 适配人群名字中带有特定标识的分类,强匹配
375
+ df['人群分类'] = df.apply(
376
+ lambda x: self.set_crowd(keyword=str(x['人群名字']), as_file=False) if x['人群分类'] == ''
377
+ else x['人群分类'], axis=1
378
+ )
379
+ # 这个 lambda 适配人群名字中聚类的特征字符,弱匹配
380
+ df['人群分类'] = df.apply(
381
+ lambda x: self.set_crowd2(keyword=str(x['人群名字']), as_file=False) if x['人群分类'] == ''
382
+ else x['人群分类'], axis=1
383
+ )
384
+ else:
385
+ df['人群分类'] = df['人群名字'].apply(lambda x: self.set_crowd(keyword=str(x), as_file=False))
386
+ df['人群分类'] = df.apply(
387
+ lambda x: self.set_crowd2(keyword=str(x['人群名字']), as_file=False) if x['人群分类'] == ''
388
+ else x['人群分类'], axis=1
389
+ )
390
+ df['人群分类'] = df['人群分类'].apply(lambda x: str(x).upper() if x else x)
391
+ set_typ = {
392
+ '日期': 'date',
393
+ '推广渠道': 'varchar(100)',
394
+ '店铺名称': 'varchar(100)',
395
+ '营销场景': 'varchar(100)',
396
+ '商品id': 'bigint',
397
+ '花费': 'decimal(10,2)',
398
+ '展现量': 'int',
399
+ '点击量': 'int',
400
+ '人群名字': 'varchar(255)',
401
+ '加购量': 'int',
402
+ '成交笔数': 'int',
403
+ '成交金额': 'decimal(12,2)',
404
+ '直接成交笔数': 'int',
405
+ '直接成交金额': 'decimal(12,2)',
406
+ '消费力层级': 'varchar(100)',
407
+ '用户年龄': 'varchar(100)',
408
+ '人群分类': 'varchar(100)',
409
+ }
410
+ min_date = df['日期'].min()
411
+ max_date = df['日期'].max()
412
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
413
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
414
+ m_engine.df_to_mysql(
415
+ df=df,
416
+ db_name=db_name,
417
+ table_name=table_name,
418
+ icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '人群名字'], # 增量更新, 在聚合数据中使用,其他不要用
419
+ move_insert=False, # 先删除,再插入
420
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
421
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
422
+ count=None,
423
+ filename=None, # 用来追踪处理进度
424
+ reset_id=False, # 是否重置自增列
425
+ set_typ=set_typ,
426
+ )
427
+ return True
200
428
 
201
429
  @try_except
202
- def tg_gjc(self):
430
+ def tg_gjc(self, db_name='聚合数据', table_name='天猫_关键词报表', is_maximize=True):
203
431
  start_date, end_date = self.months_data(num=self.months)
204
432
  projection = {
205
433
  '日期': 1,
@@ -224,10 +452,111 @@ class MysqlDatasQuery:
224
452
  end_date=end_date,
225
453
  projection=projection,
226
454
  )
227
- return df
455
+ df.rename(columns={
456
+ '场景名字': '营销场景',
457
+ '宝贝id': '商品id',
458
+ '总购物车数': '加购量',
459
+ '总成交笔数': '成交笔数',
460
+ '总成交金额': '成交金额'
461
+ }, inplace=True)
462
+ df.fillna(0, inplace=True)
463
+ df = df.astype({
464
+ '商品id': str,
465
+ '花费': float,
466
+ '展现量': int,
467
+ '点击量': int,
468
+ '加购量': int,
469
+ '成交笔数': int,
470
+ '成交金额': float,
471
+ '直接成交笔数': int,
472
+ '直接成交金额': float,
473
+ }, errors='raise')
474
+ if is_maximize:
475
+ df = df.groupby(
476
+ ['日期', '店铺名称', '营销场景', '商品id', '词类型', '词名字_词包名字', '花费', '展现量', '点击量'],
477
+ as_index=False).agg(
478
+ **{'加购量': ('加购量', np.max),
479
+ '成交笔数': ('成交笔数', np.max),
480
+ '成交金额': ('成交金额', np.max),
481
+ '直接成交笔数': ('直接成交笔数', np.max),
482
+ '直接成交金额': ('直接成交金额', np.max)
483
+ }
484
+ )
485
+ else:
486
+ df = df.groupby(
487
+ ['日期', '店铺名称', '营销场景', '商品id', '词类型', '词名字_词包名字', '花费', '展现量', '点击量'],
488
+ as_index=False).agg(
489
+ **{
490
+ '加购量': ('加购量', np.min),
491
+ '成交笔数': ('成交笔数', np.min),
492
+ '成交金额': ('成交金额', np.min),
493
+ '直接成交笔数': ('直接成交笔数', np.max),
494
+ '直接成交金额': ('直接成交金额', np.max)
495
+ }
496
+ )
497
+ df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
498
+ df['是否品牌词'] = df['词名字_词包名字'].str.contains('万里马|wanlima', regex=True)
499
+ df['是否品牌词'] = df['是否品牌词'].apply(lambda x: '品牌词' if x else '')
500
+ dir_file = f'\\\\192.168.1.198\\时尚事业部\\01.运营部\\0-电商周报-每周五更新\\分类配置文件.xlsx'
501
+ dir_file2 = '/Volumes/时尚事业部/01.运营部/0-电商周报-每周五更新/分类配置文件.xlsx'
502
+ if not os.path.isfile(dir_file):
503
+ dir_file = dir_file2
504
+ if os.path.isfile(dir_file):
505
+ df_fl = pd.read_excel(dir_file, sheet_name='关键词分类', header=0)
506
+ # df_fl.rename(columns={'分类1': '词分类'}, inplace=True)
507
+ df_fl = df_fl[['关键词', '词分类']]
508
+ # 合并并获取词分类信息
509
+ df = pd.merge(df, df_fl, left_on=['词名字_词包名字'], right_on=['关键词'], how='left')
510
+ df.pop('关键词')
511
+ df['词分类'].fillna('', inplace=True)
512
+ if '词分类' in df.columns.tolist():
513
+ # 这行决定了,从文件中读取的词分类信息优先级高于 ret_keyword 函数的词分类
514
+ df['词分类'] = df.apply(
515
+ lambda x: self.ret_keyword(keyword=str(x['词名字_词包名字']), as_file=False) if x['词分类'] == ''
516
+ else x['词分类'], axis=1
517
+ )
518
+ else:
519
+ df['词分类'] = df['词名字_词包名字'].apply(lambda x: self.ret_keyword(keyword=str(x), as_file=False))
520
+ set_typ = {
521
+ '日期': 'date',
522
+ '推广渠道': 'varchar(100)',
523
+ '店铺名称': 'varchar(100)',
524
+ '营销场景': 'varchar(100)',
525
+ '商品id': 'bigint',
526
+ '词类型': 'varchar(100)',
527
+ '词名字_词包名字': 'varchar(255)',
528
+ '花费': 'decimal(10,2)',
529
+ '展现量': 'int',
530
+ '点击量': 'int',
531
+ '加购量': 'int',
532
+ '成交笔数': 'int',
533
+ '成交金额': 'decimal(12,2)',
534
+ '直接成交笔数': 'int',
535
+ '直接成交金额': 'decimal(12,2)',
536
+ '是否品牌词': 'varchar(100)',
537
+ '词分类': 'varchar(100)',
538
+ }
539
+ min_date = df['日期'].min()
540
+ max_date = df['日期'].max()
541
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
542
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
543
+ m_engine.df_to_mysql(
544
+ df=df,
545
+ db_name=db_name,
546
+ table_name=table_name,
547
+ icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '词类型', '词名字_词包名字',], # 增量更新, 在聚合数据中使用,其他不要用
548
+ move_insert=False, # 先删除,再插入
549
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
550
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
551
+ count=None,
552
+ filename=None, # 用来追踪处理进度
553
+ reset_id=False, # 是否重置自增列
554
+ set_typ=set_typ,
555
+ )
556
+ return True
228
557
 
229
558
  @try_except
230
- def tg_cjzb(self):
559
+ def tg_cjzb(self, db_name='聚合数据', table_name='天猫_超级直播', is_maximize=True):
231
560
  start_date, end_date = self.months_data(num=self.months)
232
561
  projection = {
233
562
  '日期': 1,
@@ -253,10 +582,91 @@ class MysqlDatasQuery:
253
582
  end_date=end_date,
254
583
  projection=projection,
255
584
  )
256
- return df
585
+ df.rename(columns={
586
+ '观看次数': '观看次数',
587
+ '总购物车数': '加购量',
588
+ '总成交笔数': '成交笔数',
589
+ '总成交金额': '成交金额',
590
+ '场景名字': '营销场景',
591
+ }, inplace=True)
592
+ df['营销场景'] = '超级直播'
593
+ df.fillna(0, inplace=True)
594
+ df = df.astype({
595
+ '花费': float,
596
+ # '点击量': int,
597
+ '加购量': int,
598
+ '成交笔数': int,
599
+ '成交金额': float,
600
+ '进店量': int,
601
+ '粉丝关注量': int,
602
+ '观看次数': int,
603
+ }, errors='raise')
604
+ if is_maximize:
605
+ df = df.groupby(['日期', '店铺名称', '营销场景', '人群名字', '计划名字', '花费', '观看次数', '展现量'],
606
+ as_index=False).agg(
607
+ **{
608
+ '进店量': ('进店量', np.max),
609
+ '粉丝关注量': ('粉丝关注量', np.max),
610
+ '加购量': ('加购量', np.max),
611
+ '成交笔数': ('成交笔数', np.max),
612
+ '成交金额': ('成交金额', np.max),
613
+ '直接成交笔数': ('直接成交笔数', np.max),
614
+ '直接成交金额': ('直接成交金额', np.max),
615
+ }
616
+ )
617
+ else:
618
+ df = df.groupby(['日期', '店铺名称', '营销场景', '人群名字', '计划名字', '花费', '观看次数', '展现量'],
619
+ as_index=False).agg(
620
+ **{
621
+ '进店量': ('进店量', np.min),
622
+ '粉丝关注量': ('粉丝关注量', np.min),
623
+ '加购量': ('加购量', np.min),
624
+ '成交笔数': ('成交笔数', np.min),
625
+ '成交金额': ('成交金额', np.min),
626
+ '直接成交笔数': ('直接成交笔数', np.min),
627
+ '直接成交金额': ('直接成交金额', np.min),
628
+ }
629
+ )
630
+ df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
631
+ set_typ = {
632
+ '日期': 'date',
633
+ '推广渠道': 'varchar(100)',
634
+ '店铺名称': 'varchar(100)',
635
+ '营销场景': 'varchar(100)',
636
+ '人群名字': 'varchar(255)',
637
+ '计划名字': 'varchar(255)',
638
+ '花费': 'decimal(10,2)',
639
+ '观看次数': 'int',
640
+ '展现量': 'int',
641
+ '进店量': 'int',
642
+ '粉丝关注量': 'int',
643
+ '加购量': 'int',
644
+ '成交笔数': 'int',
645
+ '成交金额': 'decimal(12,2)',
646
+ '直接成交笔数': 'int',
647
+ '直接成交金额': 'decimal(12,2)',
648
+ }
649
+ min_date = df['日期'].min()
650
+ max_date = df['日期'].max()
651
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
652
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
653
+ m_engine.df_to_mysql(
654
+ df=df,
655
+ db_name=db_name,
656
+ table_name=table_name,
657
+ icm_update=['日期', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
658
+ move_insert=False, # 先删除,再插入
659
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
660
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
661
+ count=None,
662
+ filename=None, # 用来追踪处理进度
663
+ reset_id=False, # 是否重置自增列
664
+ set_typ=set_typ,
665
+ )
666
+ return True
257
667
 
258
668
  @try_except
259
- def pxb_zh(self):
669
+ def pxb_zh(self, db_name='聚合数据', table_name='天猫_品销宝账户报表', is_maximize=True):
260
670
  start_date, end_date = self.months_data(num=self.months)
261
671
  projection = {
262
672
  '日期': 1,
@@ -280,10 +690,82 @@ class MysqlDatasQuery:
280
690
  end_date=end_date,
281
691
  projection=projection,
282
692
  )
283
- return df
693
+ df = df[df['报表类型'] == '账户']
694
+ df.fillna(value=0, inplace=True)
695
+ df.rename(columns={
696
+ '消耗': '花费',
697
+ '宝贝加购数': '加购量',
698
+ '搜索量': '品牌搜索量',
699
+ '搜索访客数': '品牌搜索人数'
700
+ }, inplace=True)
701
+ df = df.astype({
702
+ '花费': float,
703
+ '展现量': int,
704
+ '点击量': int,
705
+ '加购量': int,
706
+ '成交笔数': int,
707
+ '成交金额': float,
708
+ '品牌搜索量': int,
709
+ '品牌搜索人数': int,
710
+ }, errors='raise')
711
+ if is_maximize:
712
+ df = df.groupby(['日期', '店铺名称', '报表类型', '花费', '展现量', '点击量'], as_index=False).agg(
713
+ **{
714
+ '加购量': ('加购量', np.max),
715
+ '成交笔数': ('成交笔数', np.max),
716
+ '成交金额': ('成交金额', np.max),
717
+ '品牌搜索量': ('品牌搜索量', np.max),
718
+ '品牌搜索人数': ('品牌搜索人数', np.max),
719
+ }
720
+ )
721
+ else:
722
+ df = df.groupby(['日期', '店铺名称', '报表类型', '花费', '展现量', '点击量'], as_index=False).agg(
723
+ **{
724
+ '加购量': ('加购量', np.min),
725
+ '成交笔数': ('成交笔数', np.min),
726
+ '成交金额': ('成交金额', np.min),
727
+ '品牌搜索量': ('品牌搜索量', np.min),
728
+ '品牌搜索人数': ('品牌搜索人数', np.min),
729
+ }
730
+ )
731
+ df.insert(loc=1, column='推广渠道', value='品销宝') # df中插入新列
732
+ df.insert(loc=2, column='营销场景', value='品销宝') # df中插入新列
733
+ set_typ = {
734
+ '日期': 'date',
735
+ '推广渠道': 'varchar(100)',
736
+ '店铺名称': 'varchar(100)',
737
+ '营销场景': 'varchar(100)',
738
+ '报表类型': 'varchar(100)',
739
+ '花费': 'decimal(10,2)',
740
+ '展现量': 'int',
741
+ '点击量': 'int',
742
+ '加购量': 'int',
743
+ '成交笔数': 'int',
744
+ '成交金额': 'decimal(12,2)',
745
+ '品牌搜索量': 'int',
746
+ '品牌搜索人数': 'int',
747
+ }
748
+ min_date = df['日期'].min()
749
+ max_date = df['日期'].max()
750
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
751
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
752
+ m_engine.df_to_mysql(
753
+ df=df,
754
+ db_name=db_name,
755
+ table_name=table_name,
756
+ icm_update=['日期', '报表类型', '推广渠道', '营销场景', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
757
+ move_insert=False, # 先删除,再插入
758
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
759
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
760
+ count=None,
761
+ filename=None, # 用来追踪处理进度
762
+ reset_id=False, # 是否重置自增列
763
+ set_typ=set_typ,
764
+ )
765
+ return True
284
766
 
285
767
  @try_except
286
- def idbm(self):
768
+ def idbm(self, db_name='聚合数据', table_name='商品id编码表'):
287
769
  """ 用生意经日数据制作商品 id 和编码对照表 """
288
770
  data_values = self.download.columns_to_list(
289
771
  db_name='生意经3',
@@ -291,10 +773,45 @@ class MysqlDatasQuery:
291
773
  columns_name=['宝贝id', '商家编码', '行业类目'],
292
774
  )
293
775
  df = pd.DataFrame(data=data_values)
294
- return df
776
+ df['宝贝id'] = df['宝贝id'].astype(str)
777
+ df.drop_duplicates(subset='宝贝id', keep='last', inplace=True, ignore_index=True)
778
+ # df['行业类目'] = df['行业类目'].apply(lambda x: re.sub(' ', '', x))
779
+ try:
780
+ df[['一级类目', '二级类目', '三级类目']] = df['行业类目'].str.split(' -> ', expand=True).loc[:, 0:2]
781
+ except:
782
+ try:
783
+ df[['一级类目', '二级类目']] = df['行业类目'].str.split(' -> ', expand=True).loc[:, 0:1]
784
+ except:
785
+ df['一级类目'] = df['行业类目']
786
+ df.drop('行业类目', axis=1, inplace=True)
787
+ df.sort_values('宝贝id', ascending=False, inplace=True)
788
+ df = df[(df['宝贝id'] != '973') & (df['宝贝id'] != '973')]
789
+ set_typ = {
790
+ '宝贝id': 'bigint',
791
+ '商家编码': 'varchar(100)',
792
+ '一级类目': 'varchar(100)',
793
+ '二级类目': 'varchar(100)',
794
+ '三级类目': 'varchar(100)',
795
+ }
796
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
797
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name}')
798
+ m_engine.df_to_mysql(
799
+ df=df,
800
+ db_name=db_name,
801
+ table_name=table_name,
802
+ icm_update=['宝贝id'], # 增量更新, 在聚合数据中使用,其他不要用
803
+ move_insert=False, # 先删除,再插入
804
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
805
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
806
+ count=None,
807
+ filename=None, # 用来追踪处理进度
808
+ reset_id=False, # 是否重置自增列
809
+ set_typ=set_typ,
810
+ )
811
+ return True
295
812
 
296
813
  @try_except
297
- def sp_picture(self):
814
+ def sp_picture(self, db_name='聚合数据', table_name='商品id图片对照表'):
298
815
  """ 用生意经日数据制作商品 id 和编码对照表 """
299
816
  data_values = self.download.columns_to_list(
300
817
  db_name='属性设置3',
@@ -302,10 +819,48 @@ class MysqlDatasQuery:
302
819
  columns_name=['日期', '商品id', '商品白底图', '方版场景图'],
303
820
  )
304
821
  df = pd.DataFrame(data=data_values)
305
- return df
822
+ df['商品id'] = df['商品id'].astype('int64')
823
+ df['日期'] = df['日期'].astype('datetime64[ns]')
824
+ df = df[(df['商品白底图'] != '0') | (df['方版场景图'] != '0')]
825
+ # 白底图优先
826
+ df['商品图片'] = df[['商品白底图', '方版场景图']].apply(
827
+ lambda x: x['商品白底图'] if x['商品白底图'] != '0' else x['方版场景图'], axis=1)
828
+ # # 方版场景图优先
829
+ # df['商品图片'] = df[['商品白底图', '方版场景图']].apply(
830
+ # lambda x: x['方版场景图'] if x['方版场景图'] != '0' else x['商品白底图'], axis=1)
831
+ df.sort_values(by=['商品id', '日期'], ascending=[False, True], ignore_index=True, inplace=True)
832
+ df.drop_duplicates(subset=['商品id'], keep='last', inplace=True, ignore_index=True)
833
+ df = df[['商品id', '商品图片', '日期']]
834
+ df['商品图片'] = df['商品图片'].apply(lambda x: x if 'http' in x else None) # 检查是否是 http 链接
835
+ df.dropna(how='all', subset=['商品图片'], axis=0, inplace=True) # 删除指定列含有空值的行
836
+ df['商品链接'] = df['商品id'].apply(
837
+ lambda x: f'https://detail.tmall.com/item.htm?id={str(x)}' if x and '.com' not in str(x) else x)
838
+ df.sort_values(by='商品id', ascending=False, ignore_index=True, inplace=True) # ascending=False 降序排列
839
+ set_typ = {
840
+ '商品id': 'bigint',
841
+ '商品图片': 'varchar(255)',
842
+ '日期': 'date',
843
+ '商品链接': 'varchar(255)',
844
+ }
845
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
846
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name}')
847
+ m_engine.df_to_mysql(
848
+ df=df,
849
+ db_name=db_name,
850
+ table_name=table_name,
851
+ icm_update=['商品id'], # 增量更新, 在聚合数据中使用,其他不要用
852
+ move_insert=False, # 先删除,再插入
853
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
854
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
855
+ count=None,
856
+ filename=None, # 用来追踪处理进度
857
+ reset_id=False, # 是否重置自增列
858
+ set_typ=set_typ,
859
+ )
860
+ return True
306
861
 
307
862
  @try_except
308
- def dplyd(self):
863
+ def dplyd(self, db_name='聚合数据', table_name='店铺流量来源构成'):
309
864
  """ 新旧版取的字段是一样的 """
310
865
  start_date, end_date = self.months_data(num=self.months)
311
866
  projection = {
@@ -327,34 +882,66 @@ class MysqlDatasQuery:
327
882
  end_date=end_date,
328
883
  projection=projection,
329
884
  )
330
- # df = df[df['店铺名称'] == '万里马官方旗舰店']
331
- return df
332
-
333
- @try_except
334
- def dplyd_old(self):
335
- start_date, end_date = self.months_data(num=self.months)
336
- projection = {
337
- '日期': 1,
338
- '一级来源': 1,
339
- '二级来源': 1,
340
- '三级来源': 1,
341
- '访客数': 1,
342
- '支付金额': 1,
343
- '支付买家数': 1,
344
- '支付转化率': 1,
345
- '加购人数': 1,
885
+ # 包含三级来源名称和预设索引值列
886
+ # 截取 从上月1日 至 今天的花费数据, 推广款式按此数据从高到低排序(商品图+排序)
887
+ df_visitor3 = df.groupby(['日期', '三级来源'], as_index=False).agg({'访客数': 'sum'})
888
+ df_visitor3 = df_visitor3[~df_visitor3['三级来源'].isin([''])] # 指定列中删除包含空值的行
889
+ # df_visitor = df_visitor[(df_visitor['日期'] >= f'{year_my}-{last_month.month}-01')]
890
+ df_visitor3 = df_visitor3.groupby(['三级来源'], as_index=False).agg({'访客数': 'sum'})
891
+ df_visitor3.sort_values('访客数', ascending=False, ignore_index=True, inplace=True)
892
+ df_visitor3.reset_index(inplace=True)
893
+ df_visitor3['index'] = df_visitor3['index'] + 100
894
+ df_visitor3.rename(columns={'index': '三级访客索引'}, inplace=True)
895
+ df_visitor3 = df_visitor3[['三级来源', '三级访客索引']]
896
+
897
+ # 包含二级来源名称和预设索引值列
898
+ df_visitor2 = df.groupby(['日期', '二级来源'], as_index=False).agg({'访客数': 'sum'})
899
+ df_visitor2 = df_visitor2[~df_visitor2['二级来源'].isin([''])] # 指定列中删除包含空值的行
900
+ # df_visitor2 = df_visitor2[(df_visitor2['日期'] >= f'{year_my}-{last_month.month}-01')]
901
+ df_visitor2 = df_visitor2.groupby(['二级来源'], as_index=False).agg({'访客数': 'sum'})
902
+ df_visitor2.sort_values('访客数', ascending=False, ignore_index=True, inplace=True)
903
+ df_visitor2.reset_index(inplace=True)
904
+ df_visitor2['index'] = df_visitor2['index'] + 100
905
+ df_visitor2.rename(columns={'index': '二级访客索引'}, inplace=True)
906
+ df_visitor2 = df_visitor2[['二级来源', '二级访客索引']]
907
+
908
+ df = pd.merge(df, df_visitor2, how='left', left_on='二级来源', right_on='二级来源')
909
+ df = pd.merge(df, df_visitor3, how='left', left_on='三级来源', right_on='三级来源')
910
+ set_typ = {
911
+ '日期': 'date',
912
+ '一级来源': 'varchar(100)',
913
+ '二级来源': 'varchar(100)',
914
+ '三级来源': 'varchar(100)',
915
+ '访客数': 'int',
916
+ '支付金额': 'decimal(12,2)',
917
+ '支付买家数': 'int',
918
+ '支付转化率': 'decimal(10,4)',
919
+ '加购人数': 'int',
920
+ '店铺名称': 'varchar(100)',
921
+ '二级访客索引': 'smallint',
922
+ '三级访客索引': 'smallint',
346
923
  }
347
- df = self.download.data_to_df(
348
- db_name='生意参谋2',
349
- table_name='店铺来源_日数据_旧版',
350
- start_date=start_date,
351
- end_date=end_date,
352
- projection=projection,
924
+ min_date = df['日期'].min()
925
+ max_date = df['日期'].max()
926
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
927
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
928
+ m_engine.df_to_mysql(
929
+ df=df,
930
+ db_name=db_name,
931
+ table_name=table_name,
932
+ icm_update=['日期', '一级来源', '二级来源', '三级来源', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
933
+ move_insert=False, # 先删除,再插入
934
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
935
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
936
+ count=None,
937
+ filename=None, # 用来追踪处理进度
938
+ reset_id=False, # 是否重置自增列
939
+ set_typ=set_typ,
353
940
  )
354
- return df
941
+ return True
355
942
 
356
943
  @try_except
357
- def sp_cost(self):
944
+ def sp_cost(self, db_name='聚合数据', table_name='商品成本'):
358
945
  """ 电商定价 """
359
946
  data_values = self.download.columns_to_list(
360
947
  db_name='属性设置3',
@@ -362,10 +949,38 @@ class MysqlDatasQuery:
362
949
  columns_name=['日期', '款号', '年份季节', '吊牌价', '商家平台', '成本价', '天猫页面价', '天猫中促价'],
363
950
  )
364
951
  df = pd.DataFrame(data=data_values)
365
- return df
952
+ df.sort_values(by=['款号', '日期'], ascending=[False, True], ignore_index=True, inplace=True)
953
+ df.drop_duplicates(subset=['款号'], keep='last', inplace=True, ignore_index=True)
954
+ set_typ = {
955
+ '日期': 'date',
956
+ '款号': 'varchar(100)',
957
+ '年份季节': 'varchar(100)',
958
+ '吊牌价': 'decimal(10,2)',
959
+ '成本价': 'decimal(10,2)',
960
+ '天猫页面价': 'decimal(10,2)',
961
+ '天猫中促价': 'decimal(10,2)',
962
+ }
963
+ min_date = df['日期'].min()
964
+ max_date = df['日期'].max()
965
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
966
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
967
+ m_engine.df_to_mysql(
968
+ df=df,
969
+ db_name=db_name,
970
+ table_name=table_name,
971
+ icm_update=['款号'], # 增量更新, 在聚合数据中使用,其他不要用
972
+ move_insert=False, # 先删除,再插入
973
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
974
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
975
+ count=None,
976
+ filename=None, # 用来追踪处理进度
977
+ reset_id=False, # 是否重置自增列
978
+ set_typ=set_typ,
979
+ )
980
+ return True
366
981
 
367
982
  @try_except
368
- def jdjzt(self):
983
+ def jdjzt(self, db_name='聚合数据', table_name='京东_京准通'):
369
984
  start_date, end_date = self.months_data(num=self.months)
370
985
  projection = {
371
986
  '日期': 1,
@@ -391,13 +1006,60 @@ class MysqlDatasQuery:
391
1006
  end_date=end_date,
392
1007
  projection=projection,
393
1008
  )
394
- return df
1009
+ df = df.groupby(
1010
+ ['日期', '店铺名称', '产品线', '触发sku_id', '跟单sku_id', 'spu_id', '花费', '展现数', '点击数'],
1011
+ as_index=False).agg(
1012
+ **{'直接订单行': ('直接订单行', np.max),
1013
+ '直接订单金额': ('直接订单金额', np.max),
1014
+ '总订单行': ('总订单行', np.max),
1015
+ '总订单金额': ('总订单金额', np.max),
1016
+ '直接加购数': ('直接加购数', np.max),
1017
+ '总加购数': ('总加购数', np.max),
1018
+ }
1019
+ )
1020
+ df = df[df['花费'] > 0]
1021
+ set_typ = {
1022
+ '日期': 'date',
1023
+ '店铺名称': 'varchar(100)',
1024
+ '产品线': 'varchar(100)',
1025
+ '触发sku_id': 'bigint',
1026
+ '跟单sku_id': 'bigint',
1027
+ 'spu_id': 'bigint',
1028
+ '花费': 'decimal(10,2)',
1029
+ '展现数': 'int',
1030
+ '点击数': 'int',
1031
+ '直接订单行': 'int',
1032
+ '直接订单金额': 'decimal(10,2)',
1033
+ '总订单行': 'int',
1034
+ '总订单金额': 'decimal(10,2)',
1035
+ '直接加购数': 'int',
1036
+ '总加购数': 'int',
1037
+ }
1038
+ min_date = df['日期'].min()
1039
+ max_date = df['日期'].max()
1040
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1041
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
1042
+ m_engine.df_to_mysql(
1043
+ df=df,
1044
+ db_name=db_name,
1045
+ table_name=table_name,
1046
+ icm_update=['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ], # 增量更新, 在聚合数据中使用,其他不要用
1047
+ move_insert=False, # 先删除,再插入
1048
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1049
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1050
+ count=None,
1051
+ filename=None, # 用来追踪处理进度
1052
+ reset_id=False, # 是否重置自增列
1053
+ set_typ=set_typ,
1054
+ )
1055
+ return True
395
1056
 
396
1057
  @try_except
397
- def jdqzyx(self):
1058
+ def jdqzyx(self, db_name='聚合数据', table_name='京东_京准通_全站营销'):
398
1059
  start_date, end_date = self.months_data(num=self.months)
399
1060
  projection = {
400
1061
  '日期': 1,
1062
+ '店铺名称': 1,
401
1063
  '产品线': 1,
402
1064
  '花费': 1,
403
1065
  '全站投产比': 1,
@@ -415,10 +1077,51 @@ class MysqlDatasQuery:
415
1077
  end_date=end_date,
416
1078
  projection=projection,
417
1079
  )
418
- return df
1080
+ df = df.groupby(['日期', '店铺名称', '产品线', '花费'], as_index=False).agg(
1081
+ **{'全站投产比': ('全站投产比', np.max),
1082
+ '全站交易额': ('全站交易额', np.max),
1083
+ '全站订单行': ('全站订单行', np.max),
1084
+ '全站订单成本': ('全站订单成本', np.max),
1085
+ '全站费比': ('全站费比', np.max),
1086
+ '核心位置展现量': ('核心位置展现量', np.max),
1087
+ '核心位置点击量': ('核心位置点击量', np.max),
1088
+ }
1089
+ )
1090
+ df = df[df['花费'] > 0]
1091
+ set_typ = {
1092
+ '日期': 'date',
1093
+ '店铺名称': 'varchar(100)',
1094
+ '产品线': 'varchar(100)',
1095
+ '花费': 'decimal(10,2)',
1096
+ '全站投产比': 'decimal(10,2)',
1097
+ '全站交易额': 'decimal(10,2)',
1098
+ '全站订单行': 'decimal(10,2)',
1099
+ '全站订单成本': 'decimal(10,2)',
1100
+ '全站费比': 'decimal(8,4)',
1101
+ '核心位置展现量': 'int',
1102
+ '核心位置点击量': 'int',
1103
+ }
1104
+ min_date = df['日期'].min()
1105
+ max_date = df['日期'].max()
1106
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1107
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
1108
+ m_engine.df_to_mysql(
1109
+ df=df,
1110
+ db_name=db_name,
1111
+ table_name=table_name,
1112
+ icm_update=['日期', '产品线', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
1113
+ move_insert=False, # 先删除,再插入
1114
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1115
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1116
+ count=None,
1117
+ filename=None, # 用来追踪处理进度
1118
+ reset_id=False, # 是否重置自增列
1119
+ set_typ=set_typ,
1120
+ )
1121
+ return True
419
1122
 
420
1123
  @try_except
421
- def jd_gjc(self):
1124
+ def jd_gjc(self, db_name='聚合数据', table_name='京东_关键词报表'):
422
1125
  start_date, end_date = self.months_data(num=self.months)
423
1126
  projection = {
424
1127
  '日期': 1,
@@ -449,13 +1152,77 @@ class MysqlDatasQuery:
449
1152
  end_date=end_date,
450
1153
  projection=projection,
451
1154
  )
452
- return df
1155
+ df_lin = df[['计划id', '推广计划']]
1156
+ df_lin.drop_duplicates(subset=['计划id'], keep='last', inplace=True, ignore_index=True)
1157
+ df = df.groupby(
1158
+ ['日期', '产品线', '计划类型', '计划id', '搜索词', '关键词', '关键词购买类型', '广告定向类型', '展现数',
1159
+ '点击数', '花费'],
1160
+ as_index=False).agg(
1161
+ **{
1162
+ '直接订单行': ('直接订单行', np.max),
1163
+ '直接订单金额': ('直接订单金额', np.max),
1164
+ '总订单行': ('总订单行', np.max),
1165
+ '总订单金额': ('总订单金额', np.max),
1166
+ '总加购数': ('总加购数', np.max),
1167
+ '领券数': ('领券数', np.max),
1168
+ '商品关注数': ('商品关注数', np.max),
1169
+ '店铺关注数': ('店铺关注数', np.max)
1170
+ }
1171
+ )
1172
+ df = pd.merge(df, df_lin, how='left', left_on='计划id', right_on='计划id')
1173
+ df['k_是否品牌词'] = df['关键词'].str.contains('万里马|wanlima', regex=True)
1174
+ df['k_是否品牌词'] = df['k_是否品牌词'].apply(lambda x: '品牌词' if x else '')
1175
+ df['s_是否品牌词'] = df['搜索词'].str.contains('万里马|wanlima', regex=True)
1176
+ df['s_是否品牌词'] = df['s_是否品牌词'].apply(lambda x: '品牌词' if x else '')
1177
+ set_typ = {
1178
+ '日期': 'date',
1179
+ '产品线': 'varchar(100)',
1180
+ '计划类型': 'varchar(100)',
1181
+ '计划id': 'varchar(100)',
1182
+ '搜索词': 'varchar(100)',
1183
+ '关键词': 'varchar(100)',
1184
+ '关键词购买类型': 'varchar(100)',
1185
+ '广告定向类型': 'varchar(100)',
1186
+ '展现数': 'int',
1187
+ '点击数': 'int',
1188
+ '花费': 'decimal(10,2)',
1189
+ '直接订单行': 'int',
1190
+ '直接订单金额': 'decimal(12,2)',
1191
+ '总订单行': 'int',
1192
+ '总订单金额': 'decimal(12,2)',
1193
+ '总加购数': 'int',
1194
+ '领券数': 'int',
1195
+ '商品关注数': 'int',
1196
+ '店铺关注数': 'int',
1197
+ '推广计划': 'varchar(100)',
1198
+ 'k_是否品牌词': 'varchar(100)',
1199
+ 's_是否品牌词': 'varchar(100)',
1200
+ }
1201
+ min_date = df['日期'].min()
1202
+ max_date = df['日期'].max()
1203
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1204
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
1205
+ m_engine.df_to_mysql(
1206
+ df=df,
1207
+ db_name=db_name,
1208
+ table_name=table_name,
1209
+ icm_update=['日期', '产品线', '搜索词', '关键词', '展现数', '花费'], # 增量更新, 在聚合数据中使用,其他不要用
1210
+ move_insert=False, # 先删除,再插入
1211
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1212
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1213
+ count=None,
1214
+ filename=None, # 用来追踪处理进度
1215
+ reset_id=False, # 是否重置自增列
1216
+ set_typ=set_typ,
1217
+ )
1218
+ return True
453
1219
 
454
1220
  @try_except
455
- def sku_sales(self):
1221
+ def sku_sales(self, db_name='聚合数据', table_name='京东_sku_商品明细'):
456
1222
  start_date, end_date = self.months_data(num=self.months)
457
1223
  projection = {
458
1224
  '日期': 1,
1225
+ '店铺名称': 1,
459
1226
  '商品id': 1,
460
1227
  '货号': 1,
461
1228
  '成交单量': 1,
@@ -472,13 +1239,51 @@ class MysqlDatasQuery:
472
1239
  end_date=end_date,
473
1240
  projection=projection,
474
1241
  )
475
- return df
1242
+ df = df[df['商品id'] != '合计']
1243
+ df = df.groupby(['日期', '店铺名称', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数'],
1244
+ as_index=False).agg(
1245
+ **{
1246
+ '成交单量': ('成交单量', np.max),
1247
+ '成交金额': ('成交金额', np.max),
1248
+ }
1249
+ )
1250
+ set_typ = {
1251
+ '日期': 'date',
1252
+ '店铺名称': 'varchar(100)',
1253
+ '商品id': 'varchar(100)',
1254
+ '货号': 'varchar(100)',
1255
+ '访客数': 'int',
1256
+ '成交客户数': 'int',
1257
+ '加购商品件数': 'int',
1258
+ '加购人数': 'int',
1259
+ '成交单量': 'int',
1260
+ '成交金额': 'decimal(10,2)',
1261
+ }
1262
+ min_date = df['日期'].min()
1263
+ max_date = df['日期'].max()
1264
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1265
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
1266
+ m_engine.df_to_mysql(
1267
+ df=df,
1268
+ db_name=db_name,
1269
+ table_name=table_name,
1270
+ icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
1271
+ move_insert=False, # 先删除,再插入
1272
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1273
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1274
+ count=None,
1275
+ filename=None, # 用来追踪处理进度
1276
+ reset_id=False, # 是否重置自增列
1277
+ set_typ=set_typ,
1278
+ )
1279
+ return True
476
1280
 
477
1281
  @try_except
478
- def spu_sales(self):
1282
+ def spu_sales(self, db_name='聚合数据', table_name='京东_spu_商品明细'):
479
1283
  start_date, end_date = self.months_data(num=self.months)
480
1284
  projection = {
481
1285
  '日期': 1,
1286
+ '店铺名称': 1,
482
1287
  '商品id': 1,
483
1288
  '货号': 1,
484
1289
  '成交单量': 1,
@@ -495,7 +1300,44 @@ class MysqlDatasQuery:
495
1300
  end_date=end_date,
496
1301
  projection=projection,
497
1302
  )
498
- return df
1303
+ df = df[df['商品id'] != '合计']
1304
+ df = df.groupby(['日期', '店铺名称', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数'],
1305
+ as_index=False).agg(
1306
+ **{
1307
+ '成交单量': ('成交单量', np.max),
1308
+ '成交金额': ('成交金额', np.max),
1309
+ }
1310
+ )
1311
+ set_typ = {
1312
+ '日期': 'date',
1313
+ '店铺名称': 'varchar(100)',
1314
+ '商品id': 'varchar(100)',
1315
+ '货号': 'varchar(100)',
1316
+ '访客数': 'int',
1317
+ '成交客户数': 'int',
1318
+ '加购商品件数': 'int',
1319
+ '加购人数': 'int',
1320
+ '成交单量': 'int',
1321
+ '成交金额': 'decimal(10,2)',
1322
+ }
1323
+ min_date = df['日期'].min()
1324
+ max_date = df['日期'].max()
1325
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1326
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
1327
+ m_engine.df_to_mysql(
1328
+ df=df,
1329
+ db_name=db_name,
1330
+ table_name=table_name,
1331
+ icm_update=['日期', '商品id', '成交单量'], # 增量更新, 在聚合数据中使用,其他不要用
1332
+ move_insert=False, # 先删除,再插入
1333
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1334
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1335
+ count=None,
1336
+ filename=None, # 用来追踪处理进度
1337
+ reset_id=False, # 是否重置自增列
1338
+ set_typ=set_typ,
1339
+ )
1340
+ return True
499
1341
 
500
1342
  @staticmethod
501
1343
  def months_data(num=0, end_date=None):
@@ -507,7 +1349,7 @@ class MysqlDatasQuery:
507
1349
  return pd.to_datetime(start_date), pd.to_datetime(end_date)
508
1350
 
509
1351
  @try_except
510
- def se_search(self):
1352
+ def se_search(self, db_name='聚合数据', table_name='天猫店铺来源_手淘搜索'):
511
1353
  start_date, end_date = self.months_data(num=self.months)
512
1354
  projection = {
513
1355
  '日期': 1,
@@ -531,10 +1373,49 @@ class MysqlDatasQuery:
531
1373
  end_date=end_date,
532
1374
  projection=projection,
533
1375
  )
534
- return df
1376
+ df = df.groupby(
1377
+ ['日期', '店铺名称', '词类型', '搜索词'],
1378
+ as_index=False).agg(
1379
+ **{
1380
+ '访客数': ('访客数', np.max),
1381
+ '加购人数': ('加购人数', np.max),
1382
+ '支付金额': ('支付金额', np.max),
1383
+ '支付转化率': ('支付转化率', np.max),
1384
+ '支付买家数': ('支付买家数', np.max),
1385
+ '客单价': ('客单价', np.max),
1386
+ 'uv价值': ('uv价值', np.max)
1387
+ }
1388
+ )
1389
+ set_typ = {
1390
+ '日期': 'date',
1391
+ '店铺名称': 'varchar(100)',
1392
+ '词类型': 'varchar(100)',
1393
+ '搜索词': 'varchar(100)',
1394
+ '访客数': 'int',
1395
+ '加购人数': 'int',
1396
+ '支付金额': 'decimal(10,2)',
1397
+ '支付转化率': 'decimal(10,4)',
1398
+ '支付买家数': 'int',
1399
+ '客单价': 'decimal(10,2)',
1400
+ 'uv价值': 'decimal(10,2)',
1401
+ }
1402
+ m_engine.df_to_mysql(
1403
+ df=df,
1404
+ db_name=db_name,
1405
+ table_name=table_name,
1406
+ icm_update=['日期', '关键词', '访客数'], # 增量更新, 在聚合数据中使用,其他不要用
1407
+ move_insert=False, # 先删除,再插入
1408
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1409
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1410
+ count=None,
1411
+ filename=None, # 用来追踪处理进度
1412
+ reset_id=False, # 是否重置自增列
1413
+ set_typ=set_typ,
1414
+ )
1415
+ return True
535
1416
 
536
1417
  @try_except
537
- def zb_ccfx(self):
1418
+ def zb_ccfx(self, db_name='聚合数据', table_name='生意参谋_直播场次分析'):
538
1419
  start_date, end_date = self.months_data(num=self.months)
539
1420
  projection = {
540
1421
  # '日期': 1,
@@ -577,10 +1458,102 @@ class MysqlDatasQuery:
577
1458
  end_date=end_date,
578
1459
  projection=projection,
579
1460
  )
580
- return df
1461
+ df.drop_duplicates(subset=['场次id'], keep='first', inplace=True, ignore_index=True)
1462
+ set_typ = {
1463
+ '日期': 'DATE',
1464
+ '店铺名称': 'varchar(100)',
1465
+ 'fvr_pv': 'int',
1466
+ '封面图点击率': 'decimal(10,4)',
1467
+ 'itrt_pv ': 'int',
1468
+ '开播时长': 'smallint',
1469
+ '成交笔数': 'smallint',
1470
+ 'aov': 'decimal(10,2)',
1471
+ '退款金额': 'decimal(12,2)',
1472
+ '曝光pv': 'int',
1473
+ '场次信息': 'varchar(255)',
1474
+ 'cmt_uv': 'int',
1475
+ '退款件数占比': 'decimal(10,4)',
1476
+ 'reward_gift_cnt': 'smallint',
1477
+ '观看人数': 'int',
1478
+ '开播时长_f': 'varchar(100)',
1479
+ 'reward_uv_rate': 'smallint',
1480
+ 'fvr_uv': 'int',
1481
+ '直播开播时间': 'datetime',
1482
+ '商品点击率': 'decimal(10,4)',
1483
+ '加购次数': 'smallint',
1484
+ '成交转化率': 'decimal(10,4)',
1485
+ 'atv': 'decimal(10,2)',
1486
+ '成交金额': 'decimal(12,2)',
1487
+ '退款人数': 'smallint',
1488
+ 'index': 'smallint',
1489
+ '预售定金支付人数': 'smallint',
1490
+ '加购访客': 'smallint',
1491
+ '商品点击次数': 'int',
1492
+ '退款笔数': 'smallint',
1493
+ 'itrt_uv': 'smallint',
1494
+ '成交人数': 'smallint',
1495
+ '观看总时长': 'varchar(100)',
1496
+ '加购访客转化率': 'decimal(10,4)',
1497
+ 'subpay_order_cnt': 'smallint',
1498
+ 'cmt_pv': 'int',
1499
+ '商品点击人数': 'int',
1500
+ 'status': 'int',
1501
+ '商品曝光uv': 'int',
1502
+ '预售定金支付件数': 'smallint',
1503
+ '预售预估总金额': 'decimal(12,2)',
1504
+ '退款笔数占比': 'decimal(10,4)',
1505
+ 'reward_pv': 'int',
1506
+ '访客点击量': 'int',
1507
+ 'aiv': 'decimal(10,2)',
1508
+ 'shr_uv': 'int',
1509
+ '浏览点击量': 'int',
1510
+ '场次图片': 'text',
1511
+ 'user_role': 'varchar(100)',
1512
+ '退款人数占比': 'decimal(10,4)',
1513
+ '退款件数': 'smallint',
1514
+ '新增粉丝数': 'smallint',
1515
+ '场均观看时长': 'decimal(10,2)',
1516
+ '人均观看时长': 'decimal(10,2)',
1517
+ '加购人数': 'smallint',
1518
+ 'reward_uv': 'smallint',
1519
+ '直播结束时间': 'datetime',
1520
+ '商品曝光pv': 'int',
1521
+ 'shr_pv': 'int',
1522
+ '场次id': 'bigint',
1523
+ 'look_pv_flowcontrol': 'smallint',
1524
+ '退款率': 'decimal(10,4)',
1525
+ 'is_delete': 'varchar(50)',
1526
+ 'atn_uv_rate': 'decimal(10,4)',
1527
+ '成交件数': 'smallint',
1528
+ '最大在线人数': 'int',
1529
+ '曝光uv': 'int',
1530
+ '加购件数': 'smallint',
1531
+ '预售定金支付金额': 'decimal(12,2)',
1532
+ '观看次数': 'int',
1533
+ '封面图': 'text',
1534
+ '更新时间': 'timestamp',
1535
+ }
1536
+ min_date = df['日期'].min()
1537
+ max_date = df['日期'].max()
1538
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1539
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
1540
+ m_engine.df_to_mysql(
1541
+ df=df,
1542
+ db_name=db_name,
1543
+ table_name=table_name,
1544
+ icm_update=['场次id'], # 增量更新, 在聚合数据中使用,其他不要用
1545
+ move_insert=False, # 先删除,再插入
1546
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1547
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1548
+ count=None,
1549
+ filename=None, # 用来追踪处理进度
1550
+ reset_id=False, # 是否重置自增列
1551
+ set_typ=set_typ,
1552
+ )
1553
+ return True
581
1554
 
582
1555
  # @try_except
583
- def tg_by_day(self):
1556
+ def tg_by_day(self, db_name='聚合数据', table_name='多店推广场景_按日聚合'):
584
1557
  """
585
1558
  汇总各个店铺的推广数据,按日汇总
586
1559
  """
@@ -768,26 +1741,69 @@ class MysqlDatasQuery:
768
1741
  end_date=end_date,
769
1742
  projection=projection,
770
1743
  )
771
- df_jd_qzyx = df_jd_qzyx.groupby(['日期', '店铺名称', '产品线', '花费'], as_index=False).agg(
772
- **{'全站投产比': ('全站投产比', np.max),
773
- '成交金额': ('全站交易额', np.max),
774
- '成交笔数': ('全站订单行', np.max),
775
- '全站订单成本': ('全站订单成本', np.max),
776
- '全站费比': ('全站费比', np.max),
777
- '展现量': ('核心位置展现量', np.max),
778
- '点击量': ('核心位置点击量', np.max),
779
- }
780
- )
781
- df_jd_qzyx.rename(columns={'产品线': '营销场景'}, inplace=True)
782
- df_jd_qzyx = df_jd_qzyx[['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量', '成交笔数', '成交金额']]
783
- df_jd_qzyx = df_jd_qzyx[df_jd_qzyx['花费'] > 0]
1744
+ if len(df_jd_qzyx) > 0:
1745
+ df_jd_qzyx = df_jd_qzyx.groupby(['日期', '店铺名称', '产品线', '花费'], as_index=False).agg(
1746
+ **{'全站投产比': ('全站投产比', np.max),
1747
+ '成交金额': ('全站交易额', np.max),
1748
+ '成交笔数': ('全站订单行', np.max),
1749
+ '全站订单成本': ('全站订单成本', np.max),
1750
+ '全站费比': ('全站费比', np.max),
1751
+ '展现量': ('核心位置展现量', np.max),
1752
+ '点击量': ('核心位置点击量', np.max),
1753
+ }
1754
+ )
1755
+ df_jd_qzyx.rename(columns={'产品线': '营销场景'}, inplace=True)
1756
+ df_jd_qzyx = df_jd_qzyx[['日期', '店铺名称', '营销场景', '花费', '展现量', '点击量', '成交笔数', '成交金额']]
1757
+ df_jd_qzyx = df_jd_qzyx[df_jd_qzyx['花费'] > 0]
784
1758
 
785
1759
  _datas = [item for item in [df_tm, df_tb, df_tm_pxb, df_tm_living, df_jd, df_jd_qzyx] if len(item) > 0] # 阻止空的 dataframe
786
1760
  df = pd.concat(_datas, axis=0, ignore_index=True)
787
- return df
1761
+ df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore') # 转换日期列
1762
+ df = df.groupby(
1763
+ ['日期', '店铺名称', '营销场景'],
1764
+ as_index=False).agg(
1765
+ **{
1766
+ '花费': ('花费', np.sum),
1767
+ '展现量': ('展现量', np.sum),
1768
+ '点击量': ('点击量', np.sum),
1769
+ '加购量': ('加购量', np.sum),
1770
+ '成交笔数': ('成交笔数', np.sum),
1771
+ '成交金额': ('成交金额', np.sum)
1772
+ }
1773
+ )
1774
+ df.sort_values(['日期', '店铺名称', '花费'], ascending=[False, False, False], ignore_index=True, inplace=True)
1775
+ set_typ = {
1776
+ '日期': 'date',
1777
+ '店铺名称': 'varchar(100)',
1778
+ '营销场景': 'varchar(100)',
1779
+ '花费': 'decimal(12,2)',
1780
+ '展现量': 'int',
1781
+ '点击量': 'int',
1782
+ '加购量': 'int',
1783
+ '成交笔数': 'int',
1784
+ '成交金额': 'decimal(12,2)',
1785
+ }
1786
+ min_date = df['日期'].min()
1787
+ max_date = df['日期'].max()
1788
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1789
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
1790
+ m_engine.df_to_mysql(
1791
+ df=df,
1792
+ db_name=db_name,
1793
+ table_name=table_name,
1794
+ icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
1795
+ move_insert=False, # 先删除,再插入
1796
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1797
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1798
+ count=None,
1799
+ filename=None, # 用来追踪处理进度
1800
+ reset_id=False, # 是否重置自增列
1801
+ set_typ=set_typ,
1802
+ )
1803
+ return True
788
1804
 
789
1805
  @try_except
790
- def aikucun_bd_spu(self):
1806
+ def aikucun_bd_spu(self, db_name='聚合数据', table_name='爱库存_商品spu榜单'):
791
1807
  start_date, end_date = self.months_data(num=self.months)
792
1808
  projection = {
793
1809
  '日期': 1,
@@ -833,10 +1849,45 @@ class MysqlDatasQuery:
833
1849
  end_date=end_date,
834
1850
  projection=projection,
835
1851
  )
836
- return df
1852
+ df.drop_duplicates(
1853
+ subset=[
1854
+ '日期',
1855
+ '店铺名称',
1856
+ 'spu_id',
1857
+ '访客量',
1858
+ '浏览量',
1859
+ '下单gmv',
1860
+ '成交gmv',
1861
+ ], keep='last', inplace=True, ignore_index=True)
1862
+ set_typ = {
1863
+ '日期': 'date',
1864
+ '店铺名称': 'varchar(100)',
1865
+ '序号': 'int',
1866
+ 'spu_id': 'varchar(100)',
1867
+ '图片': 'varchar(255)',
1868
+ '数据更新时间': 'timestamp',
1869
+ }
1870
+ min_date = df['日期'].min()
1871
+ max_date = df['日期'].max()
1872
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1873
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
1874
+ m_engine.df_to_mysql(
1875
+ df=df,
1876
+ db_name=db_name,
1877
+ table_name=table_name,
1878
+ icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
1879
+ move_insert=False, # 先删除,再插入
1880
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1881
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1882
+ count=None,
1883
+ filename=None, # 用来追踪处理进度
1884
+ reset_id=False, # 是否重置自增列
1885
+ set_typ=set_typ,
1886
+ )
1887
+ return True
837
1888
 
838
1889
  @try_except
839
- def dmp_crowd(self):
1890
+ def dmp_crowd(self, db_name='聚合数据', table_name='达摩盘_人群报表'):
840
1891
  start_date, end_date = self.months_data(num=self.months)
841
1892
  projection = {
842
1893
  '日期': 1,
@@ -876,702 +1927,71 @@ class MysqlDatasQuery:
876
1927
  # df.to_csv('/Users/xigua/Downloads/test3.csv', index=False, header=True, encoding='utf-8_sig')
877
1928
  # breakpoint()
878
1929
  df.rename(columns={'消耗_元': '消耗'}, inplace=True)
879
- return df
880
-
881
-
882
-
883
- class GroupBy:
884
- """
885
- 数据聚合和导出
886
- """
887
- def __init__(self):
888
- # self.output: 数据库默认导出目录
889
- if platform.system() == 'Darwin':
890
- self.output = os.path.join('/Users', getpass.getuser(), '数据中心/数据库导出')
891
- elif platform.system() == 'Windows':
892
- self.output = os.path.join('C:\\同步空间\\BaiduSyncdisk\\数据库导出')
893
- else:
894
- self.output = os.path.join('数据中心/数据库导出')
895
- self.data_tgyj = {} # 推广综合聚合数据表
896
- self.data_jdtg = {} # 京东推广数据,聚合数据
897
- self.sp_index_datas = pd.DataFrame() # 商品 id 索引表
898
-
899
- @staticmethod
900
- def try_except(func): # 在类内部定义一个异常处理方法
901
- @wraps(func)
902
- def wrapper(*args, **kwargs):
903
- try:
904
- return func(*args, **kwargs)
905
- except Exception as e:
906
- print(f'{func.__name__}, {e}') # 将异常信息返回
907
-
908
- return wrapper
909
-
910
- # @try_except
911
- def groupby(self, df, table_name, is_maximize=True):
912
- """
913
- self.is_maximize: 是否最大转化数据
914
- table_name: 聚合数据库处的名称,不是原始数据库
915
- """
916
- if isinstance(df, pd.DataFrame):
917
- if len(df) == 0:
918
- print(f' query_data.groupby 函数中 {table_name} 传入的 df 数据长度为0')
919
- self.data_tgyj.update(
920
- {
921
- table_name: pd.DataFrame(),
922
- }
923
- )
924
- return pd.DataFrame()
925
- # elif '多店推广场景_按日聚合' in table_name: # 这个函数传递的是多个 df 组成的列表,暂时放行
926
- # pass
927
- else:
928
- print(f'query_data.groupby函数中 {table_name} 传入的 df 不是 dataframe 结构')
929
- return pd.DataFrame()
930
- # print(table_name)
931
- if '天猫_主体报表' in table_name:
932
- df.rename(columns={
933
- '场景名字': '营销场景',
934
- '主体id': '商品id',
935
- '总购物车数': '加购量',
936
- '总成交笔数': '成交笔数',
937
- '总成交金额': '成交金额'
938
- }, inplace=True)
939
- df.fillna(0, inplace=True)
940
- df = df.astype({
941
- '商品id': str,
942
- '花费': float,
943
- '展现量': int,
944
- '点击量': int,
945
- '加购量': int,
946
- '成交笔数': int,
947
- '成交金额': float,
948
- '自然流量曝光量': int,
949
- '直接成交笔数': int,
950
- '直接成交金额': float,
951
- }, errors='raise')
952
- if is_maximize:
953
- df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
954
- **{'加购量': ('加购量', np.max),
955
- '成交笔数': ('成交笔数', np.max),
956
- '成交金额': ('成交金额', np.max),
957
- '自然流量曝光量': ('自然流量曝光量', np.max),
958
- '直接成交笔数': ('直接成交笔数', np.max),
959
- '直接成交金额': ('直接成交金额', np.max)
960
- }
961
- )
962
- else:
963
- df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
964
- **{
965
- '加购量': ('加购量', np.min),
966
- '成交笔数': ('成交笔数', np.min),
967
- '成交金额': ('成交金额', np.min),
968
- '自然流量曝光量': ('自然流量曝光量', np.min),
969
- '直接成交笔数': ('直接成交笔数', np.max),
970
- '直接成交金额': ('直接成交金额', np.max)
971
- }
972
- )
973
- df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
974
- df_new = df.groupby(['日期', '店铺名称', '商品id'], as_index=False).agg(
975
- **{
976
- '花费': ('花费', np.sum),
977
- '成交笔数': ('成交笔数', np.max),
978
- '成交金额': ('成交金额', np.max),
979
- '自然流量曝光量': ('自然流量曝光量', np.max),
980
- '直接成交笔数': ('直接成交笔数', np.max),
981
- '直接成交金额': ('直接成交金额', np.max)
982
- }
983
- )
984
- self.data_tgyj.update(
985
- {
986
- table_name: df_new,
987
- }
988
- )
989
- self.data_tgyj.update(
990
- {
991
- '天猫汇总表调用': df,
992
- }
993
- )
994
- # df_pic:商品排序索引表, 给 powerbi 中的主推款排序用的,(从上月1号到今天的总花费进行排序)
995
- today = datetime.date.today()
996
- last_month = today - datetime.timedelta(days=30)
997
- if last_month.month == 12:
998
- year_my = today.year - 1
999
- else:
1000
- year_my = today.year
1001
- # 截取 从上月1日 至 今天的花费数据, 推广款式按此数据从高到低排序(商品图+排序)
1002
- df_pic_lin = df[df['店铺名称'] == '万里马官方旗舰店']
1003
- df_pic = df_pic_lin.groupby(['日期', '商品id'], as_index=False).agg({'花费': 'sum'})
1004
- df_pic = df_pic[~df_pic['商品id'].isin([''])] # 指定列中删除包含空值的行
1005
- date_obj = datetime.datetime.strptime(f'{year_my}-{last_month.month}-01', '%Y-%m-%d').date()
1006
- df_pic = df_pic[(df_pic['日期'] >= date_obj)]
1007
- df_pic = df_pic.groupby(['商品id'], as_index=False).agg({'花费': 'sum'})
1008
- df_pic.sort_values('花费', ascending=False, ignore_index=True, inplace=True)
1009
- df_pic.reset_index(inplace=True)
1010
- df_pic['index'] = df_pic['index'] + 100
1011
- df_pic.rename(columns={'index': '商品索引'}, inplace=True)
1012
- df_pic_new = pd.merge(df_pic_lin, df_pic, how='left', on=['商品id'])
1013
- df_pic_new['商品索引'].fillna(1000, inplace=True)
1014
- self.sp_index_datas = df_pic_new[['商品id', '商品索引']] # 商品索引表_主推排序调用
1015
- return df
1016
- elif '商品索引表' in table_name:
1017
- return df
1018
- elif '爱库存_商品spu榜单' in table_name:
1019
- df.drop_duplicates(
1020
- subset=[
1021
- '日期',
1022
- '店铺名称',
1023
- 'spu_id',
1024
- '访客量',
1025
- '浏览量',
1026
- '下单gmv',
1027
- '成交gmv',
1028
- ], keep='last', inplace=True, ignore_index=True)
1029
- return df
1030
- elif '天猫_人群报表' in table_name and '达摩盘' not in table_name:
1031
- """
1032
- 天猫推广人群报表独立生成消费力、年龄层、分类等特征,不依赖于达摩盘数据表
1033
- """
1034
- df.rename(columns={
1035
- '场景名字': '营销场景',
1036
- '主体id': '商品id',
1037
- '总购物车数': '加购量',
1038
- '总成交笔数': '成交笔数',
1039
- '总成交金额': '成交金额'
1040
- }, inplace=True)
1041
- df.fillna(0, inplace=True)
1042
- df = df.astype({
1043
- '商品id': str,
1044
- '花费': float,
1045
- '展现量': int,
1046
- '点击量': int,
1047
- '加购量': int,
1048
- '成交笔数': int,
1049
- '成交金额': float,
1050
- '直接成交笔数': int,
1051
- '直接成交金额': float,
1052
- }, errors='raise')
1053
- if is_maximize:
1054
- df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '展现量', '点击量', '人群名字'], as_index=False).agg(
1055
- **{'加购量': ('加购量', np.max),
1056
- '成交笔数': ('成交笔数', np.max),
1057
- '成交金额': ('成交金额', np.max),
1058
- '直接成交笔数': ('直接成交笔数', np.max),
1059
- '直接成交金额': ('直接成交金额', np.max)
1060
- }
1061
- )
1062
- else:
1063
- df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '花费', '展现量', '点击量', '人群名字'], as_index=False).agg(
1064
- **{
1065
- '加购量': ('加购量', np.min),
1066
- '成交笔数': ('成交笔数', np.min),
1067
- '成交金额': ('成交金额', np.min),
1068
- '直接成交笔数': ('直接成交笔数', np.max),
1069
- '直接成交金额': ('直接成交金额', np.max)
1070
- }
1071
- )
1072
- df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
1073
- # 1. 匹配 L后面接 2 个或以上数字,不区分大小写,示例:L345
1074
- # 2. 其余情况,L 后面接多个数字的都会被第一条 if 命中,不区分大小写
1075
- df['消费力层级'] = df.apply(
1076
- lambda x:
1077
- ''.join(re.findall(r'(l\d+)', x['人群名字'].upper(), re.IGNORECASE)) if re.findall(r'(l\d{2,})', x['人群名字'], re.IGNORECASE)
1078
- else 'L5' if re.findall(r'(l\d*5)', x['人群名字'], re.IGNORECASE)
1079
- else 'L4' if re.findall(r'(l\d*4)', x['人群名字'], re.IGNORECASE)
1080
- else 'L3' if re.findall(r'(l\d*3)', x['人群名字'], re.IGNORECASE)
1081
- else 'L2' if re.findall(r'(l\d*2)', x['人群名字'], re.IGNORECASE)
1082
- else 'L1' if re.findall(r'(l\d*1)', x['人群名字'], re.IGNORECASE)
1083
- else '', axis=1)
1084
- # 1. 匹配连续的 4 个数字且后面不能接数字或"元"或汉字,筛掉的人群示例:月均消费6000元|受众20240729175213|xxx2024真皮公文包
1085
- # 2. 匹配 2数字_2数字且前面不能是数字,合法匹配:人群_30_50_促; 非法示例:L345_3040 避免识别出 35~20 岁用户的情况
1086
- # pattern = r'(\d{4})(?!\d|[\u4e00-\u9fa5])' # 匹配 4 个数字,后面不能接数字或汉字
1087
- # pattern = r'(?<![\d\u4e00-\u9fa5])(\d{4})' # 匹配前面不是数字或汉字的 4 个连续数字
1088
-
1089
- # 匹配 4 个数字,前面和后面都不能是数字或汉字
1090
- pattern1 = r'(?<![\d\u4e00-\u9fa5])(\d{4})(?!\d|[\u4e00-\u9fa5])'
1091
- # 匹配指定字符,前面不能是数字或 l 或 L 开头
1092
- pattern2 = r'(?<![\dlL])(\d{2}_\d{2})'
1093
- df['用户年龄'] = df.apply(
1094
- lambda x:
1095
- ''.join(re.findall(pattern1, x['人群名字'].upper())) if re.findall(pattern1, x['人群名字'])
1096
- # else ''.join(re.findall(r'[^\d|l|L](\d{2}_\d{2})', x['人群名字'].upper())) if re.findall(r'[^\d|l|L](\d{2}_\d{2})', x['人群名字'])
1097
- else ''.join(re.findall(pattern2, x['人群名字'].upper())) if re.findall(pattern2, x['人群名字'])
1098
- else ''.join(re.findall(r'(\d{2}-\d{2})岁', x['人群名字'].upper())) if re.findall(r'(\d{2}-\d{2})岁', x['人群名字'])
1099
- else '', axis=1)
1100
- df['用户年龄'] = df['用户年龄'].apply(
1101
- lambda x: f'{x[:2]}~{x[2:4]}' if str(x).isdigit()
1102
- else str(x).replace('_', '~') if '_' in x
1103
- else str(x).replace('-', '~') if '-' in x
1104
- else x
1105
- )
1106
- # 年龄层不能是 0 开头
1107
- df['用户年龄'] = df['用户年龄'].apply(
1108
- lambda x: '' if str(x).startswith('0') else x)
1109
- # df = df.head(1000)
1110
- # df.to_csv('/Users/xigua/Downloads/test.csv', index=False, header=True, encoding='utf-8_sig')
1111
- # breakpoint()
1112
-
1113
- # 下面是添加人群 AIPL 分类
1114
- dir_file = f'\\\\192.168.1.198\\时尚事业部\\01.运营部\\0-电商周报-每周五更新\\分类配置文件.xlsx'
1115
- dir_file2 = '/Volumes/时尚事业部/01.运营部/0-电商周报-每周五更新/分类配置文件.xlsx'
1116
- if platform.system() == 'Windows':
1117
- dir_file3 = 'C:\\同步空间\\BaiduSyncdisk\\原始文件2\\分类配置文件.xlsx'
1118
- else:
1119
- dir_file3 = '/Users/xigua/数据中心/原始文件2/分类配置文件.xlsx'
1120
- if not os.path.isfile(dir_file):
1121
- dir_file = dir_file2
1122
- if not os.path.isfile(dir_file):
1123
- dir_file = dir_file3
1124
- if os.path.isfile(dir_file):
1125
- df_fl = pd.read_excel(dir_file, sheet_name='人群分类', header=0)
1126
- df_fl = df_fl[['人群名字', '人群分类']]
1127
- # 合并并获取分类信息
1128
- df = pd.merge(df, df_fl, left_on=['人群名字'], right_on=['人群名字'], how='left')
1129
- df['人群分类'].fillna('', inplace=True)
1130
- if '人群分类' in df.columns.tolist():
1131
- # 这行决定了,从文件中读取的分类信息优先级高于内部函数的分类规则
1132
- # 这个 lambda 适配人群名字中带有特定标识的分类,强匹配
1133
- df['人群分类'] = df.apply(
1134
- lambda x: self.set_crowd(keyword=str(x['人群名字']), as_file=False) if x['人群分类'] == ''
1135
- else x['人群分类'], axis=1
1136
- )
1137
- # 这个 lambda 适配人群名字中聚类的特征字符,弱匹配
1138
- df['人群分类'] = df.apply(
1139
- lambda x: self.set_crowd2(keyword=str(x['人群名字']), as_file=False) if x['人群分类'] == ''
1140
- else x['人群分类'], axis=1
1141
- )
1142
- else:
1143
- df['人群分类'] = df['人群名字'].apply(lambda x: self.set_crowd(keyword=str(x), as_file=False))
1144
- df['人群分类'] = df.apply(
1145
- lambda x: self.set_crowd2(keyword=str(x['人群名字']), as_file=False) if x['人群分类'] == ''
1146
- else x['人群分类'], axis=1
1147
- )
1148
- df['人群分类'] = df['人群分类'].apply(lambda x: str(x).upper() if x else x)
1149
- # df.to_csv('/Users/xigua/Downloads/test_人群分类.csv', index=False, header=True, encoding='utf-8_sig')
1150
- # breakpoint()
1151
- return df
1152
- elif '天猫_关键词报表' in table_name:
1153
- df.rename(columns={
1154
- '场景名字': '营销场景',
1155
- '宝贝id': '商品id',
1156
- '总购物车数': '加购量',
1157
- '总成交笔数': '成交笔数',
1158
- '总成交金额': '成交金额'
1159
- }, inplace=True)
1160
- df.fillna(0, inplace=True)
1161
- df = df.astype({
1162
- '商品id': str,
1163
- '花费': float,
1164
- '展现量': int,
1165
- '点击量': int,
1166
- '加购量': int,
1167
- '成交笔数': int,
1168
- '成交金额': float,
1169
- '直接成交笔数': int,
1170
- '直接成交金额': float,
1171
- }, errors='raise')
1172
- if is_maximize:
1173
- df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '词类型', '词名字_词包名字', '花费', '展现量', '点击量'], as_index=False).agg(
1174
- **{'加购量': ('加购量', np.max),
1175
- '成交笔数': ('成交笔数', np.max),
1176
- '成交金额': ('成交金额', np.max),
1177
- '直接成交笔数': ('直接成交笔数', np.max),
1178
- '直接成交金额': ('直接成交金额', np.max)
1179
- }
1180
- )
1181
- else:
1182
- df = df.groupby(['日期', '店铺名称', '营销场景', '商品id', '词类型', '词名字_词包名字', '花费', '展现量', '点击量'], as_index=False).agg(
1183
- **{
1184
- '加购量': ('加购量', np.min),
1185
- '成交笔数': ('成交笔数', np.min),
1186
- '成交金额': ('成交金额', np.min),
1187
- '直接成交笔数': ('直接成交笔数', np.max),
1188
- '直接成交金额': ('直接成交金额', np.max)
1189
- }
1190
- )
1191
- df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
1192
- df['是否品牌词'] = df['词名字_词包名字'].str.contains('万里马|wanlima', regex=True)
1193
- df['是否品牌词'] = df['是否品牌词'].apply(lambda x: '品牌词' if x else '')
1194
- dir_file = f'\\\\192.168.1.198\\时尚事业部\\01.运营部\\0-电商周报-每周五更新\\分类配置文件.xlsx'
1195
- dir_file2 = '/Volumes/时尚事业部/01.运营部/0-电商周报-每周五更新/分类配置文件.xlsx'
1196
- if not os.path.isfile(dir_file):
1197
- dir_file = dir_file2
1198
- if os.path.isfile(dir_file):
1199
- df_fl = pd.read_excel(dir_file, sheet_name='关键词分类', header=0)
1200
- # df_fl.rename(columns={'分类1': '词分类'}, inplace=True)
1201
- df_fl = df_fl[['关键词', '词分类']]
1202
- # 合并并获取词分类信息
1203
- df = pd.merge(df, df_fl, left_on=['词名字_词包名字'], right_on=['关键词'], how='left')
1204
- df.pop('关键词')
1205
- df['词分类'].fillna('', inplace=True)
1206
- if '词分类' in df.columns.tolist():
1207
- # 这行决定了,从文件中读取的词分类信息优先级高于 ret_keyword 函数的词分类
1208
- df['词分类'] = df.apply(
1209
- lambda x: self.ret_keyword(keyword=str(x['词名字_词包名字']), as_file=False) if x['词分类'] == ''
1210
- else x['词分类'], axis=1
1211
- )
1212
- else:
1213
- df['词分类'] = df['词名字_词包名字'].apply(lambda x: self.ret_keyword(keyword=str(x), as_file=False))
1214
- # df.to_csv('/Users/xigua/Downloads/test.csv', index=False, header=True, encoding='utf-8_sig')
1215
- # breakpoint()
1216
- return df
1217
- elif '天猫_超级直播' in table_name:
1218
- df.rename(columns={
1219
- '观看次数': '观看次数',
1220
- '总购物车数': '加购量',
1221
- '总成交笔数': '成交笔数',
1222
- '总成交金额': '成交金额',
1223
- '场景名字': '营销场景',
1224
- }, inplace=True)
1225
- df['营销场景'] = '超级直播'
1226
- df.fillna(0, inplace=True)
1227
- df = df.astype({
1228
- '花费': float,
1229
- # '点击量': int,
1230
- '加购量': int,
1231
- '成交笔数': int,
1232
- '成交金额': float,
1233
- '进店量': int,
1234
- '粉丝关注量': int,
1235
- '观看次数': int,
1236
- }, errors='raise')
1237
- if is_maximize:
1238
- df = df.groupby(['日期', '店铺名称', '营销场景', '人群名字', '计划名字', '花费', '观看次数', '展现量'],
1239
- as_index=False).agg(
1240
- **{
1241
- '进店量': ('进店量', np.max),
1242
- '粉丝关注量': ('粉丝关注量', np.max),
1243
- '加购量': ('加购量', np.max),
1244
- '成交笔数': ('成交笔数', np.max),
1245
- '成交金额': ('成交金额', np.max),
1246
- '直接成交笔数': ('直接成交笔数', np.max),
1247
- '直接成交金额': ('直接成交金额', np.max),
1248
- }
1249
- )
1250
- else:
1251
- df = df.groupby(['日期', '店铺名称', '营销场景', '人群名字', '计划名字', '花费', '观看次数', '展现量'],
1252
- as_index=False).agg(
1253
- **{
1254
- '进店量': ('进店量', np.min),
1255
- '粉丝关注量': ('粉丝关注量', np.min),
1256
- '加购量': ('加购量', np.min),
1257
- '成交笔数': ('成交笔数', np.min),
1258
- '成交金额': ('成交金额', np.min),
1259
- '直接成交笔数': ('直接成交笔数', np.min),
1260
- '直接成交金额': ('直接成交金额', np.min),
1261
- }
1262
- )
1263
- df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
1264
- # df.insert(loc=2, column='营销场景', value='超级直播') # df中插入新列
1265
- # df = df.loc[df['日期'].between(start_day, today)]
1266
- df_new = df.groupby(['日期', '店铺名称', '推广渠道', '营销场景'], as_index=False).agg(
1267
- **{
1268
- '花费': ('花费', np.sum),
1269
- '展现量': ('展现量', np.sum),
1270
- '观看次数': ('观看次数', np.sum),
1271
- '加购量': ('加购量', np.sum),
1272
- '成交笔数': ('成交笔数', np.sum),
1273
- '成交金额': ('成交金额', np.sum),
1274
- '直接成交笔数': ('直接成交笔数', np.sum),
1275
- '直接成交金额': ('直接成交金额', np.sum),
1276
- }
1277
- )
1278
- self.data_tgyj.update(
1279
- {
1280
- table_name: df_new,
1281
- }
1282
- )
1283
- return df
1284
- elif '天猫_品销宝账户报表' in table_name:
1285
- df = df[df['报表类型'] == '账户']
1286
- df.fillna(value=0, inplace=True)
1287
- df.rename(columns={
1288
- '消耗': '花费',
1289
- '宝贝加购数': '加购量',
1290
- '搜索量': '品牌搜索量',
1291
- '搜索访客数': '品牌搜索人数'
1292
- }, inplace=True)
1293
- df = df.astype({
1294
- '花费': float,
1295
- '展现量': int,
1296
- '点击量': int,
1297
- '加购量': int,
1298
- '成交笔数': int,
1299
- '成交金额': float,
1300
- '品牌搜索量': int,
1301
- '品牌搜索人数': int,
1302
- }, errors='raise')
1303
- if is_maximize:
1304
- df = df.groupby(['日期', '店铺名称', '报表类型', '花费', '展现量', '点击量'], as_index=False).agg(
1305
- **{
1306
- '加购量': ('加购量', np.max),
1307
- '成交笔数': ('成交笔数', np.max),
1308
- '成交金额': ('成交金额', np.max),
1309
- '品牌搜索量': ('品牌搜索量', np.max),
1310
- '品牌搜索人数': ('品牌搜索人数', np.max),
1311
- }
1312
- )
1313
- else:
1314
- df = df.groupby(['日期', '店铺名称', '报表类型', '花费', '展现量', '点击量'], as_index=False).agg(
1315
- **{
1316
- '加购量': ('加购量', np.min),
1317
- '成交笔数': ('成交笔数', np.min),
1318
- '成交金额': ('成交金额', np.min),
1319
- '品牌搜索量': ('品牌搜索量', np.min),
1320
- '品牌搜索人数': ('品牌搜索人数', np.min),
1321
- }
1322
- )
1323
- df.insert(loc=1, column='推广渠道', value='品销宝') # df中插入新列
1324
- df.insert(loc=2, column='营销场景', value='品销宝') # df中插入新列
1325
- df_new = df.groupby(['日期', '店铺名称', '推广渠道', '营销场景'], as_index=False).agg(
1326
- **{
1327
- '花费': ('花费', np.sum),
1328
- '展现量': ('展现量', np.sum),
1329
- '点击量': ('点击量', np.sum),
1330
- '加购量': ('加购量', np.sum),
1331
- '成交笔数': ('成交笔数', np.sum),
1332
- '成交金额': ('成交金额', np.sum)
1333
- }
1334
- )
1335
- self.data_tgyj.update(
1336
- {
1337
- table_name: df_new,
1338
- }
1339
- )
1340
- return df
1341
- elif '宝贝指标' in table_name:
1342
- """ 聚合时不可以加商家编码,编码有些是空白,有些是 0 """
1343
- df['宝贝id'] = df['宝贝id'].astype(str)
1344
- df.fillna(0, inplace=True)
1345
- # df = df[(df['销售额'] != 0) | (df['退款额'] != 0)] # 注释掉, 因为后续使用生意经作为基准合并推广表,需确保所有商品id 齐全
1346
- df = df.groupby(['日期', '店铺名称', '宝贝id', '行业类目'], as_index=False).agg(
1347
- **{'销售额': ('销售额', np.min),
1348
- '销售量': ('销售量', np.min),
1349
- '订单数': ('订单数', np.min),
1350
- '退货量': ('退货量', np.max),
1351
- '退款额': ('退款额', np.max),
1352
- '退款额_发货后': ('退款额_发货后', np.max),
1353
- '退货量_发货后': ('退货量_发货后', np.max),
1354
- }
1355
- )
1356
- df['件均价'] = df.apply(lambda x: x['销售额'] / x['销售量'] if x['销售量'] > 0 else 0, axis=1).round(
1357
- 0) # 两列运算, 避免除以0
1358
- df['价格带'] = df['件均价'].apply(
1359
- lambda x: '2000+' if x >= 2000
1360
- else '1000+' if x >= 1000
1361
- else '500+' if x >= 500
1362
- else '300+' if x >= 300
1363
- else '300以下'
1364
- )
1365
- self.data_tgyj.update(
1366
- {
1367
- table_name: df[['日期', '店铺名称', '宝贝id', '销售额', '销售量', '退款额_发货后', '退货量_发货后']],
1368
- }
1369
- )
1370
- return df
1371
- elif '店铺流量来源构成' in table_name:
1372
- # 包含三级来源名称和预设索引值列
1373
- # 截取 从上月1日 至 今天的花费数据, 推广款式按此数据从高到低排序(商品图+排序)
1374
- df_visitor3 = df.groupby(['日期', '三级来源'], as_index=False).agg({'访客数': 'sum'})
1375
- df_visitor3 = df_visitor3[~df_visitor3['三级来源'].isin([''])] # 指定列中删除包含空值的行
1376
- # df_visitor = df_visitor[(df_visitor['日期'] >= f'{year_my}-{last_month.month}-01')]
1377
- df_visitor3 = df_visitor3.groupby(['三级来源'], as_index=False).agg({'访客数': 'sum'})
1378
- df_visitor3.sort_values('访客数', ascending=False, ignore_index=True, inplace=True)
1379
- df_visitor3.reset_index(inplace=True)
1380
- df_visitor3['index'] = df_visitor3['index'] + 100
1381
- df_visitor3.rename(columns={'index': '三级访客索引'}, inplace=True)
1382
- df_visitor3 = df_visitor3[['三级来源', '三级访客索引']]
1383
-
1384
- # 包含二级来源名称和预设索引值列
1385
- df_visitor2 = df.groupby(['日期', '二级来源'], as_index=False).agg({'访客数': 'sum'})
1386
- df_visitor2 = df_visitor2[~df_visitor2['二级来源'].isin([''])] # 指定列中删除包含空值的行
1387
- # df_visitor2 = df_visitor2[(df_visitor2['日期'] >= f'{year_my}-{last_month.month}-01')]
1388
- df_visitor2 = df_visitor2.groupby(['二级来源'], as_index=False).agg({'访客数': 'sum'})
1389
- df_visitor2.sort_values('访客数', ascending=False, ignore_index=True, inplace=True)
1390
- df_visitor2.reset_index(inplace=True)
1391
- df_visitor2['index'] = df_visitor2['index'] + 100
1392
- df_visitor2.rename(columns={'index': '二级访客索引'}, inplace=True)
1393
- df_visitor2 = df_visitor2[['二级来源', '二级访客索引']]
1394
-
1395
- df = pd.merge(df, df_visitor2, how='left', left_on='二级来源', right_on='二级来源')
1396
- df = pd.merge(df, df_visitor3, how='left', left_on='三级来源', right_on='三级来源')
1397
- return df
1398
- elif '商品id编码表' in table_name:
1399
- df['宝贝id'] = df['宝贝id'].astype(str)
1400
- df.drop_duplicates(subset='宝贝id', keep='last', inplace=True, ignore_index=True)
1401
- # df['行业类目'] = df['行业类目'].apply(lambda x: re.sub(' ', '', x))
1402
- try:
1403
- df[['一级类目', '二级类目', '三级类目']] = df['行业类目'].str.split(' -> ', expand=True).loc[:, 0:2]
1404
- except:
1405
- try:
1406
- df[['一级类目', '二级类目']] = df['行业类目'].str.split(' -> ', expand=True).loc[:, 0:1]
1407
- except:
1408
- df['一级类目'] = df['行业类目']
1409
- df.drop('行业类目', axis=1, inplace=True)
1410
- df.sort_values('宝贝id', ascending=False, inplace=True)
1411
- df = df[(df['宝贝id'] != '973') & (df['宝贝id'] != '973')]
1412
- self.data_tgyj.update(
1413
- {
1414
- table_name: df[['宝贝id', '商家编码']],
1415
- }
1416
- )
1417
- return df
1418
- elif '商品id图片对照表' in table_name:
1419
- df['商品id'] = df['商品id'].astype('int64')
1420
- df['日期'] = df['日期'].astype('datetime64[ns]')
1421
- df = df[(df['商品白底图'] != '0') | (df['方版场景图'] != '0')]
1422
- # 白底图优先
1423
- df['商品图片'] = df[['商品白底图', '方版场景图']].apply(
1424
- lambda x: x['商品白底图'] if x['商品白底图'] !='0' else x['方版场景图'], axis=1)
1425
- # # 方版场景图优先
1426
- # df['商品图片'] = df[['商品白底图', '方版场景图']].apply(
1427
- # lambda x: x['方版场景图'] if x['方版场景图'] != '0' else x['商品白底图'], axis=1)
1428
- df.sort_values(by=['商品id', '日期'], ascending=[False, True], ignore_index=True, inplace=True)
1429
- df.drop_duplicates(subset=['商品id'], keep='last', inplace=True, ignore_index=True)
1430
- df = df[['商品id', '商品图片', '日期']]
1431
- df['商品图片'] = df['商品图片'].apply(lambda x: x if 'http' in x else None) # 检查是否是 http 链接
1432
- df.dropna(how='all', subset=['商品图片'], axis=0, inplace=True) # 删除指定列含有空值的行
1433
- df['商品链接'] = df['商品id'].apply(
1434
- lambda x: f'https://detail.tmall.com/item.htm?id={str(x)}' if x and '.com' not in str(x) else x)
1435
- df.sort_values(by='商品id', ascending=False, ignore_index=True, inplace=True) # ascending=False 降序排列
1436
- self.data_tgyj.update(
1437
- {
1438
- table_name: df[['商品id', '商品图片']],
1439
- }
1440
- )
1441
- df['商品id'] = df['商品id'].astype(str)
1442
- return df
1443
- elif '商品成本' in table_name:
1444
- df.sort_values(by=['款号', '日期'], ascending=[False, True], ignore_index=True, inplace=True)
1445
- df.drop_duplicates(subset=['款号'], keep='last', inplace=True, ignore_index=True)
1446
- self.data_tgyj.update(
1447
- {
1448
- table_name: df[['款号', '成本价']],
1449
- }
1450
- )
1451
- return df
1452
- elif '京东_京准通' in table_name and '全站营销' not in table_name:
1453
- df = df.groupby(['日期', '店铺名称', '产品线', '触发sku_id', '跟单sku_id', 'spu_id', '花费', '展现数', '点击数'], as_index=False).agg(
1454
- **{'直接订单行': ('直接订单行', np.max),
1455
- '直接订单金额': ('直接订单金额', np.max),
1456
- '总订单行': ('总订单行', np.max),
1457
- '总订单金额': ('总订单金额', np.max),
1458
- '直接加购数': ('直接加购数', np.max),
1459
- '总加购数': ('总加购数', np.max),
1460
- }
1461
- )
1462
- df = df[df['花费'] > 0]
1463
- self.data_jdtg.update(
1464
- {
1465
- table_name: df[['日期', '产品线', '触发sku_id', '跟单sku_id', '花费']],
1466
- }
1467
- )
1468
- return df
1469
- elif '京东_京准通_全站营销' in table_name:
1470
- df = df.groupby(['日期', '产品线', '花费'], as_index=False).agg(
1471
- **{'全站投产比': ('全站投产比', np.max),
1472
- '全站交易额': ('全站交易额', np.max),
1473
- '全站订单行': ('全站订单行', np.max),
1474
- '全站订单成本': ('全站订单成本', np.max),
1475
- '全站费比': ('全站费比', np.max),
1476
- '核心位置展现量': ('核心位置展现量', np.max),
1477
- '核心位置点击量': ('核心位置点击量', np.max),
1478
- }
1479
- )
1480
- df = df[df['花费'] > 0]
1481
- return df
1482
- elif '京东_sku_商品明细' in table_name:
1483
- df = df[df['商品id'] != '合计']
1484
- df = df.groupby(['日期', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数'],
1485
- as_index=False).agg(
1486
- **{
1487
- '成交单量': ('成交单量', np.max),
1488
- '成交金额': ('成交金额', np.max),
1489
- }
1490
- )
1491
- self.data_jdtg.update(
1492
- {
1493
- table_name: df,
1494
- }
1495
- )
1496
- return df
1497
- elif '京东_spu_商品明细' in table_name:
1498
- df = df[df['商品id'] != '合计']
1499
- df = df.groupby(['日期', '商品id', '货号', '访客数', '成交客户数', '加购商品件数', '加购人数'],
1500
- as_index=False).agg(
1501
- **{
1502
- '成交单量': ('成交单量', np.max),
1503
- '成交金额': ('成交金额', np.max),
1504
- }
1505
- )
1506
- self.data_jdtg.update(
1507
- {
1508
- table_name: df,
1509
- }
1510
- )
1511
- return df
1512
- elif '京东_关键词报表' in table_name:
1513
- df_lin = df[['计划id', '推广计划']]
1514
- df_lin.drop_duplicates(subset=['计划id'], keep='last', inplace=True, ignore_index=True)
1515
- df = df.groupby(['日期', '产品线', '计划类型', '计划id', '搜索词', '关键词', '关键词购买类型', '广告定向类型', '展现数', '点击数', '花费'],
1516
- as_index=False).agg(
1517
- **{
1518
- '直接订单行': ('直接订单行', np.max),
1519
- '直接订单金额': ('直接订单金额', np.max),
1520
- '总订单行': ('总订单行', np.max),
1521
- '总订单金额': ('总订单金额', np.max),
1522
- '总加购数': ('总加购数', np.max),
1523
- '领券数': ('领券数', np.max),
1524
- '商品关注数': ('商品关注数', np.max),
1525
- '店铺关注数': ('店铺关注数', np.max)
1526
- }
1527
- )
1528
- df = pd.merge(df, df_lin, how='left', left_on='计划id', right_on='计划id')
1529
- df['k_是否品牌词'] = df['关键词'].str.contains('万里马|wanlima', regex=True)
1530
- df['k_是否品牌词'] = df['k_是否品牌词'].apply(lambda x: '品牌词' if x else '')
1531
- df['s_是否品牌词'] = df['搜索词'].str.contains('万里马|wanlima', regex=True)
1532
- df['s_是否品牌词'] = df['s_是否品牌词'].apply(lambda x: '品牌词' if x else '')
1533
- return df
1534
- elif '天猫店铺来源_手淘搜索' in table_name:
1535
- df = df.groupby(
1536
- ['日期', '店铺名称', '词类型', '搜索词'],
1537
- as_index=False).agg(
1538
- **{
1539
- '访客数': ('访客数', np.max),
1540
- '加购人数': ('加购人数', np.max),
1541
- '支付金额': ('支付金额', np.max),
1542
- '支付转化率': ('支付转化率', np.max),
1543
- '支付买家数': ('支付买家数', np.max),
1544
- '客单价': ('客单价', np.max),
1545
- 'uv价值': ('uv价值', np.max)
1546
- }
1547
- )
1548
- return df
1549
- elif '生意参谋_直播场次分析' in table_name:
1550
- df.drop_duplicates(subset=['场次id'], keep='first', inplace=True, ignore_index=True)
1551
- return df
1552
- elif '多店推广场景_按日聚合' in table_name:
1553
- df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore') # 转换日期列
1554
- df = df.groupby(
1555
- ['日期', '店铺名称', '营销场景'],
1556
- as_index=False).agg(
1557
- **{
1558
- '花费': ('花费', np.sum),
1559
- '展现量': ('展现量', np.sum),
1560
- '点击量': ('点击量', np.sum),
1561
- '加购量': ('加购量', np.sum),
1562
- '成交笔数': ('成交笔数', np.sum),
1563
- '成交金额': ('成交金额', np.sum)
1564
- }
1565
- )
1566
- df.sort_values(['日期', '店铺名称', '花费'], ascending=[False, False, False], ignore_index=True, inplace=True)
1567
- # df.to_csv('/Users/xigua/Downloads/test.csv', encoding='utf-8_sig', index=False, header=True)
1568
- return df
1569
- elif '达摩盘_人群报表' in table_name:
1570
- return df
1571
-
1572
- else:
1573
- print(f'<{table_name}>: Groupby 类尚未配置,数据为空')
1574
- return pd.DataFrame({})
1930
+ set_typ = {
1931
+ '店铺名称': 'varchar(100)',
1932
+ '日期': 'date',
1933
+ '人群id': 'bigint',
1934
+ '人群名称': 'varchar(255)',
1935
+ '营销渠道': 'varchar(100)',
1936
+ '计划基础信息': 'varchar(255)',
1937
+ '推广单元信息': 'varchar(255)',
1938
+ '消耗_元': 'decimal(10,2)',
1939
+ '展现人数': 'int',
1940
+ '展现量': 'int',
1941
+ '点击人数': 'int',
1942
+ '点击量': 'int',
1943
+ '店铺收藏人数': 'smallint',
1944
+ '店铺收藏量': 'smallint',
1945
+ '加购人数': 'smallint',
1946
+ '加购量': 'smallint',
1947
+ '宝贝收藏人数': 'smallint',
1948
+ '宝贝收藏量': 'smallint',
1949
+ '收藏加购量': 'smallint',
1950
+ '收藏加购人数': 'smallint',
1951
+ '拍下人数': 'smallint',
1952
+ '拍下订单量': 'smallint',
1953
+ '拍下订单金额_元': 'decimal(10,2)',
1954
+ '成交人数': 'smallint',
1955
+ '成交订单量': 'smallint',
1956
+ '成交订单金额_元': 'decimal(10,2)',
1957
+ '店铺首购人数': 'smallint',
1958
+ '店铺复购人数': 'smallint',
1959
+ '点击率': 'decimal(10,4)',
1960
+ 'uv点击率': 'decimal(10, 4)',
1961
+ '收藏加购率': 'decimal(10, 4)',
1962
+ 'uv收藏加购率': 'decimal(10, 4)',
1963
+ '点击转化率': 'decimal(10, 4)',
1964
+ 'uv点击转化率': 'decimal(10, 4)',
1965
+ '投资回报率': 'decimal(10, 4)',
1966
+ '千次展现成本_元': 'decimal(10, 2)',
1967
+ '点击成本_元': 'decimal(10, 2)',
1968
+ 'uv点击成本_元': 'decimal(10, 2)',
1969
+ '收藏加购成本_元': 'decimal(10, 2)',
1970
+ 'uv收藏加购成本_元': 'decimal(10, 2)',
1971
+ '更新时间': 'timestamp',
1972
+ '人群规模': 'int',
1973
+ '用户年龄': 'varchar(100)',
1974
+ '消费能力等级': 'varchar(100)',
1975
+ '用户性别': 'varchar(100)',
1976
+ }
1977
+ min_date = df['日期'].min()
1978
+ max_date = df['日期'].max()
1979
+ now = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
1980
+ print(f'{now} 正在更新: mysql ({host}:{port}) {db_name}/{table_name} -> {min_date}~{max_date}')
1981
+ m_engine.df_to_mysql(
1982
+ df=df,
1983
+ db_name=db_name,
1984
+ table_name=table_name,
1985
+ icm_update=[], # 增量更新, 在聚合数据中使用,其他不要用
1986
+ move_insert=False, # 先删除,再插入
1987
+ df_sql=False, # 值为 True 时使用 df.to_sql 函数上传整个表, 不会排重
1988
+ drop_duplicates=False, # 值为 True 时检查重复数据再插入,反之直接上传,会比较慢
1989
+ count=None,
1990
+ filename=None, # 用来追踪处理进度
1991
+ reset_id=False, # 是否重置自增列
1992
+ set_typ=set_typ,
1993
+ )
1994
+ return True
1575
1995
 
1576
1996
  @try_except
1577
1997
  def ret_keyword(self, keyword, as_file=False):
@@ -1912,9 +2332,9 @@ class GroupBy:
1912
2332
  df['盈亏'] = df.apply(lambda x: x['商品毛利'] - x['花费'], axis=1)
1913
2333
  return df
1914
2334
 
1915
- @try_except
2335
+ # @try_except
1916
2336
  def performance_concat(self, bb_tg=True):
1917
- tg, zb, pxb = self.data_tgyj['天猫汇总表调用'], self.data_tgyj['天猫_超级直播'], self.data_tgyj['天猫_品销宝账户报表']
2337
+ tg, zb, pxb = self.data_tgyj['天猫汇总表调用'], self.data_tgyj['天猫_超级直播'], self.data_tgyj['天猫_品销宝账户报表']
1918
2338
  zb.rename(columns={
1919
2339
  '观看次数': '点击量',
1920
2340
  }, inplace=True)
@@ -1996,88 +2416,6 @@ class GroupBy:
1996
2416
  df['盈亏'] = df.apply(lambda x: x['商品毛利'] - x['花费'], axis=1)
1997
2417
  return df
1998
2418
 
1999
- def as_csv(self, df, filename, path=None, encoding='utf-8_sig',
2000
- index=False, header=True, st_ascend=None, ascend=None, freq=None):
2001
- """
2002
- path: 默认导出目录 self.output, 这个函数的 path 作为子文件夹,可以不传,
2003
- st_ascend: 排序参数 ['column1', 'column2']
2004
- ascend: 升降序 [True, False]
2005
- freq: 将创建子文件夹并按月分类存储, freq='Y', 或 freq='M'
2006
- """
2007
- if len(df) == 0:
2008
- return
2009
- if not path:
2010
- path = self.output
2011
- else:
2012
- path = os.path.join(self.output, path)
2013
- if not os.path.exists(path):
2014
- os.makedirs(path)
2015
- if filename.endswith('.csv'):
2016
- filename = filename[:-4]
2017
- if st_ascend and ascend:
2018
- try:
2019
- df.sort_values(st_ascend, ascending=ascend, ignore_index=True, inplace=True)
2020
- except:
2021
- print(f'{filename}: sort_values排序参数错误!')
2022
- if freq:
2023
- if '日期' not in df.columns.tolist():
2024
- return print(f'{filename}: 数据缺少日期列,无法按日期分组')
2025
- groups = df.groupby(pd.Grouper(key='日期', freq=freq))
2026
- for name1, df in groups:
2027
- if freq == 'M':
2028
- sheet_name = name1.strftime('%Y-%m')
2029
- elif freq == 'Y':
2030
- sheet_name = name1.strftime('%Y年')
2031
- else:
2032
- sheet_name = '_未分类'
2033
- new_path = os.path.join(path, filename)
2034
- if not os.path.exists(new_path):
2035
- os.makedirs(new_path)
2036
- new_path = os.path.join(new_path, f'{filename}{sheet_name}.csv')
2037
- if st_ascend and ascend: # 这里需要重新排序一次,原因未知
2038
- try:
2039
- df.sort_values(st_ascend, ascending=ascend, ignore_index=True, inplace=True)
2040
- except:
2041
- print(f'{filename}: sort_values排序参数错误!')
2042
-
2043
- df.to_csv(new_path, encoding=encoding, index=index, header=header)
2044
- else:
2045
- df.to_csv(os.path.join(path, filename + '.csv'), encoding=encoding, index=index, header=header)
2046
-
2047
- def as_json(self, df, filename, path=None, orient='records', force_ascii=False, st_ascend=None, ascend=None):
2048
- if len(df) == 0:
2049
- return
2050
- if not path:
2051
- path = self.output
2052
- else:
2053
- path = os.path.join(self.output, path)
2054
- if not os.path.exists(path):
2055
- os.makedirs(path)
2056
- if st_ascend and ascend:
2057
- try:
2058
- df.sort_values(st_ascend, ascending=ascend, ignore_index=True, inplace=True)
2059
- except:
2060
- print(f'{filename}: sort_values排序参数错误!')
2061
- df.to_json(os.path.join(path, filename + '.json'),
2062
- orient=orient, force_ascii=force_ascii)
2063
-
2064
- def as_excel(self, df, filename, path=None, index=False, header=True, engine='openpyxl',
2065
- freeze_panes=(1, 0), st_ascend=None, ascend=None):
2066
- if len(df) == 0:
2067
- return
2068
- if not path:
2069
- path = self.output
2070
- else:
2071
- path = os.path.join(self.output, path)
2072
- if not os.path.exists(path):
2073
- os.makedirs(path)
2074
- if st_ascend and ascend:
2075
- try:
2076
- df.sort_values(st_ascend, ascending=ascend, ignore_index=True, inplace=True)
2077
- except:
2078
- print(f'{filename}: sort_values排序参数错误!')
2079
- df.to_excel(os.path.join(path, filename + '.xlsx'), index=index, header=header, engine=engine, freeze_panes=freeze_panes)
2080
-
2081
2419
 
2082
2420
  def date_table():
2083
2421
  """
@@ -2125,253 +2463,6 @@ def date_table():
2125
2463
  )
2126
2464
 
2127
2465
 
2128
- def data_aggregation(months=1, is_juhe=True, less_dict=[]):
2129
- """
2130
- 1. 从数据库中读取数据
2131
- 2. 数据聚合清洗
2132
- 3. 统一回传数据库: <聚合数据> (不再导出为文件)
2133
- 公司台式机调用
2134
- months: 1+,写 0 表示当月数据,但在每月 1 号时可能会因为返回空数据出错
2135
- is_juhe: 聚合数据
2136
- less_dict::只聚合某个特定的库
2137
- """
2138
- if months == 0:
2139
- print(f'months 不建议为 0 ')
2140
- return
2141
-
2142
- sdq = MysqlDatasQuery() # 实例化数据处理类
2143
- sdq.months = months # 设置数据周期, 1 表示近 2 个月
2144
- g = GroupBy() # 实例化数据聚合类
2145
- # 实例化数据库连接
2146
-
2147
- m = mysql.MysqlUpload(username=username, password=password, host=host, port=port)
2148
-
2149
- # 从数据库中获取数据, 返回包含 df 数据的字典
2150
- data_dict = [
2151
- {
2152
- '数据库名': '聚合数据', # 清洗完回传的目的地数据库
2153
- '集合名': '天猫_主体报表', # 清洗完回传的数据表名
2154
- '唯一主键': ['日期', '推广渠道', '营销场景', '商品id', '花费'],
2155
- '数据主体': sdq.tg_wxt(),
2156
- },
2157
- {
2158
- '数据库名': '聚合数据',
2159
- '集合名': '生意经_宝贝指标',
2160
- '唯一主键': ['日期', '宝贝id'], # 不能加其他字段做主键,比如销售额,是变动的,不是唯一的
2161
- '数据主体': sdq.syj(),
2162
- },
2163
- {
2164
- '数据库名': '聚合数据',
2165
- '集合名': '店铺流量来源构成',
2166
- '唯一主键': ['日期', '一级来源', '二级来源', '三级来源', '访客数'],
2167
- '数据主体': sdq.dplyd(),
2168
- },
2169
- {
2170
- '数据库名': '聚合数据',
2171
- '集合名': '商品id编码表',
2172
- '唯一主键': ['宝贝id'],
2173
- '数据主体': sdq.idbm(),
2174
- },
2175
- {
2176
- '数据库名': '聚合数据',
2177
- '集合名': '商品id图片对照表',
2178
- '唯一主键': ['商品id'],
2179
- '数据主体': sdq.sp_picture(),
2180
- },
2181
- {
2182
- '数据库名': '聚合数据',
2183
- '集合名': '商品成本', # 暂缺 10.31
2184
- '唯一主键': ['款号'],
2185
- '数据主体': sdq.sp_cost(),
2186
- },
2187
- {
2188
- '数据库名': '聚合数据',
2189
- '集合名': '京东_京准通',
2190
- '唯一主键': ['日期', '产品线', '触发sku_id', '跟单sku_id', '花费', ],
2191
- '数据主体': sdq.jdjzt(),
2192
- },
2193
- {
2194
- '数据库名': '聚合数据',
2195
- '集合名': '京东_京准通_全站营销', # 暂缺
2196
- '唯一主键': ['日期', '产品线', '花费'],
2197
- '数据主体': sdq.jdqzyx(),
2198
- },
2199
- {
2200
- '数据库名': '聚合数据',
2201
- '集合名': '京东_sku_商品明细',
2202
- '唯一主键': ['日期', '商品id', '成交单量'],
2203
- '数据主体': sdq.sku_sales(),
2204
- },
2205
- {
2206
- '数据库名': '聚合数据',
2207
- '集合名': '京东_spu_商品明细',
2208
- '唯一主键': ['日期', '商品id', '成交单量'],
2209
- '数据主体': sdq.spu_sales(),
2210
- },
2211
- {
2212
- '数据库名': '聚合数据',
2213
- '集合名': '天猫_人群报表',
2214
- '唯一主键': ['日期', '推广渠道', '营销场景', '商品id', '花费', '人群名字'],
2215
- '数据主体': sdq.tg_rqbb(),
2216
- },
2217
- {
2218
- '数据库名': '聚合数据',
2219
- '集合名': '天猫_关键词报表',
2220
- '唯一主键': ['日期', '推广渠道', '营销场景', '商品id', '花费', '词类型', '词名字_词包名字',],
2221
- '数据主体': sdq.tg_gjc(),
2222
- },
2223
- {
2224
- '数据库名': '聚合数据',
2225
- '集合名': '天猫_超级直播',
2226
- '唯一主键': ['日期', '推广渠道', '营销场景', '花费'],
2227
- '数据主体': sdq.tg_cjzb(),
2228
- },
2229
- {
2230
- '数据库名': '聚合数据',
2231
- '集合名': '京东_关键词报表',
2232
- '唯一主键': ['日期', '产品线', '搜索词', '关键词', '展现数', '花费'],
2233
- '数据主体': sdq.jd_gjc(),
2234
- },
2235
- {
2236
- '数据库名': '聚合数据',
2237
- '集合名': '天猫_品销宝账户报表',
2238
- '唯一主键': ['日期', '报表类型', '推广渠道', '营销场景', '花费'],
2239
- '数据主体': sdq.pxb_zh(),
2240
- },
2241
- {
2242
- '数据库名': '聚合数据',
2243
- '集合名': '天猫店铺来源_手淘搜索', # 暂缺
2244
- '唯一主键': ['日期', '关键词', '访客数'],
2245
- '数据主体': sdq.se_search(),
2246
- },
2247
- {
2248
- '数据库名': '聚合数据',
2249
- '集合名': '生意参谋_直播场次分析', # 暂缺
2250
- '唯一主键': ['场次id'],
2251
- '数据主体': sdq.zb_ccfx(),
2252
- },
2253
- {
2254
- '数据库名': '聚合数据',
2255
- '集合名': '多店推广场景_按日聚合',
2256
- '唯一主键': [],
2257
- '数据主体': sdq.tg_by_day(),
2258
- },
2259
- {
2260
- '数据库名': '聚合数据',
2261
- '集合名': '爱库存_商品spu榜单',
2262
- '唯一主键': [],
2263
- '数据主体': sdq.aikucun_bd_spu(),
2264
- },
2265
- {
2266
- '数据库名': '聚合数据',
2267
- '集合名': '达摩盘_人群报表',
2268
- '唯一主键': [],
2269
- '数据主体': sdq.dmp_crowd(),
2270
- },
2271
- ]
2272
-
2273
- if less_dict:
2274
- data_dict = [item for item in data_dict if item['集合名'] in less_dict]
2275
- for items in data_dict: # 遍历返回结果
2276
- db_name, table_name, unique_key_list, df = items['数据库名'], items['集合名'], items['唯一主键'], items['数据主体']
2277
- df = g.groupby(df=df, table_name=table_name, is_maximize=True) # 2. 聚合数据
2278
- if len(g.sp_index_datas) != 0:
2279
- # 由推广主体报表,写入一个商品索引表,索引规则:从上月 1 号至今花费从高到低排序
2280
- m.df_to_mysql(
2281
- df=g.sp_index_datas,
2282
- db_name='属性设置3',
2283
- table_name='商品索引表_主推排序调用',
2284
- move_insert=False, # 先删除,再插入
2285
- # df_sql=True,
2286
- drop_duplicates=False,
2287
- icm_update=['商品id'],
2288
- count=None,
2289
- filename=None,
2290
- set_typ={},
2291
- )
2292
- g.sp_index_datas = pd.DataFrame() # 重置,不然下个循环会继续刷入数据库
2293
- # g.as_csv(df=df, filename=table_name + '.csv') # 导出 csv
2294
- if '日期' in df.columns.tolist():
2295
- m.df_to_mysql(
2296
- df=df,
2297
- db_name=db_name,
2298
- table_name=table_name,
2299
- move_insert=True, # 先删除,再插入
2300
- # df_sql=True,
2301
- # drop_duplicates=False,
2302
- # icm_update=unique_key_list,
2303
- count=None,
2304
- filename=None,
2305
- set_typ={},
2306
- ) # 3. 回传数据库
2307
- else: # 没有日期列的就用主键排重
2308
- m.df_to_mysql(
2309
- df=df,
2310
- db_name=db_name,
2311
- table_name=table_name,
2312
- move_insert=False, # 先删除,再插入
2313
- # df_sql=True,
2314
- drop_duplicates=False,
2315
- icm_update=unique_key_list,
2316
- count=None,
2317
- filename=None,
2318
- set_typ={},
2319
- ) # 3. 回传数据库
2320
- if is_juhe:
2321
- res = g.performance(bb_tg=True) # 盈亏表,依赖其他表,单独做
2322
- m.df_to_mysql(
2323
- df=res,
2324
- db_name='聚合数据',
2325
- table_name='_全店商品销售',
2326
- move_insert=True, # 先删除,再插入
2327
- # df_sql=True,
2328
- # drop_duplicates=False,
2329
- # icm_update=['日期', '商品id'], # 设置唯一主键
2330
- count=None,
2331
- filename=None,
2332
- set_typ={},
2333
- )
2334
- res = g.performance(bb_tg=False) # 盈亏表,依赖其他表,单独做
2335
- m.df_to_mysql(
2336
- df=res,
2337
- db_name='聚合数据',
2338
- table_name='_推广商品销售',
2339
- move_insert=True, # 先删除,再插入
2340
- # df_sql=True,
2341
- # drop_duplicates=False,
2342
- # icm_update=['日期', '商品id'], # 设置唯一主键
2343
- count=None,
2344
- filename=None,
2345
- set_typ={},
2346
- )
2347
- res = g.performance_concat(bb_tg=False) # 推广主体合并直播表,依赖其他表,单独做
2348
- m.df_to_mysql(
2349
- df=res,
2350
- db_name='聚合数据',
2351
- table_name='天猫_推广汇总',
2352
- move_insert=True, # 先删除,再插入
2353
- # df_sql=True,
2354
- # drop_duplicates=False,
2355
- # icm_update=['日期', '推广渠道', '营销场景', '商品id', '花费', '展现量', '点击量'], # 设置唯一主键
2356
- count=None,
2357
- filename=None,
2358
- set_typ={},
2359
- )
2360
- res = g.performance_jd(jd_tg=False) # 盈亏表,依赖其他表,单独做
2361
- m.df_to_mysql(
2362
- df=res,
2363
- db_name='聚合数据',
2364
- table_name='_京东_推广商品销售',
2365
- move_insert=True, # 先删除,再插入
2366
- # df_sql=True,
2367
- # drop_duplicates=False,
2368
- # icm_update=['日期', '跟单sku_id', '货号', '花费'], # 设置唯一主键
2369
- count=None,
2370
- filename=None,
2371
- set_typ={},
2372
- )
2373
-
2374
-
2375
2466
  def main(days=100, months=3):
2376
2467
  # 1. 更新日期表 更新货品年份基准表, 属性设置 3 - 货品年份基准
2377
2468
  date_table()
@@ -2392,11 +2483,7 @@ def main(days=100, months=3):
2392
2483
  )
2393
2484
 
2394
2485
  # 3. 数据聚合
2395
- data_aggregation(
2396
- months=months,
2397
- is_juhe=True, # 生成聚合表
2398
- # less_dict=['天猫_品销宝账户报表'], # 单独聚合某一个数据库
2399
- )
2486
+ query_(months=3)
2400
2487
  time.sleep(60)
2401
2488
 
2402
2489
  # 4. 清理聚合数据
@@ -2408,16 +2495,36 @@ def main(days=100, months=3):
2408
2495
  )
2409
2496
 
2410
2497
 
2498
+ def query_(months=1, less_dict=[]):
2499
+ if months == 0:
2500
+ print(f'months 不建议为 0 ')
2501
+ return
2502
+ sdq = MysqlDatasQuery() # 实例化数据处理类
2503
+ sdq.months = months # 设置数据周期, 1 表示近 2 个月
2504
+
2505
+ sdq.tg_wxt(db_name='聚合数据', table_name='天猫_主体报表')
2506
+ sdq.syj(db_name='聚合数据', table_name='生意经_宝贝指标')
2507
+ sdq.dplyd(db_name='聚合数据', table_name='店铺流量来源构成')
2508
+ sdq.idbm(db_name='聚合数据', table_name='商品id编码表')
2509
+ sdq.sp_picture(db_name='聚合数据', table_name='商品id图片对照表')
2510
+ sdq.sp_cost(db_name='聚合数据', table_name='商品成本')
2511
+ sdq.jdjzt(db_name='聚合数据', table_name='京东_京准通')
2512
+ sdq.jdqzyx(db_name='聚合数据', table_name='京东_京准通_全站营销')
2513
+ sdq.sku_sales(db_name='聚合数据', table_name='京东_sku_商品明细')
2514
+ sdq.spu_sales(db_name='聚合数据', table_name='京东_spu_商品明细')
2515
+ sdq.tg_rqbb(db_name='聚合数据', table_name='天猫_人群报表')
2516
+ sdq.tg_gjc(db_name='聚合数据', table_name='天猫_关键词报表')
2517
+ sdq.tg_cjzb(db_name='聚合数据', table_name='天猫_超级直播')
2518
+ sdq.jd_gjc(db_name='聚合数据', table_name='京东_关键词报表')
2519
+ sdq.pxb_zh(db_name='聚合数据', table_name='天猫_品销宝账户报表')
2520
+ sdq.se_search(db_name='聚合数据', table_name='天猫店铺来源_手淘搜索')
2521
+ sdq.zb_ccfx(db_name='聚合数据', table_name='生意参谋_直播场次分析')
2522
+ sdq.tg_by_day(db_name='聚合数据', table_name='多店推广场景_按日聚合')
2523
+ sdq.aikucun_bd_spu(db_name='聚合数据', table_name='爱库存_商品spu榜单')
2524
+ sdq.dmp_crowd(db_name='聚合数据', table_name='达摩盘_人群报表')
2525
+
2526
+
2411
2527
  if __name__ == '__main__':
2412
2528
  # main(days=100, months=3)
2413
2529
 
2414
- # data_aggregation(
2415
- # months=3,
2416
- # is_juhe=True, # 生成聚合表
2417
- # # less_dict=['天猫_品销宝账户报表'], # 单独聚合某一个数据库
2418
- # )
2419
- data_aggregation(
2420
- months=1,
2421
- is_juhe=True, # 生成聚合表
2422
- # less_dict=['天猫_品销宝账户报表'], # 单独聚合某一个数据库
2423
- )
2530
+ query_(months=1)