mdbq 2.6.4__tar.gz → 2.6.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mdbq-2.6.4 → mdbq-2.6.5}/PKG-INFO +1 -1
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/aggregation/aggregation.py +58 -45
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/clean/clean_upload.py +38 -11
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/mysql/mysql.py +13 -13
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq.egg-info/PKG-INFO +1 -1
- {mdbq-2.6.4 → mdbq-2.6.5}/setup.py +1 -1
- {mdbq-2.6.4 → mdbq-2.6.5}/README.txt +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/__version__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/aggregation/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/aggregation/df_types.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/aggregation/mysql_types.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/aggregation/optimize_data.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/aggregation/query_data.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/bdup/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/bdup/bdup.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/clean/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/clean/data_clean.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/company/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/company/copysh.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/company/home_sh.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/config/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/config/get_myconf.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/config/products.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/config/set_support.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/config/update_conf.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/dataframe/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/dataframe/converter.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/log/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/log/mylogger.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/mongo/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/mongo/mongo.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/mysql/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/mysql/s_query.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/mysql/year_month_day.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/other/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/other/porxy.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/other/pov_city.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/other/sku_picture.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/other/ua_sj.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/pbix/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/pbix/pbix_refresh.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/pbix/refresh_all.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/pbix/refresh_all_old.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/req_post/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/req_post/req_tb.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/spider/__init__.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq/spider/aikucun.py +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq.egg-info/SOURCES.txt +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq.egg-info/dependency_links.txt +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/mdbq.egg-info/top_level.txt +0 -0
- {mdbq-2.6.4 → mdbq-2.6.5}/setup.cfg +0 -0
@@ -1174,36 +1174,40 @@ def upload_dir(path, db_name, collection_name, dbs={'mysql': True, 'mongodb': Tr
|
|
1174
1174
|
i += 1
|
1175
1175
|
continue
|
1176
1176
|
if name.endswith('.csv'):
|
1177
|
-
|
1178
|
-
|
1179
|
-
|
1180
|
-
|
1181
|
-
|
1182
|
-
|
1183
|
-
|
1184
|
-
|
1185
|
-
|
1186
|
-
|
1187
|
-
df = df.astype(dtypes) # 按本地文件更新 df 的数据类型, 可能因为字段不同产生异常
|
1188
|
-
except Exception as e:
|
1189
|
-
print(name, e)
|
1190
|
-
# 如果发生异常,这将 df 的数据和 json 中的数据取交集
|
1191
|
-
old_dt = df.dtypes.apply(str).to_dict() # 将 dataframe 数据类型转为字典形式
|
1192
|
-
intersection_keys = dtypes.keys() & old_dt.keys() # 获取两个字典键的交集
|
1193
|
-
dtypes = {k: dtypes[k] for k in intersection_keys} # 使用交集的键创建新字典
|
1194
|
-
df = df.astype(dtypes) # 再次更新 df 的数据类型
|
1177
|
+
df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
|
1178
|
+
if name.endswith('.xlsx'):
|
1179
|
+
df = pd.read_excel(os.path.join(root, name), sheet_name=0, header=0, engine='openpyxl')
|
1180
|
+
try:
|
1181
|
+
if len(df) == 0:
|
1182
|
+
continue
|
1183
|
+
# if '新版' not in name:
|
1184
|
+
# continue
|
1185
|
+
cv = converter.DataFrameConverter()
|
1186
|
+
df = cv.convert_df_cols(df=df) # 清理列名和 df 中的非法字符
|
1195
1187
|
|
1196
|
-
|
1197
|
-
|
1198
|
-
if dbs['mysql']: # drop_duplicates: 值为 True 时检查重复数据再插入
|
1199
|
-
m.df_to_mysql(df=df, db_name=db_name, table_name=collection_name,
|
1200
|
-
move_insert=False, # 先删除,再插入
|
1201
|
-
df_sql = True,
|
1202
|
-
drop_duplicates=False,
|
1203
|
-
filename=name, count=f'{i}/{count}')
|
1204
|
-
# nas.df_to_mysql(df=df, db_name=db_name, table_name=collection_name, drop_duplicates=True,)
|
1188
|
+
try:
|
1189
|
+
df = df.astype(dtypes) # 按本地文件更新 df 的数据类型, 可能因为字段不同产生异常
|
1205
1190
|
except Exception as e:
|
1206
1191
|
print(name, e)
|
1192
|
+
# 如果发生异常,这将 df 的数据和 json 中的数据取交集
|
1193
|
+
old_dt = df.dtypes.apply(str).to_dict() # 将 dataframe 数据类型转为字典形式
|
1194
|
+
intersection_keys = dtypes.keys() & old_dt.keys() # 获取两个字典键的交集
|
1195
|
+
dtypes = {k: dtypes[k] for k in intersection_keys} # 使用交集的键创建新字典
|
1196
|
+
df = df.astype(dtypes) # 再次更新 df 的数据类型
|
1197
|
+
|
1198
|
+
if dbs['mongodb']:
|
1199
|
+
d.df_to_mongo(df=df, db_name=db_name, collection_name=collection_name)
|
1200
|
+
if dbs['mysql']: # drop_duplicates: 值为 True 时检查重复数据再插入
|
1201
|
+
m.df_to_mysql(df=df, db_name=db_name, table_name=collection_name,
|
1202
|
+
move_insert=False, # 先删除,再插入
|
1203
|
+
df_sql = True,
|
1204
|
+
drop_duplicates=False,
|
1205
|
+
filename=name, count=f'{i}/{count}',
|
1206
|
+
service_database={target_service: 'mysql'}, # 这个参数是用来设置更新哪台服务器的 types 信息到本地 json 文件
|
1207
|
+
)
|
1208
|
+
# nas.df_to_mysql(df=df, db_name=db_name, table_name=collection_name, drop_duplicates=True,)
|
1209
|
+
except Exception as e:
|
1210
|
+
print(name, e)
|
1207
1211
|
i += 1
|
1208
1212
|
if dbs['mongodb']:
|
1209
1213
|
if d.client:
|
@@ -1220,7 +1224,16 @@ def one_file_to_mysql(file, db_name, table_name, target_service, database):
|
|
1220
1224
|
df = pd.read_csv(file, encoding='utf-8_sig', header=0, na_filter=False, float_precision='high')
|
1221
1225
|
# df.replace(to_replace=[','], value='', regex=True, inplace=True) # 替换掉特殊字符
|
1222
1226
|
m = mysql.MysqlUpload(username=username, password=password, host=host, port=port)
|
1223
|
-
m.df_to_mysql(
|
1227
|
+
m.df_to_mysql(
|
1228
|
+
df=df,
|
1229
|
+
db_name=db_name,
|
1230
|
+
table_name=table_name,
|
1231
|
+
filename=filename,
|
1232
|
+
move_insert=False,
|
1233
|
+
df_sql=True,
|
1234
|
+
drop_duplicates=False,
|
1235
|
+
service_database={target_service: database},
|
1236
|
+
)
|
1224
1237
|
|
1225
1238
|
|
1226
1239
|
def file_dir(one_file=True, target_service='company'):
|
@@ -1303,26 +1316,26 @@ if __name__ == '__main__':
|
|
1303
1316
|
print(username, password, host, port)
|
1304
1317
|
# file_dir(one_file=False, target_service='company')
|
1305
1318
|
|
1306
|
-
# 上传 1 个文件到数据库
|
1307
|
-
one_file_to_mysql(
|
1308
|
-
|
1309
|
-
|
1310
|
-
|
1311
|
-
target_service='company',
|
1312
|
-
database='mysql'
|
1313
|
-
)
|
1314
|
-
|
1315
|
-
# # 上传一个目录到指定数据库
|
1316
|
-
# db_name = '天猫_推广数据3'
|
1317
|
-
# table_name = '主体报表'
|
1318
|
-
# upload_dir(
|
1319
|
-
# path='/Users/xigua/数据中心/原始文件3/天猫推广报表/主体报表',
|
1320
|
-
# db_name=db_name,
|
1321
|
-
# collection_name=table_name,
|
1322
|
-
# dbs={'mysql': True, 'mongodb': False},
|
1319
|
+
# # 上传 1 个文件到数据库
|
1320
|
+
# one_file_to_mysql(
|
1321
|
+
# file='/Users/xigua/Downloads/万里马箱包推广1_营销概况_qwqw全站营销_2024-08-18_2024-09-01.csv',
|
1322
|
+
# db_name='京东数据3',
|
1323
|
+
# table_name='推广数据_全站营销',
|
1323
1324
|
# target_service='company',
|
1325
|
+
# database='mysql'
|
1324
1326
|
# )
|
1325
1327
|
|
1328
|
+
# 上传一个目录到指定数据库
|
1329
|
+
db_name = '京东数据3'
|
1330
|
+
table_name = '京东商智_spu_商品明细'
|
1331
|
+
upload_dir(
|
1332
|
+
path='/Users/xigua/数据中心/原始文件3/京东报表/spu_商品明细',
|
1333
|
+
db_name=db_name,
|
1334
|
+
collection_name=table_name,
|
1335
|
+
dbs={'mysql': True, 'mongodb': False},
|
1336
|
+
target_service='company',
|
1337
|
+
)
|
1338
|
+
|
1326
1339
|
|
1327
1340
|
# # 新版 数据分类
|
1328
1341
|
# dp = DatabaseUpdate(path='/Users/xigua/Downloads')
|
@@ -103,6 +103,11 @@ class DataClean:
|
|
103
103
|
'数据库名': '爱库存2',
|
104
104
|
'集合名称': '商品spu榜单',
|
105
105
|
},
|
106
|
+
{
|
107
|
+
'文件简称': '手淘搜索_本店引流词_', # 文件名中包含的字符
|
108
|
+
'数据库名': '生意参谋3',
|
109
|
+
'集合名称': '手淘搜索_本店引流词',
|
110
|
+
},
|
106
111
|
]
|
107
112
|
for root, dirs, files in os.walk(path, topdown=False):
|
108
113
|
for name in files:
|
@@ -134,7 +139,7 @@ class DataClean:
|
|
134
139
|
if name.endswith('.xls') and '商品排行_' in name:
|
135
140
|
df = pd.read_excel(os.path.join(root, name), header=4)
|
136
141
|
if len(df) == 0:
|
137
|
-
print(f'{name}
|
142
|
+
print(f'{name} 报表数据不能为空')
|
138
143
|
continue
|
139
144
|
df.replace(to_replace=['-'], value=0, regex=False, inplace=True)
|
140
145
|
df.replace(to_replace=[','], value='', regex=True, inplace=True)
|
@@ -145,6 +150,25 @@ class DataClean:
|
|
145
150
|
new_name = f'py_xg_{os.path.splitext(name)[0]}.csv'
|
146
151
|
self.save_to_csv(df, root, new_name, encoding='utf-8_sig')
|
147
152
|
os.remove(os.path.join(root, name))
|
153
|
+
elif name.endswith('.xls') and '手淘搜索_本店引流词_' in name:
|
154
|
+
df = pd.read_excel(os.path.join(root, name), header=5)
|
155
|
+
if len(df) == 0:
|
156
|
+
print(f'{name} 报表数据不能为空')
|
157
|
+
continue
|
158
|
+
df.replace(to_replace=['-'], value=0, regex=False, inplace=True)
|
159
|
+
df.replace(to_replace=[','], value='', regex=True, inplace=True)
|
160
|
+
df.rename(columns={'统计日期': '日期'}, inplace=True)
|
161
|
+
shop_name = re.findall(r'本店.*_([\u4e00-\u9fffA-Za-z]+店)_', name)[0]
|
162
|
+
kw_type = re.findall('手淘搜索_本店引流词_([\u4e00-\u9fff]+)_', name)[0]
|
163
|
+
df.insert(loc=2, column='词类型', value=kw_type)
|
164
|
+
if '店铺名称' in df.columns.tolist():
|
165
|
+
df['店铺名称'] = shop_name
|
166
|
+
else:
|
167
|
+
df.insert(loc=1, column='店铺名称', value=shop_name)
|
168
|
+
new_name = f'py_xg_{os.path.splitext(name)[0]}.csv'
|
169
|
+
self.save_to_csv(df, root, new_name, encoding='utf-8_sig')
|
170
|
+
os.remove(os.path.join(root, name))
|
171
|
+
|
148
172
|
elif name.endswith('.csv') and '_来源构成_' in name:
|
149
173
|
df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
|
150
174
|
new_name = f'py_xg_{os.path.splitext(name)[0]}.csv'
|
@@ -938,6 +962,9 @@ class DataClean:
|
|
938
962
|
elif name.endswith('.csv') and '爱库存_商品榜单_' in name:
|
939
963
|
t_path = os.path.join(self.source_path, '爱库存', 'spu商品榜单')
|
940
964
|
bib(t_path, _as_month=True)
|
965
|
+
elif name.endswith('.csv') and '手淘搜索_本店引流词_' in name:
|
966
|
+
t_path = os.path.join(self.source_path, '生意参谋', '手淘搜索_本店引流词')
|
967
|
+
bib(t_path, _as_month=True)
|
941
968
|
|
942
969
|
def move_dmp(self, path=None, is_except=[]):
|
943
970
|
""" 达摩盘 """
|
@@ -1517,15 +1544,15 @@ def main(service_databases=None, is_mysql=False):
|
|
1517
1544
|
|
1518
1545
|
|
1519
1546
|
if __name__ == '__main__':
|
1520
|
-
|
1521
|
-
|
1522
|
-
|
1523
|
-
|
1524
|
-
|
1525
|
-
|
1526
|
-
|
1527
|
-
|
1528
|
-
|
1547
|
+
main(
|
1548
|
+
service_databases = [
|
1549
|
+
{'company': 'mysql'},
|
1550
|
+
# {'home_lx': 'mysql'},
|
1551
|
+
# {'home_lx': 'mongodb'},
|
1552
|
+
# {'nas': 'mysql'},
|
1553
|
+
],
|
1554
|
+
is_mysql = False, # 清理聚合数据
|
1555
|
+
)
|
1529
1556
|
|
1530
1557
|
# c = DataClean(
|
1531
1558
|
# path=upload_path, # 源文件目录,下载文件夹
|
@@ -1536,4 +1563,4 @@ if __name__ == '__main__':
|
|
1536
1563
|
# c.move_tg_tm(is_except=['临时文件', ]) # 天猫,移到文件到原始文件夹
|
1537
1564
|
|
1538
1565
|
|
1539
|
-
test()
|
1566
|
+
# test()
|
@@ -82,7 +82,7 @@ class MysqlUpload:
|
|
82
82
|
icm_update: 增量更新, 在聚合数据中使用,原始文件不要使用,设置此参数时需将 drop_duplicates 改为 False
|
83
83
|
使用增量更新: 必须确保 icm_update 传进来的列必须是数据表中唯一主键,值不会发生变化,不会重复,否则可能产生错乱覆盖情况
|
84
84
|
filename: 用来追踪处理进度,传这个参数是方便定位产生错误的文件
|
85
|
-
|
85
|
+
service_database: 这个参数是用来设置更新哪台服务器的 types 信息到本地 json 文件
|
86
86
|
json_path: 这个参数同样也是是用来设置更新 json 文件
|
87
87
|
"""
|
88
88
|
self.filename = filename
|
@@ -168,18 +168,18 @@ class MysqlUpload:
|
|
168
168
|
chunksize=1000
|
169
169
|
)
|
170
170
|
# print(f'重置自增')
|
171
|
-
# 6. 重置自增列
|
172
|
-
try:
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
except Exception as e:
|
181
|
-
|
182
|
-
|
171
|
+
# # 6. 重置自增列
|
172
|
+
# try:
|
173
|
+
# cursor.execute(f"SHOW COLUMNS FROM {table_name} LIKE 'id'")
|
174
|
+
# result = cursor.fetchone()
|
175
|
+
# if result:
|
176
|
+
# cursor.execute(f"ALTER TABLE {table_name} DROP COLUMN id;") # 删除 id 列
|
177
|
+
# cursor.execute(
|
178
|
+
# f"ALTER TABLE {table_name} ADD column id INT AUTO_INCREMENT PRIMARY KEY FIRST;")
|
179
|
+
# cursor.execute(f"ALTER TABLE {table_name} AUTO_INCREMENT = 1") # 设置自增从 1 开始
|
180
|
+
# except Exception as e:
|
181
|
+
# print(f'{e}')
|
182
|
+
# connection.rollback()
|
183
183
|
connection.close()
|
184
184
|
return
|
185
185
|
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|