mdbq 1.6.0__tar.gz → 1.6.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. {mdbq-1.6.0 → mdbq-1.6.1}/PKG-INFO +1 -1
  2. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/aggregation/aggregation.py +18 -18
  3. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/aggregation/query_data.py +90 -8
  4. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq.egg-info/PKG-INFO +1 -1
  5. {mdbq-1.6.0 → mdbq-1.6.1}/setup.py +1 -1
  6. {mdbq-1.6.0 → mdbq-1.6.1}/README.txt +0 -0
  7. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/__init__.py +0 -0
  8. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/__version__.py +0 -0
  9. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/aggregation/__init__.py +0 -0
  10. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/aggregation/df_types.py +0 -0
  11. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/aggregation/mysql_types.py +0 -0
  12. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/aggregation/optimize_data.py +0 -0
  13. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/bdup/__init__.py +0 -0
  14. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/bdup/bdup.py +0 -0
  15. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/clean/__init__.py +0 -0
  16. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/clean/data_clean.py +0 -0
  17. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/company/__init__.py +0 -0
  18. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/company/copysh.py +0 -0
  19. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/config/__init__.py +0 -0
  20. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/config/get_myconf.py +0 -0
  21. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/config/products.py +0 -0
  22. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/config/set_support.py +0 -0
  23. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/config/update_conf.py +0 -0
  24. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/dataframe/__init__.py +0 -0
  25. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/dataframe/converter.py +0 -0
  26. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/log/__init__.py +0 -0
  27. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/log/mylogger.py +0 -0
  28. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/mongo/__init__.py +0 -0
  29. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/mongo/mongo.py +0 -0
  30. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/mysql/__init__.py +0 -0
  31. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/mysql/mysql.py +0 -0
  32. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/mysql/s_query.py +0 -0
  33. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/mysql/year_month_day.py +0 -0
  34. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/other/__init__.py +0 -0
  35. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/other/porxy.py +0 -0
  36. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/other/pov_city.py +0 -0
  37. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/other/ua_sj.py +0 -0
  38. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/pbix/__init__.py +0 -0
  39. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/pbix/pbix_refresh.py +0 -0
  40. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/pbix/refresh_all.py +0 -0
  41. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq/spider/__init__.py +0 -0
  42. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq.egg-info/SOURCES.txt +0 -0
  43. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq.egg-info/dependency_links.txt +0 -0
  44. {mdbq-1.6.0 → mdbq-1.6.1}/mdbq.egg-info/top_level.txt +0 -0
  45. {mdbq-1.6.0 → mdbq-1.6.1}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 1.6.0
3
+ Version: 1.6.1
4
4
  Home-page: https://pypi.org/project/mdbsql
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -906,16 +906,16 @@ def upload_dir(path, db_name, collection_name, dbs={'mysql': True, 'mongodb': Tr
906
906
  host=host,
907
907
  port=port,
908
908
  )
909
- username, password, host, port = get_myconf.select_config_values(
910
- target_service='nas',
911
- database='mysql',
912
- )
913
- nas = mysql.MysqlUpload(
914
- username=username,
915
- password=password,
916
- host=host,
917
- port=port,
918
- )
909
+ # username, password, host, port = get_myconf.select_config_values(
910
+ # target_service='nas',
911
+ # database='mysql',
912
+ # )
913
+ # nas = mysql.MysqlUpload(
914
+ # username=username,
915
+ # password=password,
916
+ # host=host,
917
+ # port=port,
918
+ # )
919
919
 
920
920
  # 从本地 json 文件从读取 df 的数据类型信息
921
921
  df_to_json = df_types.DataTypes()
@@ -1064,11 +1064,11 @@ if __name__ == '__main__':
1064
1064
  # target_service='company',
1065
1065
  # database='mysql'
1066
1066
  # )
1067
- # db_name = '生意参谋2'
1068
- # table_name = '自助取数_店铺流量_月数据'
1069
- # upload_dir(
1070
- # path='/Users/xigua/数据中心/原始文件2/月数据/流量来源-自助取数-月数据',
1071
- # db_name=db_name,
1072
- # collection_name=table_name,
1073
- # dbs={'mysql': True, 'mongodb': False},
1074
- # )
1067
+ db_name = '推广数据2'
1068
+ table_name = '超级直播'
1069
+ upload_dir(
1070
+ path='/Users/xigua/数据中心/原始文件2/推广报表/超级直播',
1071
+ db_name=db_name,
1072
+ collection_name=table_name,
1073
+ dbs={'mysql': True, 'mongodb': False},
1074
+ )
@@ -192,6 +192,33 @@ class MysqlDatasQuery:
192
192
  )
193
193
  return df
194
194
 
195
+ def tg_cjzb(self):
196
+ start_date, end_date = self.months_data(num=self.months)
197
+ projection = {
198
+ '日期': 1,
199
+ '场景名字': 1,
200
+ '人群名字': 1,
201
+ '计划名字': 1,
202
+ '花费': 1,
203
+ '展现量': 1,
204
+ '进店量': 1,
205
+ '粉丝关注量': 1,
206
+ '观看次数': 1,
207
+ '总购物车数': 1,
208
+ '总成交笔数': 1,
209
+ '总成交金额': 1,
210
+ '直接成交笔数': 1,
211
+ '直接成交金额': 1,
212
+ }
213
+ df = self.download.data_to_df(
214
+ db_name='推广数据2',
215
+ table_name='超级直播',
216
+ start_date=start_date,
217
+ end_date=end_date,
218
+ projection=projection,
219
+ )
220
+ return df
221
+
195
222
  def idbm(self):
196
223
  """ 用生意经日数据制作商品 id 和编码对照表 """
197
224
  data_values = self.download.columns_to_list(
@@ -397,6 +424,7 @@ class GroupBy:
397
424
  '总成交笔数': '成交笔数',
398
425
  '总成交金额': '成交金额'
399
426
  }, inplace=True)
427
+ df.fillna(0, inplace=True)
400
428
  df = df.astype({
401
429
  '商品id': str,
402
430
  '花费': float,
@@ -409,7 +437,6 @@ class GroupBy:
409
437
  '直接成交笔数': int,
410
438
  '直接成交金额': float,
411
439
  }, errors='raise')
412
- df.fillna(0, inplace=True)
413
440
  if is_maximize:
414
441
  df = df.groupby(['日期', '营销场景', '商品id', '花费', '展现量', '点击量'], as_index=False).agg(
415
442
  **{'加购量': ('加购量', np.max),
@@ -477,6 +504,7 @@ class GroupBy:
477
504
  '总成交笔数': '成交笔数',
478
505
  '总成交金额': '成交金额'
479
506
  }, inplace=True)
507
+ df.fillna(0, inplace=True)
480
508
  df = df.astype({
481
509
  '商品id': str,
482
510
  '花费': float,
@@ -488,7 +516,6 @@ class GroupBy:
488
516
  '直接成交笔数': int,
489
517
  '直接成交金额': float,
490
518
  }, errors='raise')
491
- df.fillna(0, inplace=True)
492
519
  if is_maximize:
493
520
  df = df.groupby(['日期', '营销场景', '商品id', '花费', '展现量', '点击量', '人群名字'], as_index=False).agg(
494
521
  **{'加购量': ('加购量', np.max),
@@ -518,6 +545,7 @@ class GroupBy:
518
545
  '总成交笔数': '成交笔数',
519
546
  '总成交金额': '成交金额'
520
547
  }, inplace=True)
548
+ df.fillna(0, inplace=True)
521
549
  df = df.astype({
522
550
  '商品id': str,
523
551
  '花费': float,
@@ -529,7 +557,6 @@ class GroupBy:
529
557
  '直接成交笔数': int,
530
558
  '直接成交金额': float,
531
559
  }, errors='raise')
532
- df.fillna(0, inplace=True)
533
560
  if is_maximize:
534
561
  df = df.groupby(['日期', '营销场景', '商品id', '词类型', '词名字/词包名字', '花费', '展现量', '点击量'], as_index=False).agg(
535
562
  **{'加购量': ('加购量', np.max),
@@ -551,6 +578,55 @@ class GroupBy:
551
578
  )
552
579
  df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
553
580
  return df
581
+ elif '超级直播' in table_name:
582
+ df.rename(columns={
583
+ '观看次数': '观看次数',
584
+ '总购物车数': '加购量',
585
+ '总成交笔数': '成交笔数',
586
+ '总成交金额': '成交金额',
587
+ '场景名字': '营销场景',
588
+ }, inplace=True)
589
+ df.fillna(0, inplace=True)
590
+ df = df.astype({
591
+ '花费': float,
592
+ # '点击量': int,
593
+ '加购量': int,
594
+ '成交笔数': int,
595
+ '成交金额': float,
596
+ '进店量': int,
597
+ '粉丝关注量': int,
598
+ '观看次数': int,
599
+ }, errors='raise')
600
+ if is_maximize:
601
+ df = df.groupby(['日期', '营销场景', '人群名字', '计划名字', '花费', '观看次数', '展现量'],
602
+ as_index=False).agg(
603
+ **{
604
+ '进店量': ('进店量', np.max),
605
+ '粉丝关注量': ('粉丝关注量', np.max),
606
+ '加购量': ('加购量', np.max),
607
+ '成交笔数': ('成交笔数', np.max),
608
+ '成交金额': ('成交金额', np.max),
609
+ '直接成交笔数': ('直接成交笔数', np.max),
610
+ '直接成交金额': ('直接成交金额', np.max),
611
+ }
612
+ )
613
+ else:
614
+ df = df.groupby(['日期', '营销场景', '人群名字', '计划名字', '花费', '观看次数', '展现量'],
615
+ as_index=False).agg(
616
+ **{
617
+ '进店量': ('进店量', np.min),
618
+ '粉丝关注量': ('粉丝关注量', np.min),
619
+ '加购量': ('加购量', np.min),
620
+ '成交笔数': ('成交笔数', np.min),
621
+ '成交金额': ('成交金额', np.min),
622
+ '直接成交笔数': ('直接成交笔数', np.min),
623
+ '直接成交金额': ('直接成交金额', np.min),
624
+ }
625
+ )
626
+ df.insert(loc=1, column='推广渠道', value='万相台无界版') # df中插入新列
627
+ # df.insert(loc=2, column='营销场景', value='超级直播') # df中插入新列
628
+ # df = df.loc[df['日期'].between(start_day, today)]
629
+ return df
554
630
  elif '宝贝指标' in table_name:
555
631
  """ 聚合时不可以加商家编码,编码有些是空白,有些是 0 """
556
632
  df['宝贝id'] = df['宝贝id'].astype(str)
@@ -911,9 +987,9 @@ def data_aggregation_one(service_databases=[{}], months=1):
911
987
  data_dict = [
912
988
  {
913
989
  '数据库名': '聚合数据',
914
- '集合名': '京东_京准通_全站营销',
915
- '唯一主键': ['日期', '产品线',],
916
- '数据主体': sdq.jdqzyx(),
990
+ '集合名': '天猫_超级直播',
991
+ '唯一主键': ['日期', '推广渠道', '营销场景', '花费'],
992
+ '数据主体': sdq.tg_cjzb(),
917
993
  },
918
994
  ]
919
995
  ######################################################
@@ -1024,6 +1100,12 @@ def data_aggregation(service_databases=[{}], months=1):
1024
1100
  '唯一主键': ['日期', '推广渠道', '营销场景', '商品id', '花费', '词类型', '词名字/词包名字',],
1025
1101
  '数据主体': sdq.tg_gjc(),
1026
1102
  },
1103
+ {
1104
+ '数据库名': '聚合数据',
1105
+ '集合名': '天猫_超级直播',
1106
+ '唯一主键': ['日期', '推广渠道', '营销场景', '花费'],
1107
+ '数据主体': sdq.tg_cjzb(),
1108
+ },
1027
1109
  ]
1028
1110
  for items in data_dict: # 遍历返回结果
1029
1111
  db_name, table_name, unique_key_list, df = items['数据库名'], items['集合名'], items['唯一主键'], items['数据主体']
@@ -1081,7 +1163,7 @@ def data_aggregation(service_databases=[{}], months=1):
1081
1163
 
1082
1164
 
1083
1165
  if __name__ == '__main__':
1084
- data_aggregation(service_databases=[{'company': 'mysql'}], months=1) # 正常的聚合所有数据
1085
- # data_aggregation_one(service_databases=[{'company': 'mysql'}], months=1) # 单独聚合某一个数据库,具体库进函数编辑
1166
+ # data_aggregation(service_databases=[{'home_lx': 'mysql'}], months=1) # 正常的聚合所有数据
1167
+ data_aggregation_one(service_databases=[{'home_lx': 'mysql'}], months=1) # 单独聚合某一个数据库,具体库进函数编辑
1086
1168
  # optimize_data.op_data(service_databases=[{'company': 'mysql'}], days=3650) # 立即启动对聚合数据的清理工作
1087
1169
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 1.6.0
3
+ Version: 1.6.1
4
4
  Home-page: https://pypi.org/project/mdbsql
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -3,7 +3,7 @@
3
3
  from setuptools import setup, find_packages
4
4
 
5
5
  setup(name='mdbq',
6
- version='1.6.0',
6
+ version='1.6.1',
7
7
  author='xigua, ',
8
8
  author_email="2587125111@qq.com",
9
9
  url='https://pypi.org/project/mdbsql',
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes