mdbq 1.2.9__tar.gz → 1.3.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. {mdbq-1.2.9 → mdbq-1.3.0}/PKG-INFO +1 -1
  2. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/aggregation/aggregation.py +17 -9
  3. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/aggregation/query_data.py +5 -5
  4. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/clean/data_clean.py +55 -33
  5. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq.egg-info/PKG-INFO +1 -1
  6. {mdbq-1.2.9 → mdbq-1.3.0}/setup.py +1 -1
  7. {mdbq-1.2.9 → mdbq-1.3.0}/README.txt +0 -0
  8. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/__init__.py +0 -0
  9. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/__version__.py +0 -0
  10. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/aggregation/__init__.py +0 -0
  11. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/aggregation/df_types.py +0 -0
  12. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/aggregation/mysql_types.py +0 -0
  13. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/aggregation/optimize_data.py +0 -0
  14. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/bdup/__init__.py +0 -0
  15. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/bdup/bdup.py +0 -0
  16. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/clean/__init__.py +0 -0
  17. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/company/__init__.py +0 -0
  18. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/company/copysh.py +0 -0
  19. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/config/__init__.py +0 -0
  20. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/config/get_myconf.py +0 -0
  21. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/config/products.py +0 -0
  22. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/config/set_support.py +0 -0
  23. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/config/update_conf.py +0 -0
  24. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/dataframe/__init__.py +0 -0
  25. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/dataframe/converter.py +0 -0
  26. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/log/__init__.py +0 -0
  27. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/log/mylogger.py +0 -0
  28. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/mongo/__init__.py +0 -0
  29. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/mongo/mongo.py +0 -0
  30. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/mysql/__init__.py +0 -0
  31. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/mysql/mysql.py +0 -0
  32. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/mysql/s_query.py +0 -0
  33. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/mysql/year_month_day.py +0 -0
  34. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/other/__init__.py +0 -0
  35. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/other/porxy.py +0 -0
  36. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/other/pov_city.py +0 -0
  37. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/other/ua_sj.py +0 -0
  38. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/pbix/__init__.py +0 -0
  39. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/pbix/pbix_refresh.py +0 -0
  40. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/pbix/refresh_all.py +0 -0
  41. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq/spider/__init__.py +0 -0
  42. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq.egg-info/SOURCES.txt +0 -0
  43. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq.egg-info/dependency_links.txt +0 -0
  44. {mdbq-1.2.9 → mdbq-1.3.0}/mdbq.egg-info/top_level.txt +0 -0
  45. {mdbq-1.2.9 → mdbq-1.3.0}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 1.2.9
3
+ Version: 1.3.0
4
4
  Home-page: https://pypi.org/project/mdbsql
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -174,14 +174,14 @@ class DatabaseUpdate:
174
174
  db_name = '生意参谋2'
175
175
  if '经营优势' in df['一级来源'].tolist(): # 新版流量
176
176
  if '数据周期' in df.columns.tolist():
177
- collection_name='店铺来源_月数据_新版'
177
+ collection_name='店铺来源_月数据'
178
178
  else:
179
- collection_name='店铺来源_日数据_新版'
179
+ collection_name='店铺来源_日数据'
180
180
  else: # 旧版流量
181
181
  if '数据周期' in df.columns.tolist():
182
- collection_name='店铺来源_月数据'
182
+ collection_name='店铺来源_月数据_旧版'
183
183
  else:
184
- collection_name='店铺来源_日数据'
184
+ collection_name='店铺来源_日数据_旧版'
185
185
  elif name.endswith('.xls') and '生意参谋' in name and '商品_全部' in name:
186
186
  # 店铺商品排行
187
187
  df = pd.read_excel(os.path.join(root, name), header=4)
@@ -358,13 +358,21 @@ class DatabaseUpdate:
358
358
  df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
359
359
  elif name.endswith('.csv') and '市场排行_店铺' in name:
360
360
  df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
361
- elif name.endswith('.csv') and '类目洞察_属性分析' in name:
361
+ elif name.endswith('.csv') and '类目洞察_属性分析_分析明细_商品发现' in name:
362
+ df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
363
+ elif name.endswith('.csv') and '类目洞察_属性分析_分析明细_汇总' in name:
364
+ df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
365
+ elif name.endswith('.csv') and '类目洞察_价格分析_分析明细_商品发现' in name:
366
+ df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
367
+ elif name.endswith('.csv') and '类目洞察_价格分析_分析明细_汇总' in name:
368
+ df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
369
+ elif name.endswith('.csv') and '竞店分析-销售分析-关键指标对比' in name:
362
370
  df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
363
- elif name.endswith('.csv') and '类目洞察_价格分析' in name:
371
+ elif name.endswith('.csv') and '竞店分析-销售分析-top商品榜' in name:
364
372
  df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
365
- elif name.endswith('.csv') and '竞店分析-销售分析' in name:
373
+ elif name.endswith('.csv') and '竞店分析-来源分析-入店来源' in name:
366
374
  df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
367
- elif name.endswith('.csv') and '竞店分析-来源分析' in name:
375
+ elif name.endswith('.csv') and '竞店分析-来源分析-入店搜索词' in name:
368
376
  df = pd.read_csv(os.path.join(root, name), encoding='utf-8_sig', header=0, na_filter=False)
369
377
  # ----------------------- 京东数据处理分界线 -----------------------
370
378
  # ----------------------- 京东数据处理分界线 -----------------------
@@ -983,7 +991,7 @@ if __name__ == '__main__':
983
991
  # database='mysql'
984
992
  # )
985
993
  # db_name = '生意参谋2'
986
- # table_name = '店铺来源_日数据_新版'
994
+ # table_name = '店铺来源_日数据'
987
995
  # upload_dir(
988
996
  # path='/Users/xigua/数据中心/原始文件2/生意参谋/流量来源',
989
997
  # db_name=db_name,
@@ -167,7 +167,7 @@ class MysqlDatasQuery:
167
167
  }
168
168
  df = self.download.data_to_df(
169
169
  db_name='生意参谋2',
170
- table_name='店铺来源_日数据',
170
+ table_name='店铺来源_日数据_旧版',
171
171
  start_date=start_date,
172
172
  end_date=end_date,
173
173
  projection=projection,
@@ -320,7 +320,7 @@ class GroupBy:
320
320
  }
321
321
  )
322
322
  return df
323
- elif '店铺来源_日数据' in table_name:
323
+ elif '店铺来源_日数据_旧版' in table_name:
324
324
  return df
325
325
  elif '商品id编码表' in table_name:
326
326
  df['宝贝id'] = df['宝贝id'].astype(str)
@@ -504,7 +504,7 @@ def data_aggregation(service_databases=[{}]):
504
504
  for service_database in service_databases:
505
505
  for service_name, database in service_database.items():
506
506
  sdq = MysqlDatasQuery(target_service=service_name) # 实例化数据处理类
507
- sdq.months = 0 # 设置数据周期, 1 表示近 2 个月
507
+ sdq.months = 1 # 设置数据周期, 1 表示近 2 个月
508
508
  g = GroupBy() # 实例化数据聚合类
509
509
  # 实例化数据库连接
510
510
  username, password, host, port = get_myconf.select_config_values(target_service=service_name, database=database)
@@ -526,7 +526,7 @@ def data_aggregation(service_databases=[{}]):
526
526
  },
527
527
  {
528
528
  '数据库名': '聚合数据',
529
- '集合名': '天猫_店铺来源_日数据',
529
+ '集合名': '天猫_店铺来源_日数据_旧版',
530
530
  '唯一主键': ['日期', '一级来源', '二级来源', '三级来源'],
531
531
  '数据主体': sdq.dplyd(),
532
532
  },
@@ -552,7 +552,7 @@ def data_aggregation(service_databases=[{}]):
552
552
  for items in data_dict: # 遍历返回结果
553
553
  db_name, table_name, unique_key_list, df = items['数据库名'], items['集合名'], items['唯一主键'], items['数据主体']
554
554
  df = g.groupby(df=df, table_name=table_name, is_maximize=True) # 2. 聚合数据
555
- g.as_csv(df=df, filename=table_name + '.csv') # 导出 csv
555
+ # g.as_csv(df=df, filename=table_name + '.csv') # 导出 csv
556
556
  m.df_to_mysql(
557
557
  df=df,
558
558
  db_name=db_name,
@@ -269,25 +269,25 @@ class DataClean:
269
269
  if '经营优势' in df['一级来源'].tolist(): # 新版流量
270
270
  if '数据周期' in df.columns.tolist():
271
271
  if self.set_up_to_mogo:
272
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_店铺来源_月数据_新版')
272
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_店铺来源_月数据')
273
273
  if self.set_up_to_mysql:
274
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_店铺来源_月数据_新版')
274
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_店铺来源_月数据')
275
275
  else:
276
276
  if self.set_up_to_mogo:
277
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_店铺来源_日数据_新版')
277
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_店铺来源_日数据')
278
278
  if self.set_up_to_mysql:
279
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_店铺来源_日数据_新版')
279
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_店铺来源_日数据')
280
280
  else: # 旧版流量
281
281
  if '数据周期' in df.columns.tolist():
282
282
  if self.set_up_to_mogo:
283
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_店铺来源_月数据')
283
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_店铺来源_月数据_旧版')
284
284
  if self.set_up_to_mysql:
285
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_店铺来源_月数据')
285
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_店铺来源_月数据_旧版')
286
286
  else:
287
287
  if self.set_up_to_mogo:
288
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_店铺来源_日数据')
288
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_店铺来源_日数据_旧版')
289
289
  if self.set_up_to_mysql:
290
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_店铺来源_日数据')
290
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_店铺来源_日数据_旧版')
291
291
  os.remove(os.path.join(root, name))
292
292
 
293
293
  elif name.endswith('.xls') and '生意参谋' in name and '商品_全部' in name:
@@ -311,9 +311,9 @@ class DataClean:
311
311
  df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore')
312
312
  self.save_to_csv(df, root, new_name) # mysql 可能改变 df 列名,所以在上传 mysql 前保存 csv
313
313
  if self.set_up_to_mogo:
314
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_商品排行')
314
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_商品排行')
315
315
  if self.set_up_to_mysql:
316
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_商品排行')
316
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_商品排行')
317
317
  os.remove(os.path.join(root, name))
318
318
 
319
319
  elif name.endswith('.xls') and '参谋店铺整体日报' in name:
@@ -327,9 +327,9 @@ class DataClean:
327
327
  df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore')
328
328
  self.save_to_csv(df, root, new_name) # mysql 可能改变 df 列名,所以在上传 mysql 前保存 csv
329
329
  if self.set_up_to_mogo:
330
- d.df_to_mongo(df=df,db_name='生意参谋数据1', collection_name='生意参谋_自助取数_整体日报')
330
+ d.df_to_mongo(df=df,db_name='生意参谋2', collection_name='生意参谋_自助取数_整体日报')
331
331
  if self.set_up_to_mysql:
332
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_自助取数_整体日报')
332
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_自助取数_整体日报')
333
333
  os.remove(os.path.join(root, name))
334
334
 
335
335
  elif name.endswith('.xls') and '参谋每日流量_自助取数_新版' in name:
@@ -353,9 +353,9 @@ class DataClean:
353
353
  df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore')
354
354
  self.save_to_csv(df, root, new_name) # mysql 可能改变 df 列名,所以在上传 mysql 前保存 csv
355
355
  if self.set_up_to_mogo:
356
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_自助取数_每日流量')
356
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_自助取数_每日流量')
357
357
  if self.set_up_to_mysql:
358
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_自助取数_每日流量')
358
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_自助取数_每日流量')
359
359
  os.remove(os.path.join(root, name))
360
360
 
361
361
  elif name.endswith('.xls') and '商品sku' in name:
@@ -376,9 +376,9 @@ class DataClean:
376
376
  df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore')
377
377
  self.save_to_csv(df, root, new_name) # mysql 可能改变 df 列名,所以在上传 mysql 前保存 csv
378
378
  if self.set_up_to_mogo:
379
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_自助取数_商品sku')
379
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_自助取数_商品sku')
380
380
  if self.set_up_to_mysql:
381
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_自助取数_商品sku')
381
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_自助取数_商品sku')
382
382
  os.remove(os.path.join(root, name))
383
383
 
384
384
  elif name.endswith('.xls') and '参谋店铺流量来源(月)' in name:
@@ -403,9 +403,9 @@ class DataClean:
403
403
  df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore')
404
404
  self.save_to_csv(df, root, new_name) # mysql 可能改变 df 列名,所以在上传 mysql 前保存 csv
405
405
  if self.set_up_to_mogo:
406
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_自助取数_店铺流量_月数据')
406
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_自助取数_店铺流量_月数据')
407
407
  if self.set_up_to_mysql:
408
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_自助取数_店铺流量_月数据')
408
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_自助取数_店铺流量_月数据')
409
409
  os.remove(os.path.join(root, name))
410
410
 
411
411
  elif name.endswith('.csv') and 'baobei' in name:
@@ -561,9 +561,9 @@ class DataClean:
561
561
  df = pd.merge(df_lin, df, how='outer', on=col4)
562
562
  self.save_to_csv(df, root, new_name) # mysql 可能改变 df 列名,所以在上传 mysql 前保存 csv
563
563
  if self.set_up_to_mogo:
564
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_直播间成交订单明细')
564
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_直播间成交订单明细')
565
565
  if self.set_up_to_mysql:
566
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_直播间成交订单明细')
566
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_直播间成交订单明细')
567
567
  os.remove(os.path.join(root, name))
568
568
 
569
569
  elif name.endswith('.xlsx') and '直播间大盘数据' in name:
@@ -582,9 +582,9 @@ class DataClean:
582
582
  df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore')
583
583
  self.save_to_csv(df, root, new_name) # mysql 可能改变 df 列名,所以在上传 mysql 前保存 csv
584
584
  if self.set_up_to_mogo:
585
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_直播间大盘数据')
585
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_直播间大盘数据')
586
586
  if self.set_up_to_mysql:
587
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_直播间大盘数据')
587
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_直播间大盘数据')
588
588
  os.remove(os.path.join(root, name))
589
589
 
590
590
  elif name.endswith('.xls') and '直播业绩-成交拆解' in name:
@@ -604,9 +604,9 @@ class DataClean:
604
604
  df['日期'] = pd.to_datetime(df['日期'], format='%Y-%m-%d', errors='ignore')
605
605
  self.save_to_csv(df, root, new_name) # mysql 可能改变 df 列名,所以在上传 mysql 前保存 csv
606
606
  if self.set_up_to_mogo:
607
- d.df_to_mongo(df=df, db_name='生意参谋数据1', collection_name='生意参谋_直播业绩')
607
+ d.df_to_mongo(df=df, db_name='生意参谋2', collection_name='生意参谋_直播业绩')
608
608
  if self.set_up_to_mysql:
609
- m.df_to_mysql(df=df, db_name='生意参谋数据1', tabel_name='生意参谋_直播业绩')
609
+ m.df_to_mysql(df=df, db_name='生意参谋2', tabel_name='生意参谋_直播业绩')
610
610
  os.remove(os.path.join(root, name))
611
611
 
612
612
  elif name.endswith('.xlsx') and '明星店铺' in name:
@@ -988,11 +988,15 @@ class DataClean:
988
988
 
989
989
  if name.endswith('.csv') and '无线店铺流量来源' in name:
990
990
  date01 = re.findall(r'\d{4}-\d{2}-(\d{2})_\d{4}-\d{2}-(\d{2})', name)
991
+
991
992
  if int(date01[0][1]) - int(date01[0][0]) > 15:
992
- t_path = str(pathlib.Path(self.source_path, '月数据/流量来源'))
993
+ t_path = str(pathlib.Path(self.source_path, '月数据/流量来源_旧版'))
993
994
  bib(t_path)
994
- else:
995
+ elif '_新版' in name:
995
996
  t_path = str(pathlib.Path(self.source_path, '生意参谋/流量来源'))
997
+ bib(t_path)
998
+ else:
999
+ t_path = str(pathlib.Path(self.source_path, '生意参谋/流量来源_旧版'))
996
1000
  bib(t_path, _as_month=True)
997
1001
  elif name.endswith('.csv') and '商品_全部' in name:
998
1002
  t_path = str(pathlib.Path(self.source_path, '生意参谋/商品排行'))
@@ -1009,20 +1013,38 @@ class DataClean:
1009
1013
  elif name.endswith('.csv') and '参谋店铺流量来源(月)' in name:
1010
1014
  t_path = str(pathlib.Path(self.source_path, '月数据/流量来源-自助取数-月数据'))
1011
1015
  bib(t_path, _as_month=True)
1012
- elif name.endswith('.csv') and '竞店分析-' in name:
1013
- t_path = str(pathlib.Path(self.source_path, '市场数据/竞店分析'))
1014
- bib(t_path, _as_month=True)
1016
+ elif name.endswith('.csv') and '竞店分析' in name and '来源分析-入店来源' in name:
1017
+ t_path = str(pathlib.Path(self.source_path, '市场数据/竞店分析/来源分析/入店来源'))
1018
+ bib(t_path, _as_month=False)
1019
+ elif name.endswith('.csv') and '竞店分析' in name and '来源分析-入店搜索词' in name:
1020
+ t_path = str(pathlib.Path(self.source_path, '市场数据/竞店分析/来源分析/入店搜索词'))
1021
+ bib(t_path, _as_month=False)
1022
+ elif name.endswith('.csv') and '竞店分析' in name and '销售分析-关键指标对比' in name:
1023
+ t_path = str(pathlib.Path(self.source_path, '市场数据/竞店分析/销售分析/关键指标对比'))
1024
+ bib(t_path, _as_month=False)
1025
+ elif name.endswith('.csv') and '竞店分析' in name and '销售分析-top商品榜' in name:
1026
+ t_path = str(pathlib.Path(self.source_path, '市场数据/竞店分析/销售分析/top商品榜'))
1027
+ bib(t_path, _as_month=False)
1015
1028
  elif name.endswith('.csv') and '监控店铺数据' in name:
1016
1029
  t_path = str(pathlib.Path(self.source_path, '市场数据/监控店铺数据'))
1017
1030
  bib(t_path, _as_month=True)
1018
1031
  elif name.endswith('.csv') and '监控商品' in name:
1019
1032
  t_path = str(pathlib.Path(self.source_path, '市场数据/监控商品数据'))
1020
1033
  bib(t_path, _as_month=True)
1021
- elif name.endswith('.csv') and '竞店分析-流量分析' in name:
1022
- t_path = str(pathlib.Path(self.source_path, '市场数据/竞店流量构成'))
1034
+ # elif name.endswith('.csv') and '竞店分析-流量分析' in name:
1035
+ # t_path = str(pathlib.Path(self.source_path, '市场数据/竞店流量构成'))
1036
+ # bib(t_path, _as_month=True)
1037
+ elif name.endswith('.csv') and '类目洞察' in name and '属性分析_分析明细_汇总' in name:
1038
+ t_path = str(pathlib.Path(self.source_path, '市场数据/类目洞察/属性分析/汇总'))
1039
+ bib(t_path, _as_month=True)
1040
+ elif name.endswith('.csv') and '类目洞察' in name and '属性分析_分析明细_商品发现' in name:
1041
+ t_path = str(pathlib.Path(self.source_path, '市场数据/类目洞察/属性分析/商品发现'))
1042
+ bib(t_path, _as_month=True)
1043
+ elif name.endswith('.csv') and '类目洞察' in name and '价格分析_分析明细_汇总' in name:
1044
+ t_path = str(pathlib.Path(self.source_path, '市场数据/类目洞察/价格分析/汇总'))
1023
1045
  bib(t_path, _as_month=True)
1024
- elif name.endswith('.csv') and '类目洞察' in name:
1025
- t_path = str(pathlib.Path(self.source_path, '市场数据/类目洞察'))
1046
+ elif name.endswith('.csv') and '类目洞察' in name and '价格分析_分析明细_商品发现' in name:
1047
+ t_path = str(pathlib.Path(self.source_path, '市场数据/类目洞察/价格分析/商品发现'))
1026
1048
  bib(t_path, _as_month=True)
1027
1049
  elif name.endswith('.csv') and '市场排行_店铺排行' in name:
1028
1050
  t_path = str(pathlib.Path(self.source_path, '市场数据/市场二级类目店铺'))
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mdbq
3
- Version: 1.2.9
3
+ Version: 1.3.0
4
4
  Home-page: https://pypi.org/project/mdbsql
5
5
  Author: xigua,
6
6
  Author-email: 2587125111@qq.com
@@ -3,7 +3,7 @@
3
3
  from setuptools import setup, find_packages
4
4
 
5
5
  setup(name='mdbq',
6
- version='1.2.9',
6
+ version='1.3.0',
7
7
  author='xigua, ',
8
8
  author_email="2587125111@qq.com",
9
9
  url='https://pypi.org/project/mdbsql',
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes