mct-nightly 2.4.2.20251001.625__tar.gz → 2.4.2.20251002.523__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1073) hide show
  1. mct_nightly-2.4.2.20251002.523/PKG-INFO +242 -0
  2. mct_nightly-2.4.2.20251002.523/README.md +209 -0
  3. mct_nightly-2.4.2.20251002.523/mct_nightly.egg-info/PKG-INFO +242 -0
  4. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/__init__.py +30 -0
  5. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/constants.py +145 -0
  6. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/__init__.py +29 -0
  7. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/analyzer.py +73 -0
  8. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/__init__.py +23 -0
  9. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/back2framework/__init__.py +14 -0
  10. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/back2framework/base_model_builder.py +54 -0
  11. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/base_substitutions.py +53 -0
  12. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/collectors/__init__.py +14 -0
  13. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/collectors/base_collector.py +70 -0
  14. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/collectors/histogram_collector.py +159 -0
  15. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/collectors/mean_collector.py +97 -0
  16. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +143 -0
  17. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/collectors/statistics_collector.py +261 -0
  18. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py +114 -0
  19. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/framework_implementation.py +478 -0
  20. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/framework_info.py +150 -0
  21. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/fusion/__init__.py +14 -0
  22. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/fusion/fusing_info.py +526 -0
  23. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/fusion/graph_fuser.py +162 -0
  24. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/__init__.py +16 -0
  25. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/base_graph.py +938 -0
  26. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/base_node.py +749 -0
  27. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/edge.py +112 -0
  28. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/graph_matchers.py +147 -0
  29. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/graph_searches.py +122 -0
  30. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +14 -0
  31. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +109 -0
  32. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +75 -0
  33. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/memory_graph/cut.py +81 -0
  34. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +426 -0
  35. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +117 -0
  36. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +168 -0
  37. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +209 -0
  38. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/hessian/__init__.py +19 -0
  39. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/hessian/hessian_info_service.py +321 -0
  40. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +35 -0
  41. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +94 -0
  42. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +81 -0
  43. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/matchers/__init__.py +14 -0
  44. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/matchers/base_graph_filter.py +94 -0
  45. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/matchers/base_matcher.py +68 -0
  46. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/matchers/edge_matcher.py +112 -0
  47. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/matchers/function.py +56 -0
  48. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/matchers/node_matcher.py +89 -0
  49. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/matchers/walk_matcher.py +35 -0
  50. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/memory_computation.py +29 -0
  51. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/__init__.py +15 -0
  52. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +143 -0
  53. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +23 -0
  54. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +110 -0
  55. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +69 -0
  56. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +130 -0
  57. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +92 -0
  58. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +110 -0
  59. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +529 -0
  60. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +14 -0
  61. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +128 -0
  62. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +794 -0
  63. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +66 -0
  64. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +14 -0
  65. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +148 -0
  66. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/__init__.py +14 -0
  67. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/metric_calculators.py +424 -0
  68. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/sensitivity_evaluation.py +168 -0
  69. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/set_layer_to_bitwidth.py +56 -0
  70. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +192 -0
  71. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/model_builder_mode.py +31 -0
  72. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/model_collector.py +267 -0
  73. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/network_editors/__init__.py +19 -0
  74. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/network_editors/actions.py +447 -0
  75. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/network_editors/edit_network.py +42 -0
  76. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/network_editors/node_filters.py +99 -0
  77. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/node_prior_info.py +74 -0
  78. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/__init__.py +16 -0
  79. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/channels_grouping.py +93 -0
  80. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +148 -0
  81. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +15 -0
  82. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +43 -0
  83. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +39 -0
  84. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +287 -0
  85. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/mask/__init__.py +14 -0
  86. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +113 -0
  87. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +121 -0
  88. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/memory_calculator.py +384 -0
  89. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/prune_graph.py +73 -0
  90. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/pruner.py +134 -0
  91. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/pruning_config.py +79 -0
  92. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +156 -0
  93. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/pruning_info.py +90 -0
  94. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/pruning/pruning_section.py +127 -0
  95. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/__init__.py +14 -0
  96. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/bit_width_config.py +245 -0
  97. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +83 -0
  98. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/core_config.py +48 -0
  99. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/debug_config.py +38 -0
  100. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +139 -0
  101. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/node_quantization_config.py +637 -0
  102. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_config.py +109 -0
  103. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +49 -0
  104. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +78 -0
  105. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +20 -0
  106. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +529 -0
  107. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +158 -0
  108. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +48 -0
  109. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +178 -0
  110. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +155 -0
  111. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +145 -0
  112. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +758 -0
  113. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +70 -0
  114. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +206 -0
  115. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +187 -0
  116. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +55 -0
  117. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantize_node.py +57 -0
  118. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +15 -0
  119. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +57 -0
  120. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +312 -0
  121. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +129 -0
  122. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +518 -0
  123. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/similarity_analyzer.py +262 -0
  124. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/statistics_correction/__init__.py +14 -0
  125. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +81 -0
  126. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +84 -0
  127. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +110 -0
  128. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +185 -0
  129. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +211 -0
  130. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +119 -0
  131. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/__init__.py +14 -0
  132. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +37 -0
  133. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +299 -0
  134. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +169 -0
  135. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +200 -0
  136. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +261 -0
  137. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +50 -0
  138. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/remove_identity.py +59 -0
  139. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +110 -0
  140. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/scale_equalization.py +251 -0
  141. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +645 -0
  142. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/softmax_shift.py +72 -0
  143. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +93 -0
  144. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +88 -0
  145. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/user_info.py +45 -0
  146. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/visualization/__init__.py +15 -0
  147. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +149 -0
  148. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/visualization/nn_visualizer.py +160 -0
  149. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +568 -0
  150. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/graph_prep_runner.py +215 -0
  151. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/__init__.py +15 -0
  152. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/back2framework/__init__.py +16 -0
  153. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +46 -0
  154. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +64 -0
  155. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/back2framework/instance_builder.py +125 -0
  156. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +331 -0
  157. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +246 -0
  158. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +63 -0
  159. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/constants.py +122 -0
  160. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/custom_layer_validation.py +31 -0
  161. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/data_util.py +218 -0
  162. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/default_framework_info.py +114 -0
  163. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +15 -0
  164. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +15 -0
  165. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +109 -0
  166. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +198 -0
  167. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +74 -0
  168. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +54 -0
  169. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +66 -0
  170. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +268 -0
  171. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +127 -0
  172. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +138 -0
  173. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +184 -0
  174. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +99 -0
  175. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +493 -0
  176. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +97 -0
  177. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +51 -0
  178. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +78 -0
  179. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +138 -0
  180. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +160 -0
  181. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +259 -0
  182. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +89 -0
  183. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +41 -0
  184. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +32 -0
  185. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +43 -0
  186. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/hessian/__init__.py +14 -0
  187. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +162 -0
  188. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +96 -0
  189. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +225 -0
  190. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/keras_implementation.py +637 -0
  191. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/mixed_precision/__init__.py +14 -0
  192. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +112 -0
  193. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +134 -0
  194. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/pruning/__init__.py +15 -0
  195. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +284 -0
  196. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/quantizer/__init__.py +15 -0
  197. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +167 -0
  198. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/reader/__init__.py +15 -0
  199. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/reader/common.py +68 -0
  200. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/reader/connectivity_handler.py +252 -0
  201. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +15 -0
  202. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +169 -0
  203. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +64 -0
  204. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +46 -0
  205. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +52 -0
  206. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/reader/node_builder.py +343 -0
  207. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/reader/reader.py +183 -0
  208. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +105 -0
  209. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/statistics_correction/__init__.py +15 -0
  210. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +66 -0
  211. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +67 -0
  212. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/tf_tensor_numpy.py +73 -0
  213. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/keras/visualization/__init__.py +15 -0
  214. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/__init__.py +14 -0
  215. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/back2framework/__init__.py +17 -0
  216. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +46 -0
  217. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +98 -0
  218. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +41 -0
  219. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +244 -0
  220. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +476 -0
  221. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +14 -0
  222. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +152 -0
  223. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +52 -0
  224. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +96 -0
  225. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/constants.py +102 -0
  226. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/data_util.py +163 -0
  227. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/default_framework_info.py +98 -0
  228. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +14 -0
  229. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +14 -0
  230. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +193 -0
  231. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +66 -0
  232. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +47 -0
  233. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +69 -0
  234. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +93 -0
  235. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/convtranspose_dynamic_padding.py +77 -0
  236. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +106 -0
  237. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +100 -0
  238. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +83 -0
  239. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +124 -0
  240. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +499 -0
  241. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +749 -0
  242. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +118 -0
  243. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +50 -0
  244. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +108 -0
  245. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +73 -0
  246. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +80 -0
  247. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +230 -0
  248. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +245 -0
  249. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +41 -0
  250. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +50 -0
  251. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +31 -0
  252. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +40 -0
  253. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/hessian/__init__.py +14 -0
  254. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +138 -0
  255. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +60 -0
  256. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +154 -0
  257. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +14 -0
  258. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +99 -0
  259. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +125 -0
  260. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/pruning/__init__.py +14 -0
  261. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +315 -0
  262. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/pytorch_device_config.py +123 -0
  263. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/pytorch_implementation.py +595 -0
  264. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +82 -0
  265. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/quantizer/__init__.py +14 -0
  266. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +167 -0
  267. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/reader/__init__.py +14 -0
  268. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/reader/graph_builders.py +423 -0
  269. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/reader/node_holders.py +31 -0
  270. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/reader/reader.py +180 -0
  271. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +105 -0
  272. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +14 -0
  273. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +74 -0
  274. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +57 -0
  275. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/pytorch/utils.py +115 -0
  276. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/quantization_prep_runner.py +130 -0
  277. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/core/runner.py +229 -0
  278. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/__init__.py +26 -0
  279. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/common/__init__.py +14 -0
  280. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/common/constants.py +27 -0
  281. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/common/data_generation.py +123 -0
  282. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/common/data_generation_config.py +83 -0
  283. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/common/enums.py +156 -0
  284. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/common/image_pipeline.py +106 -0
  285. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/common/model_info_exctractors.py +196 -0
  286. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/common/optimization_utils.py +489 -0
  287. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/__init__.py +14 -0
  288. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/constants.py +31 -0
  289. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/image_operations.py +189 -0
  290. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/image_pipeline.py +171 -0
  291. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/keras_data_generation.py +360 -0
  292. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +201 -0
  293. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +14 -0
  294. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +45 -0
  295. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +68 -0
  296. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +106 -0
  297. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +219 -0
  298. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +156 -0
  299. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +43 -0
  300. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/keras/optimization_utils.py +404 -0
  301. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/__init__.py +14 -0
  302. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/constants.py +36 -0
  303. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/image_operations.py +105 -0
  304. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +180 -0
  305. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +246 -0
  306. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +14 -0
  307. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +45 -0
  308. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +68 -0
  309. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +137 -0
  310. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +219 -0
  311. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +148 -0
  312. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +88 -0
  313. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +401 -0
  314. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +372 -0
  315. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/defaultdict.py +64 -0
  316. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/__init__.py +22 -0
  317. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/__init__.py +15 -0
  318. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +14 -0
  319. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +57 -0
  320. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +31 -0
  321. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +16 -0
  322. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +48 -0
  323. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +29 -0
  324. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +240 -0
  325. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +83 -0
  326. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +186 -0
  327. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +106 -0
  328. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +52 -0
  329. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +16 -0
  330. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +152 -0
  331. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +29 -0
  332. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +196 -0
  333. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +75 -0
  334. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +122 -0
  335. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/__init__.py +20 -0
  336. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +14 -0
  337. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +49 -0
  338. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +14 -0
  339. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +14 -0
  340. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +115 -0
  341. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +163 -0
  342. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +81 -0
  343. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +14 -0
  344. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +14 -0
  345. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +126 -0
  346. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +176 -0
  347. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +68 -0
  348. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/__init__.py +32 -0
  349. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/common/__init__.py +14 -0
  350. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/common/gptq_config.py +141 -0
  351. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +32 -0
  352. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/common/gptq_graph.py +68 -0
  353. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/common/gptq_training.py +325 -0
  354. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +80 -0
  355. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/common/regularization_factory.py +58 -0
  356. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/__init__.py +14 -0
  357. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +29 -0
  358. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/gptq_loss.py +190 -0
  359. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/gptq_training.py +454 -0
  360. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/graph_info.py +95 -0
  361. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantization_facade.py +308 -0
  362. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantizer/__init__.py +18 -0
  363. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +110 -0
  364. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +150 -0
  365. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +82 -0
  366. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +14 -0
  367. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +82 -0
  368. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +261 -0
  369. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +224 -0
  370. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +14 -0
  371. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +181 -0
  372. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/__init__.py +14 -0
  373. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/gptq_loss.py +100 -0
  374. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +29 -0
  375. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/gptq_training.py +378 -0
  376. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/graph_info.py +85 -0
  377. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantization_facade.py +284 -0
  378. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +18 -0
  379. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +91 -0
  380. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +109 -0
  381. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +76 -0
  382. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +14 -0
  383. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +74 -0
  384. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +247 -0
  385. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +193 -0
  386. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +14 -0
  387. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +181 -0
  388. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/gptq/runner.py +124 -0
  389. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/logger.py +174 -0
  390. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/metadata.py +99 -0
  391. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/pruning/__init__.py +20 -0
  392. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/pruning/keras/__init__.py +15 -0
  393. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/pruning/keras/pruning_facade.py +163 -0
  394. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/pruning/pytorch/__init__.py +14 -0
  395. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/pruning/pytorch/pruning_facade.py +179 -0
  396. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/ptq/__init__.py +17 -0
  397. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/ptq/keras/__init__.py +14 -0
  398. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/ptq/keras/quantization_facade.py +199 -0
  399. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/ptq/pytorch/__init__.py +14 -0
  400. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/ptq/pytorch/quantization_facade.py +170 -0
  401. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/ptq/runner.py +54 -0
  402. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/__init__.py +21 -0
  403. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/common/__init__.py +16 -0
  404. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/common/qat_config.py +61 -0
  405. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/__init__.py +14 -0
  406. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantization_facade.py +310 -0
  407. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantizer/__init__.py +19 -0
  408. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +39 -0
  409. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +14 -0
  410. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +130 -0
  411. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +133 -0
  412. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +65 -0
  413. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +107 -0
  414. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +14 -0
  415. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +170 -0
  416. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +148 -0
  417. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/__init__.py +14 -0
  418. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/quantization_facade.py +253 -0
  419. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +19 -0
  420. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +39 -0
  421. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +14 -0
  422. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +118 -0
  423. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +113 -0
  424. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +105 -0
  425. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +14 -0
  426. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +128 -0
  427. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +116 -0
  428. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/__init__.py +24 -0
  429. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/constants.py +45 -0
  430. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/immutable.py +55 -0
  431. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +14 -0
  432. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/schema/schema_compatability.py +124 -0
  433. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +105 -0
  434. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/schema/v1.py +680 -0
  435. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/schema/v2.py +283 -0
  436. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py +28 -0
  437. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +123 -0
  438. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py +282 -0
  439. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py +67 -0
  440. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +255 -0
  441. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +25 -0
  442. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py +117 -0
  443. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py +152 -0
  444. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +120 -0
  445. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +74 -0
  446. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +14 -0
  447. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +25 -0
  448. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +16 -0
  449. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +249 -0
  450. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +14 -0
  451. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +26 -0
  452. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +16 -0
  453. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +186 -0
  454. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +14 -0
  455. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +25 -0
  456. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +16 -0
  457. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +226 -0
  458. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/__init__.py +25 -0
  459. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/common/__init__.py +14 -0
  460. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +68 -0
  461. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +202 -0
  462. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/common/constants.py +20 -0
  463. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +130 -0
  464. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +61 -0
  465. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +36 -0
  466. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +98 -0
  467. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/common/training_method.py +31 -0
  468. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/common/util.py +29 -0
  469. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +14 -0
  470. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +20 -0
  471. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +22 -0
  472. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +14 -0
  473. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +126 -0
  474. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +129 -0
  475. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +14 -0
  476. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +148 -0
  477. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +122 -0
  478. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +32 -0
  479. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +90 -0
  480. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +89 -0
  481. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +77 -0
  482. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +115 -0
  483. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +108 -0
  484. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +14 -0
  485. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +19 -0
  486. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +22 -0
  487. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +14 -0
  488. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +111 -0
  489. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +106 -0
  490. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +14 -0
  491. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +110 -0
  492. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +106 -0
  493. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +31 -0
  494. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +64 -0
  495. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +226 -0
  496. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/verify_packages.py +32 -0
  497. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/__init__.py +20 -0
  498. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/common/__init__.py +15 -0
  499. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/common/constants.py +42 -0
  500. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/common/dataset_utils.py +43 -0
  501. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/common/model_analyzer.py +99 -0
  502. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/common/model_folding_utils.py +106 -0
  503. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/common/similarity_functions.py +81 -0
  504. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/common/tensorboard_utils.py +128 -0
  505. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/common/xquant_config.py +63 -0
  506. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/keras/__init__.py +15 -0
  507. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/keras/core_report_generator.py +91 -0
  508. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/keras/dataset_utils.py +57 -0
  509. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/keras/facade_xquant_report.py +66 -0
  510. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/keras/framework_report_utils.py +98 -0
  511. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/keras/keras_report_utils.py +70 -0
  512. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/keras/model_analyzer.py +136 -0
  513. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/keras/similarity_calculator.py +199 -0
  514. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/keras/similarity_functions.py +75 -0
  515. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/keras/tensorboard_utils.py +182 -0
  516. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/pytorch/__init__.py +15 -0
  517. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/pytorch/core_report_generator.py +177 -0
  518. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/pytorch/dataset_utils.py +76 -0
  519. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +104 -0
  520. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/pytorch/framework_report_utils.py +98 -0
  521. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/pytorch/model_analyzer.py +132 -0
  522. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +70 -0
  523. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/pytorch/similarity_calculator.py +199 -0
  524. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/pytorch/similarity_functions.py +68 -0
  525. mct_nightly-2.4.2.20251002.523/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +194 -0
  526. mct_nightly-2.4.2.20251002.523/setup.py +54 -0
  527. mct_nightly-2.4.2.20251001.625/PKG-INFO +0 -244
  528. mct_nightly-2.4.2.20251001.625/README.md +0 -209
  529. mct_nightly-2.4.2.20251001.625/mct_nightly.egg-info/PKG-INFO +0 -244
  530. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/__init__.py +0 -30
  531. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/constants.py +0 -145
  532. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/__init__.py +0 -29
  533. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/analyzer.py +0 -73
  534. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/__init__.py +0 -23
  535. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/back2framework/__init__.py +0 -14
  536. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -54
  537. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/base_substitutions.py +0 -53
  538. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/collectors/__init__.py +0 -14
  539. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/collectors/base_collector.py +0 -70
  540. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -159
  541. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -97
  542. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -143
  543. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -261
  544. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py +0 -114
  545. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/framework_implementation.py +0 -478
  546. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/framework_info.py +0 -150
  547. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/fusion/__init__.py +0 -14
  548. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/fusion/fusing_info.py +0 -526
  549. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -162
  550. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/__init__.py +0 -16
  551. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/base_graph.py +0 -938
  552. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/base_node.py +0 -749
  553. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/edge.py +0 -112
  554. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -147
  555. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/graph_searches.py +0 -122
  556. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -14
  557. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -109
  558. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -75
  559. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -81
  560. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -426
  561. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -117
  562. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -168
  563. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -209
  564. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/hessian/__init__.py +0 -19
  565. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -321
  566. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -35
  567. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -94
  568. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -81
  569. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/matchers/__init__.py +0 -14
  570. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -94
  571. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -68
  572. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -112
  573. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/matchers/function.py +0 -56
  574. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -89
  575. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -35
  576. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/memory_computation.py +0 -29
  577. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -15
  578. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -143
  579. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -23
  580. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -110
  581. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -69
  582. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -130
  583. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +0 -92
  584. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -110
  585. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -529
  586. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -14
  587. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -128
  588. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +0 -794
  589. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -66
  590. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -14
  591. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -148
  592. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/__init__.py +0 -14
  593. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/metric_calculators.py +0 -424
  594. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/sensitivity_evaluation.py +0 -168
  595. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/set_layer_to_bitwidth.py +0 -56
  596. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -192
  597. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/model_builder_mode.py +0 -31
  598. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/model_collector.py +0 -267
  599. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/network_editors/__init__.py +0 -19
  600. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/network_editors/actions.py +0 -447
  601. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -42
  602. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -99
  603. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/node_prior_info.py +0 -74
  604. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/__init__.py +0 -16
  605. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -93
  606. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -148
  607. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -15
  608. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -43
  609. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -39
  610. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -287
  611. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -14
  612. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -113
  613. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -121
  614. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -384
  615. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -73
  616. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/pruner.py +0 -134
  617. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -79
  618. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -156
  619. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -90
  620. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -127
  621. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/__init__.py +0 -14
  622. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -245
  623. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -83
  624. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/core_config.py +0 -48
  625. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/debug_config.py +0 -38
  626. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -139
  627. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -637
  628. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -109
  629. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -49
  630. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -78
  631. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -20
  632. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -529
  633. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -158
  634. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -48
  635. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -178
  636. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -155
  637. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -145
  638. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -758
  639. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -70
  640. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -206
  641. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -187
  642. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -55
  643. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -57
  644. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -15
  645. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -57
  646. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -312
  647. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -129
  648. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -518
  649. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/similarity_analyzer.py +0 -262
  650. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -14
  651. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -81
  652. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -84
  653. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -110
  654. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -185
  655. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -211
  656. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -119
  657. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/__init__.py +0 -14
  658. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -37
  659. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -299
  660. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -169
  661. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -200
  662. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -261
  663. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -50
  664. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -59
  665. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -110
  666. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -251
  667. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -645
  668. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -72
  669. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -93
  670. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -88
  671. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/user_info.py +0 -45
  672. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/visualization/__init__.py +0 -15
  673. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -149
  674. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -160
  675. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -568
  676. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/graph_prep_runner.py +0 -215
  677. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/__init__.py +0 -15
  678. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -16
  679. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -46
  680. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -64
  681. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -125
  682. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -331
  683. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -246
  684. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -63
  685. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/constants.py +0 -122
  686. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -31
  687. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/data_util.py +0 -218
  688. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/default_framework_info.py +0 -114
  689. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -15
  690. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -15
  691. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -109
  692. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -198
  693. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -74
  694. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -54
  695. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -66
  696. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -268
  697. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -127
  698. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -138
  699. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -184
  700. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -99
  701. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -493
  702. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -97
  703. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -51
  704. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -78
  705. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -138
  706. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -160
  707. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -259
  708. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -89
  709. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -41
  710. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -32
  711. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -43
  712. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/hessian/__init__.py +0 -14
  713. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -162
  714. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -96
  715. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -225
  716. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/keras_implementation.py +0 -637
  717. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -14
  718. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -112
  719. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -134
  720. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/pruning/__init__.py +0 -15
  721. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -284
  722. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -15
  723. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -167
  724. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/reader/__init__.py +0 -15
  725. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/reader/common.py +0 -68
  726. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -252
  727. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -15
  728. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -169
  729. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -64
  730. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -46
  731. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -52
  732. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/reader/node_builder.py +0 -343
  733. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/reader/reader.py +0 -183
  734. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -105
  735. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -15
  736. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -66
  737. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -67
  738. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -73
  739. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/keras/visualization/__init__.py +0 -15
  740. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/__init__.py +0 -14
  741. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -17
  742. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -46
  743. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -98
  744. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -41
  745. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -244
  746. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -476
  747. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -14
  748. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -152
  749. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -52
  750. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -96
  751. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/constants.py +0 -102
  752. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/data_util.py +0 -163
  753. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -98
  754. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -14
  755. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -14
  756. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -193
  757. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -66
  758. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -47
  759. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -69
  760. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -93
  761. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/convtranspose_dynamic_padding.py +0 -77
  762. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -106
  763. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -100
  764. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -83
  765. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -124
  766. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +0 -499
  767. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -749
  768. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -118
  769. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -50
  770. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -108
  771. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -73
  772. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -80
  773. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -230
  774. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -245
  775. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -41
  776. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -50
  777. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -31
  778. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -40
  779. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -14
  780. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -138
  781. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -60
  782. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -154
  783. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -14
  784. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -99
  785. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -125
  786. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -14
  787. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -315
  788. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -123
  789. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -595
  790. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -82
  791. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -14
  792. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -167
  793. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -14
  794. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -423
  795. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -31
  796. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/reader/reader.py +0 -180
  797. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -105
  798. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -14
  799. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -74
  800. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -57
  801. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/pytorch/utils.py +0 -115
  802. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/quantization_prep_runner.py +0 -130
  803. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/core/runner.py +0 -229
  804. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/__init__.py +0 -26
  805. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/common/__init__.py +0 -14
  806. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/common/constants.py +0 -27
  807. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/common/data_generation.py +0 -123
  808. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -83
  809. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/common/enums.py +0 -156
  810. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -106
  811. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -196
  812. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -489
  813. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/__init__.py +0 -14
  814. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/constants.py +0 -31
  815. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/image_operations.py +0 -189
  816. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -171
  817. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -360
  818. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -201
  819. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -14
  820. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -45
  821. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -68
  822. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -106
  823. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -219
  824. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -156
  825. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -43
  826. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -404
  827. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -14
  828. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/constants.py +0 -36
  829. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -105
  830. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -180
  831. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -246
  832. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -14
  833. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -45
  834. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -68
  835. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -137
  836. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -219
  837. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -148
  838. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -88
  839. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -401
  840. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -372
  841. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/defaultdict.py +0 -64
  842. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/__init__.py +0 -22
  843. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -15
  844. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -14
  845. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -57
  846. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -31
  847. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -16
  848. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -48
  849. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -29
  850. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -240
  851. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -83
  852. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -186
  853. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -106
  854. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -52
  855. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -16
  856. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -152
  857. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -29
  858. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -196
  859. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -75
  860. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -122
  861. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -20
  862. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -14
  863. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -49
  864. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -14
  865. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -14
  866. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -115
  867. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -163
  868. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -81
  869. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -14
  870. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -14
  871. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -126
  872. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -176
  873. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -68
  874. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/__init__.py +0 -32
  875. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/common/__init__.py +0 -14
  876. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/common/gptq_config.py +0 -141
  877. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -32
  878. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/common/gptq_graph.py +0 -68
  879. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/common/gptq_training.py +0 -325
  880. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -80
  881. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/common/regularization_factory.py +0 -58
  882. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/__init__.py +0 -14
  883. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -29
  884. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -190
  885. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/gptq_training.py +0 -454
  886. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/graph_info.py +0 -95
  887. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -308
  888. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -18
  889. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -110
  890. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -150
  891. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -82
  892. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -14
  893. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -82
  894. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -261
  895. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -224
  896. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -14
  897. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -181
  898. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/__init__.py +0 -14
  899. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -100
  900. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -29
  901. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -378
  902. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -85
  903. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -284
  904. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -18
  905. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -91
  906. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -109
  907. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -76
  908. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -14
  909. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -74
  910. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -247
  911. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -193
  912. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -14
  913. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -181
  914. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/gptq/runner.py +0 -124
  915. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/logger.py +0 -174
  916. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/metadata.py +0 -99
  917. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/pruning/__init__.py +0 -20
  918. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/pruning/keras/__init__.py +0 -15
  919. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -163
  920. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/pruning/pytorch/__init__.py +0 -14
  921. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -179
  922. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/ptq/__init__.py +0 -17
  923. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/ptq/keras/__init__.py +0 -14
  924. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -199
  925. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/ptq/pytorch/__init__.py +0 -14
  926. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -170
  927. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/ptq/runner.py +0 -54
  928. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/__init__.py +0 -21
  929. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/common/__init__.py +0 -16
  930. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/common/qat_config.py +0 -61
  931. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/__init__.py +0 -14
  932. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantization_facade.py +0 -310
  933. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -19
  934. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -39
  935. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -14
  936. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -130
  937. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -133
  938. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -65
  939. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -107
  940. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -14
  941. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -170
  942. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -148
  943. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/__init__.py +0 -14
  944. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -253
  945. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -19
  946. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -39
  947. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -14
  948. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -118
  949. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -113
  950. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -105
  951. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -14
  952. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -128
  953. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -116
  954. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -24
  955. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/constants.py +0 -45
  956. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -55
  957. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -14
  958. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/schema/schema_compatability.py +0 -124
  959. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +0 -105
  960. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/schema/v1.py +0 -680
  961. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/schema/v2.py +0 -283
  962. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py +0 -28
  963. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +0 -123
  964. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py +0 -282
  965. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py +0 -67
  966. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +0 -255
  967. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +0 -25
  968. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py +0 -117
  969. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py +0 -152
  970. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +0 -120
  971. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -74
  972. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -14
  973. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -25
  974. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -16
  975. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +0 -249
  976. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -14
  977. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -26
  978. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -16
  979. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +0 -186
  980. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -14
  981. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -25
  982. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -16
  983. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +0 -226
  984. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -25
  985. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -14
  986. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -68
  987. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -202
  988. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -20
  989. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -130
  990. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -61
  991. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -36
  992. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -98
  993. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -31
  994. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -29
  995. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -14
  996. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -20
  997. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -22
  998. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -14
  999. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -126
  1000. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -129
  1001. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -14
  1002. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -148
  1003. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -122
  1004. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -32
  1005. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -90
  1006. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -89
  1007. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -77
  1008. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -115
  1009. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -108
  1010. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -14
  1011. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -19
  1012. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -22
  1013. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -14
  1014. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -111
  1015. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -106
  1016. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -14
  1017. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -110
  1018. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -106
  1019. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -31
  1020. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -64
  1021. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -226
  1022. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/verify_packages.py +0 -32
  1023. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/__init__.py +0 -20
  1024. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/common/__init__.py +0 -15
  1025. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/common/constants.py +0 -42
  1026. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/common/dataset_utils.py +0 -43
  1027. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/common/model_analyzer.py +0 -99
  1028. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -106
  1029. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/common/similarity_functions.py +0 -81
  1030. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -128
  1031. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/common/xquant_config.py +0 -63
  1032. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/keras/__init__.py +0 -15
  1033. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/keras/core_report_generator.py +0 -91
  1034. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -57
  1035. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -66
  1036. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/keras/framework_report_utils.py +0 -98
  1037. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -70
  1038. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -136
  1039. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/keras/similarity_calculator.py +0 -199
  1040. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -75
  1041. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -182
  1042. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/pytorch/__init__.py +0 -15
  1043. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/pytorch/core_report_generator.py +0 -177
  1044. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -76
  1045. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -104
  1046. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/pytorch/framework_report_utils.py +0 -98
  1047. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -132
  1048. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -70
  1049. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/pytorch/similarity_calculator.py +0 -199
  1050. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -68
  1051. mct_nightly-2.4.2.20251001.625/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -194
  1052. mct_nightly-2.4.2.20251001.625/setup.py +0 -55
  1053. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/LICENSE.md +0 -0
  1054. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/mct_nightly.egg-info/SOURCES.txt +0 -0
  1055. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/mct_nightly.egg-info/dependency_links.txt +0 -0
  1056. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/mct_nightly.egg-info/requires.txt +0 -0
  1057. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/mct_nightly.egg-info/top_level.txt +0 -0
  1058. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  1059. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/core/common/model_validation.py +0 -0
  1060. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  1061. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  1062. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  1063. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  1064. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  1065. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +0 -0
  1066. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py +0 -0
  1067. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py +0 -0
  1068. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  1069. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/xquant/pytorch/core_detect_degrade_layer.py +0 -0
  1070. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/xquant/pytorch/core_judge_troubleshoot.py +0 -0
  1071. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/xquant/pytorch/detect_degrade_utils.py +0 -0
  1072. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/model_compression_toolkit/xquant/pytorch/judge_troubleshoot_utils.py +0 -0
  1073. {mct_nightly-2.4.2.20251001.625 → mct_nightly-2.4.2.20251002.523}/setup.cfg +0 -0
@@ -0,0 +1,242 @@
1
+ Metadata-Version: 2.4
2
+ Name: mct-nightly
3
+ Version: 2.4.2.20251002.523
4
+ Summary: A Model Compression Toolkit for neural networks
5
+ Classifier: Programming Language :: Python :: 3
6
+ Classifier: License :: OSI Approved :: Apache Software License
7
+ Classifier: Operating System :: OS Independent
8
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
9
+ Requires-Python: >=3.9
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE.md
12
+ Requires-Dist: networkx!=2.8.1
13
+ Requires-Dist: tqdm
14
+ Requires-Dist: Pillow
15
+ Requires-Dist: numpy
16
+ Requires-Dist: scikit-image
17
+ Requires-Dist: scikit-learn
18
+ Requires-Dist: tensorboard
19
+ Requires-Dist: PuLP
20
+ Requires-Dist: matplotlib<3.10.0
21
+ Requires-Dist: scipy
22
+ Requires-Dist: protobuf
23
+ Requires-Dist: mct-quantizers==1.6.0
24
+ Requires-Dist: pydantic>=2.0
25
+ Requires-Dist: edge-mdt-cl-dev
26
+ Dynamic: classifier
27
+ Dynamic: description
28
+ Dynamic: description-content-type
29
+ Dynamic: license-file
30
+ Dynamic: requires-dist
31
+ Dynamic: requires-python
32
+ Dynamic: summary
33
+
34
+ <div align="center" markdown="1">
35
+ <p>
36
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization/" target="_blank">
37
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
38
+ </p>
39
+
40
+ ______________________________________________________________________
41
+
42
+ </div>
43
+ <div align="center">
44
+ <p align="center">
45
+ <a href="#getting-started">Getting Started</a> •
46
+ <a href="#tutorials-and-examples">Tutorials</a> •
47
+ <a href="#high-level-features-and-techniques">High level features and techniques</a> •
48
+ <a href="#resources">Resources</a> •
49
+ <a href="#contributions">Community</a> •
50
+ <a href="#license">License</a>
51
+ </p>
52
+ <p align="center">
53
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
54
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
55
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
56
+ <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
57
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
58
+
59
+ </p>
60
+ </div>
61
+
62
+ __________________________________________________________________________________________________________
63
+
64
+ ## <div align="center">Getting Started</div>
65
+ ### Quick Installation
66
+ Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.3 or Tensorflow>=2.14.
67
+ ```
68
+ pip install model-compression-toolkit
69
+ ```
70
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/SonySemiconductorSolutions/mct-model-optimization/blob/main/INSTALLATION.md).
71
+
72
+ **Important note**: In order to use MCT, you’ll need to provide a pre-trained floating point model (PyTorch/Keras) as an input.
73
+
74
+ ### Tutorials and Examples
75
+
76
+ Our [tutorials](https://github.com/sony/model_optimization/blob/main/tutorials/README.md) section will walk you through the basics of the MCT tool, covering various compression techniques for both Keras and PyTorch models.
77
+ Access interactive notebooks for hands-on learning with popular models/tasks or move on to [Resources](#resources) section.
78
+
79
+ ### Supported Quantization Methods</div>
80
+ MCT supports various quantization methods as appears below.
81
+ <div align="center">
82
+ <p align="center">
83
+
84
+ Quantization Method | Complexity | Computational Cost | API | Tutorial
85
+ -------------------- | -----------|--------------------|---------|--------
86
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
87
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
88
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
89
+
90
+ </p>
91
+ </div>
92
+
93
+ For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
94
+ For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
95
+
96
+ **Required input**: Pre-trained floating point model (PyTorch/Keras)
97
+
98
+ **Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
99
+
100
+ <div align="center">
101
+ <p align="center">
102
+
103
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/mctDiagram_clean.svg" width="800">
104
+ </p>
105
+ </div>
106
+
107
+ ## <div align="center">High level features and techniques</div>
108
+
109
+ MCT offers a range of powerful features to optimize models for efficient edge deployment. These supported features include:
110
+
111
+ ### Quantization Core Features
112
+
113
+ 🏆 **Mixed-precision search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mixed_precision_ptq.ipynb). Assigning optimal quantization bit-width per layer (for weights/activations)
114
+
115
+ 📈 **Graph optimizations**.
116
+ Transforming the model to be best fitted for quantization process.
117
+
118
+ 🔎 **Quantization parameter search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_threshold_search.ipynb). Minimizing expected quantization-noise during thresholds search using methods such as MSE, No-Clipping and MAE.
119
+
120
+ 🧮 **Advanced quantization algorithms** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_z_score_threshold.ipynb). Enhancing quantization performance for advanced cases is available with some algorithms that can be applied, such as Shift negative correction, Outliers filtering and clustering.
121
+ __________________________________________________________________________________________________________
122
+ ### Hardware-aware optimization
123
+
124
+ 🎯 **TPC (Target Platform Capabilities)**. Describes the target hardware’s constrains, for which the model optimization is targeted. See [TPC Readme](./model_compression_toolkit/target_platform_capabilities/README.md) for more information.
125
+ __________________________________________________________________________________________________________
126
+ ### Data-free quantization (Data Generation) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
127
+ Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
128
+ The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
129
+ __________________________________________________________________________________________________________
130
+ ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
131
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_pruning_experimental.html)).
132
+ __________________________________________________________________________________________________________
133
+ ### **Debugging and Visualization**
134
+ **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
135
+ Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
136
+
137
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html).
138
+
139
+ **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
140
+
141
+ **🔑 XQuant Extension Tool.** Calculates the error for each layer by comparing the float model and quantized model, using both models along with the quantization log. The results are presented in reports. It identifies the causes of the detected errors and recommends appropriate improvement measures for each cause. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/XQuant_Extension_Tool.html) [Troubleshoot Manual](https://sonysemiconductorsolutions.github.io/mct-model-optimization/docs_troubleshoot/index.html)
142
+
143
+ __________________________________________________________________________________________________________
144
+ ### Enhanced Post-Training Quantization (EPTQ)
145
+ As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
146
+ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization**"_ [4].
147
+ More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
148
+
149
+ ## <div align="center">Resources</div>
150
+ * [User Guide](https://sonysemiconductorsolutions.github.io/mct-model-optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
151
+
152
+ * MCT's [API Docs](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/) is separated per quantization methods:
153
+
154
+ * [Post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#ptq) | PTQ API docs
155
+ * [Gradient-based post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#gptq) | GPTQ API docs
156
+ * [Quantization-aware training](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | QAT API docs
157
+
158
+ * [Debug](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
159
+
160
+ * [Release notes](https://github.com/sony/model_optimization/releases)
161
+
162
+
163
+ ## <div align="center">Supported Versions</div>
164
+
165
+ Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
166
+ <details id="supported-versions">
167
+ <summary>Supported Versions Table</summary>
168
+
169
+ | | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 | PyTorch 2.6 |
170
+ |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
171
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch26.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch26.yml) |
172
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch26.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch26.yml) |
173
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch26.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch26.yml) |
174
+ | Python 3.12 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch26.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch26.yml) |
175
+
176
+ | | TensorFlow 2.14 | TensorFlow 2.15 |
177
+ |-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
178
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras215.yml) |
179
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml) |
180
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml) |
181
+
182
+ </details>
183
+
184
+ ## <div align="center">Results</div>
185
+
186
+ <p align="center">
187
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/Classification.png" width="200">
188
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/SemSeg.png" width="200">
189
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/PoseEst.png" width="200">
190
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/ObjDet.png" width="200">
191
+
192
+ MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
193
+ Below is a graph of [MobileNetV2](https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html) accuracy on ImageNet vs average bit-width of weights (X-axis), using **single-precision** quantization, **mixed-precision** quantization, and mixed-precision quantization with GPTQ.
194
+
195
+ <p align="center">
196
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/torch_mobilenetv2.png" width="800">
197
+
198
+ For more results, please see [1]
199
+
200
+
201
+ ### Pruning Results
202
+
203
+ Results for applying pruning to reduce the parameters of the following models by 50%:
204
+
205
+ | Model | Dense Model Accuracy | Pruned Model Accuracy |
206
+ |-----------------|----------------------|-----------------------|
207
+ | ResNet50 [2] | 75.1 | 72.4 |
208
+ | DenseNet121 [3] | 74.44 | 71.71 |
209
+
210
+ ## <div align="center">Troubleshooting and Community</div>
211
+
212
+ If you encountered a large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
213
+ for common pitfalls and some tools to improve the quantized model's accuracy.
214
+
215
+ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
216
+
217
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under the [discussions section](https://github.com/sony/model_optimization/discussions).
218
+
219
+
220
+ ## <div align="center">Contributions</div>
221
+ We'd love your input! MCT would not be possible without help from our community, and welcomes contributions from anyone!
222
+
223
+ *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
224
+
225
+ Thank you 🙏 to all our contributors!
226
+
227
+ ## <div align="center">License</div>
228
+ MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
229
+
230
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
231
+
232
+ ## <div align="center">References</div>
233
+
234
+ [1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).
235
+
236
+ [2] [Keras Applications](https://keras.io/api/applications/)
237
+
238
+ [3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
239
+
240
+ [4] Gordon, O., Cohen, E., Habi, H.V., Netzer, A. (2025). [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization – ECCV 2024 Workshops](https://link.springer.com/chapter/10.1007/978-3-031-91979-4_13)
241
+
242
+ [5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://openaccess.thecvf.com/content/WACV2025/papers/Dikstein_Data_Generation_for_Hardware-Friendly_Post-Training_Quantization_WACV_2025_paper.pdf)
@@ -0,0 +1,209 @@
1
+ <div align="center" markdown="1">
2
+ <p>
3
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization/" target="_blank">
4
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
5
+ </p>
6
+
7
+ ______________________________________________________________________
8
+
9
+ </div>
10
+ <div align="center">
11
+ <p align="center">
12
+ <a href="#getting-started">Getting Started</a> •
13
+ <a href="#tutorials-and-examples">Tutorials</a> •
14
+ <a href="#high-level-features-and-techniques">High level features and techniques</a> •
15
+ <a href="#resources">Resources</a> •
16
+ <a href="#contributions">Community</a> •
17
+ <a href="#license">License</a>
18
+ </p>
19
+ <p align="center">
20
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
21
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
22
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
23
+ <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
24
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
25
+
26
+ </p>
27
+ </div>
28
+
29
+ __________________________________________________________________________________________________________
30
+
31
+ ## <div align="center">Getting Started</div>
32
+ ### Quick Installation
33
+ Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.3 or Tensorflow>=2.14.
34
+ ```
35
+ pip install model-compression-toolkit
36
+ ```
37
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/SonySemiconductorSolutions/mct-model-optimization/blob/main/INSTALLATION.md).
38
+
39
+ **Important note**: In order to use MCT, you’ll need to provide a pre-trained floating point model (PyTorch/Keras) as an input.
40
+
41
+ ### Tutorials and Examples
42
+
43
+ Our [tutorials](https://github.com/sony/model_optimization/blob/main/tutorials/README.md) section will walk you through the basics of the MCT tool, covering various compression techniques for both Keras and PyTorch models.
44
+ Access interactive notebooks for hands-on learning with popular models/tasks or move on to [Resources](#resources) section.
45
+
46
+ ### Supported Quantization Methods</div>
47
+ MCT supports various quantization methods as appears below.
48
+ <div align="center">
49
+ <p align="center">
50
+
51
+ Quantization Method | Complexity | Computational Cost | API | Tutorial
52
+ -------------------- | -----------|--------------------|---------|--------
53
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
54
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
55
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
56
+
57
+ </p>
58
+ </div>
59
+
60
+ For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
61
+ For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
62
+
63
+ **Required input**: Pre-trained floating point model (PyTorch/Keras)
64
+
65
+ **Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
66
+
67
+ <div align="center">
68
+ <p align="center">
69
+
70
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/mctDiagram_clean.svg" width="800">
71
+ </p>
72
+ </div>
73
+
74
+ ## <div align="center">High level features and techniques</div>
75
+
76
+ MCT offers a range of powerful features to optimize models for efficient edge deployment. These supported features include:
77
+
78
+ ### Quantization Core Features
79
+
80
+ 🏆 **Mixed-precision search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mixed_precision_ptq.ipynb). Assigning optimal quantization bit-width per layer (for weights/activations)
81
+
82
+ 📈 **Graph optimizations**.
83
+ Transforming the model to be best fitted for quantization process.
84
+
85
+ 🔎 **Quantization parameter search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_threshold_search.ipynb). Minimizing expected quantization-noise during thresholds search using methods such as MSE, No-Clipping and MAE.
86
+
87
+ 🧮 **Advanced quantization algorithms** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_z_score_threshold.ipynb). Enhancing quantization performance for advanced cases is available with some algorithms that can be applied, such as Shift negative correction, Outliers filtering and clustering.
88
+ __________________________________________________________________________________________________________
89
+ ### Hardware-aware optimization
90
+
91
+ 🎯 **TPC (Target Platform Capabilities)**. Describes the target hardware’s constrains, for which the model optimization is targeted. See [TPC Readme](./model_compression_toolkit/target_platform_capabilities/README.md) for more information.
92
+ __________________________________________________________________________________________________________
93
+ ### Data-free quantization (Data Generation) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
94
+ Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
95
+ The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
96
+ __________________________________________________________________________________________________________
97
+ ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
98
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_pruning_experimental.html)).
99
+ __________________________________________________________________________________________________________
100
+ ### **Debugging and Visualization**
101
+ **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
102
+ Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
103
+
104
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html).
105
+
106
+ **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
107
+
108
+ **🔑 XQuant Extension Tool.** Calculates the error for each layer by comparing the float model and quantized model, using both models along with the quantization log. The results are presented in reports. It identifies the causes of the detected errors and recommends appropriate improvement measures for each cause. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/XQuant_Extension_Tool.html) [Troubleshoot Manual](https://sonysemiconductorsolutions.github.io/mct-model-optimization/docs_troubleshoot/index.html)
109
+
110
+ __________________________________________________________________________________________________________
111
+ ### Enhanced Post-Training Quantization (EPTQ)
112
+ As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
113
+ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization**"_ [4].
114
+ More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
115
+
116
+ ## <div align="center">Resources</div>
117
+ * [User Guide](https://sonysemiconductorsolutions.github.io/mct-model-optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
118
+
119
+ * MCT's [API Docs](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/) is separated per quantization methods:
120
+
121
+ * [Post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#ptq) | PTQ API docs
122
+ * [Gradient-based post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#gptq) | GPTQ API docs
123
+ * [Quantization-aware training](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | QAT API docs
124
+
125
+ * [Debug](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
126
+
127
+ * [Release notes](https://github.com/sony/model_optimization/releases)
128
+
129
+
130
+ ## <div align="center">Supported Versions</div>
131
+
132
+ Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
133
+ <details id="supported-versions">
134
+ <summary>Supported Versions Table</summary>
135
+
136
+ | | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 | PyTorch 2.6 |
137
+ |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
138
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch26.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch26.yml) |
139
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch26.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch26.yml) |
140
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch26.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch26.yml) |
141
+ | Python 3.12 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch26.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch26.yml) |
142
+
143
+ | | TensorFlow 2.14 | TensorFlow 2.15 |
144
+ |-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
145
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras215.yml) |
146
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml) |
147
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml) |
148
+
149
+ </details>
150
+
151
+ ## <div align="center">Results</div>
152
+
153
+ <p align="center">
154
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/Classification.png" width="200">
155
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/SemSeg.png" width="200">
156
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/PoseEst.png" width="200">
157
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/ObjDet.png" width="200">
158
+
159
+ MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
160
+ Below is a graph of [MobileNetV2](https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html) accuracy on ImageNet vs average bit-width of weights (X-axis), using **single-precision** quantization, **mixed-precision** quantization, and mixed-precision quantization with GPTQ.
161
+
162
+ <p align="center">
163
+ <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/torch_mobilenetv2.png" width="800">
164
+
165
+ For more results, please see [1]
166
+
167
+
168
+ ### Pruning Results
169
+
170
+ Results for applying pruning to reduce the parameters of the following models by 50%:
171
+
172
+ | Model | Dense Model Accuracy | Pruned Model Accuracy |
173
+ |-----------------|----------------------|-----------------------|
174
+ | ResNet50 [2] | 75.1 | 72.4 |
175
+ | DenseNet121 [3] | 74.44 | 71.71 |
176
+
177
+ ## <div align="center">Troubleshooting and Community</div>
178
+
179
+ If you encountered a large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
180
+ for common pitfalls and some tools to improve the quantized model's accuracy.
181
+
182
+ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
183
+
184
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under the [discussions section](https://github.com/sony/model_optimization/discussions).
185
+
186
+
187
+ ## <div align="center">Contributions</div>
188
+ We'd love your input! MCT would not be possible without help from our community, and welcomes contributions from anyone!
189
+
190
+ *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
191
+
192
+ Thank you 🙏 to all our contributors!
193
+
194
+ ## <div align="center">License</div>
195
+ MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
196
+
197
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
198
+
199
+ ## <div align="center">References</div>
200
+
201
+ [1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).
202
+
203
+ [2] [Keras Applications](https://keras.io/api/applications/)
204
+
205
+ [3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
206
+
207
+ [4] Gordon, O., Cohen, E., Habi, H.V., Netzer, A. (2025). [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization – ECCV 2024 Workshops](https://link.springer.com/chapter/10.1007/978-3-031-91979-4_13)
208
+
209
+ [5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://openaccess.thecvf.com/content/WACV2025/papers/Dikstein_Data_Generation_for_Hardware-Friendly_Post-Training_Quantization_WACV_2025_paper.pdf)