mct-nightly 2.4.0.20250924.535__tar.gz → 2.4.2.20250926.532__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (559) hide show
  1. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/PKG-INFO +6 -3
  2. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/README.md +4 -1
  3. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/mct_nightly.egg-info/PKG-INFO +6 -3
  4. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/mct_nightly.egg-info/SOURCES.txt +19 -13
  5. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/mct_nightly.egg-info/requires.txt +1 -1
  6. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/__init__.py +1 -1
  7. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/analyzer.py +5 -2
  8. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +4 -0
  9. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/collectors/base_collector.py +1 -4
  10. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/collectors/mean_collector.py +4 -7
  11. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +4 -7
  12. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/framework_implementation.py +22 -10
  13. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/common/framework_info.py +150 -0
  14. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/fusion/graph_fuser.py +9 -12
  15. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/base_graph.py +72 -45
  16. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/base_node.py +141 -121
  17. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/functional_node.py +2 -19
  18. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +21 -17
  19. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +18 -8
  20. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +9 -14
  21. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +21 -12
  22. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +3 -2
  23. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +5 -2
  24. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +6 -3
  25. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +10 -5
  26. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +5 -2
  27. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/metric_calculators.py +9 -4
  28. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/sensitivity_evaluation.py +7 -2
  29. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +5 -7
  30. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/model_collector.py +18 -22
  31. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/common/model_validation.py +44 -0
  32. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/network_editors/__init__.py +1 -8
  33. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/network_editors/actions.py +130 -14
  34. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/network_editors/edit_network.py +4 -1
  35. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/channels_grouping.py +5 -1
  36. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +6 -0
  37. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +15 -5
  38. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +7 -3
  39. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +4 -2
  40. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/memory_calculator.py +13 -5
  41. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/prune_graph.py +4 -1
  42. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/pruner.py +6 -1
  43. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +13 -5
  44. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/pruning_section.py +18 -9
  45. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/bit_width_config.py +10 -10
  46. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +83 -0
  47. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +14 -20
  48. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +228 -43
  49. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_config.py +1 -0
  50. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +1 -21
  51. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +78 -0
  52. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +5 -8
  53. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +155 -0
  54. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +66 -36
  55. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +70 -0
  56. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantize_node.py +8 -8
  57. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +518 -0
  58. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +7 -3
  59. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +19 -6
  60. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +19 -11
  61. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +15 -15
  62. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +20 -4
  63. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +9 -4
  64. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +12 -8
  65. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +6 -3
  66. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +21 -5
  67. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +55 -43
  68. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +3 -1
  69. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +1 -1
  70. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +8 -3
  71. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +12 -8
  72. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/graph_prep_runner.py +35 -22
  73. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +4 -0
  74. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +5 -0
  75. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +15 -8
  76. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +6 -5
  77. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/keras/default_framework_info.py +114 -0
  78. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +7 -2
  79. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +1 -0
  80. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +18 -29
  81. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +16 -8
  82. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +5 -4
  83. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +13 -3
  84. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/keras_implementation.py +37 -17
  85. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/keras/keras_model_validation.py +38 -0
  86. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/keras_node_prior_info.py +13 -4
  87. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +1 -2
  88. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +34 -19
  89. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +2 -2
  90. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +5 -3
  91. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +12 -3
  92. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +16 -9
  93. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +5 -1
  94. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +3 -2
  95. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +6 -5
  96. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/pytorch/default_framework_info.py +98 -0
  97. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +4 -3
  98. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +5 -5
  99. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +8 -4
  100. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +4 -3
  101. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +12 -3
  102. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +1 -2
  103. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +41 -24
  104. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +33 -13
  105. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +5 -1
  106. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +2 -2
  107. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +5 -3
  108. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/quantization_prep_runner.py +11 -6
  109. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/runner.py +15 -5
  110. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +8 -8
  111. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +11 -11
  112. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -2
  113. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +1 -0
  114. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +9 -13
  115. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/common/gptq_graph.py +11 -5
  116. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/common/gptq_training.py +8 -1
  117. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/gptq_training.py +9 -3
  118. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/graph_info.py +6 -4
  119. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantization_facade.py +10 -4
  120. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +3 -1
  121. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/gptq_training.py +9 -3
  122. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/graph_info.py +3 -1
  123. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +7 -5
  124. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +3 -1
  125. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/runner.py +7 -1
  126. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/pruning/keras/pruning_facade.py +12 -7
  127. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +8 -4
  128. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/ptq/keras/quantization_facade.py +13 -5
  129. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +8 -4
  130. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/ptq/runner.py +4 -1
  131. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/common/qat_config.py +6 -2
  132. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantization_facade.py +13 -7
  133. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/quantization_facade.py +11 -7
  134. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/constants.py +1 -1
  135. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py +3 -3
  136. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +2 -0
  137. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +6 -0
  138. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +4 -2
  139. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/__init__.py +1 -0
  140. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/common/constants.py +1 -0
  141. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/common/model_folding_utils.py +6 -1
  142. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/common/tensorboard_utils.py +4 -1
  143. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/common/xquant_config.py +63 -0
  144. {mct_nightly-2.4.0.20250924.535/model_compression_toolkit/xquant/common → mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/keras}/core_report_generator.py +2 -2
  145. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +1 -1
  146. {mct_nightly-2.4.0.20250924.535/model_compression_toolkit/xquant/common → mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/keras}/framework_report_utils.py +23 -2
  147. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/keras/keras_report_utils.py +10 -5
  148. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/keras/similarity_calculator.py +199 -0
  149. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +3 -0
  150. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/pytorch/core_detect_degrade_layer.py +77 -0
  151. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/pytorch/core_judge_troubleshoot.py +66 -0
  152. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/pytorch/core_report_generator.py +177 -0
  153. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/pytorch/detect_degrade_utils.py +78 -0
  154. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +41 -1
  155. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/pytorch/framework_report_utils.py +98 -0
  156. mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/pytorch/judge_troubleshoot_utils.py +562 -0
  157. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +10 -7
  158. {mct_nightly-2.4.0.20250924.535/model_compression_toolkit/xquant/common → mct_nightly-2.4.2.20250926.532/model_compression_toolkit/xquant/pytorch}/similarity_calculator.py +6 -1
  159. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +3 -0
  160. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/common/framework_info.py +0 -160
  161. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -144
  162. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -170
  163. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -99
  164. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -199
  165. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/keras/default_framework_info.py +0 -154
  166. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/keras/quantization/activation_quantization_fn_factory.py +0 -47
  167. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -112
  168. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/pytorch/quantization/activation_quantization_fn_factory.py +0 -45
  169. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/quantization_preparation/__init__.py +0 -14
  170. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/quantization_preparation/load_fqc.py +0 -223
  171. mct_nightly-2.4.0.20250924.535/model_compression_toolkit/xquant/common/xquant_config.py +0 -37
  172. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/LICENSE.md +0 -0
  173. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/mct_nightly.egg-info/dependency_links.txt +0 -0
  174. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/mct_nightly.egg-info/top_level.txt +0 -0
  175. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/constants.py +0 -0
  176. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/__init__.py +0 -0
  177. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/__init__.py +0 -0
  178. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  179. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  180. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  181. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  182. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  183. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py +0 -0
  184. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  185. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/fusion/fusing_info.py +0 -0
  186. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  187. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  188. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  189. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  190. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  191. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  192. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  193. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  194. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  195. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  196. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  197. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  198. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  199. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  200. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  201. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  202. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  203. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  204. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  205. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  206. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  207. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  208. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  209. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  210. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  211. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  212. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  213. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  214. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  215. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  216. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  217. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/__init__.py +0 -0
  218. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/set_layer_to_bitwidth.py +0 -0
  219. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  220. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  221. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  222. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  223. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  224. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  225. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  226. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  227. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  228. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  229. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  230. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  231. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  232. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  233. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  234. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  235. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  236. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  237. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  238. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  239. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  240. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  241. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  242. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  243. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  244. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  245. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  246. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  247. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  248. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  249. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  250. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  251. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  252. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  253. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  254. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/user_info.py +0 -0
  255. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  256. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  257. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/__init__.py +0 -0
  258. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  259. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  260. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  261. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/constants.py +0 -0
  262. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  263. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/data_util.py +0 -0
  264. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  265. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  266. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  267. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  268. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  269. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  270. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  271. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  272. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  273. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  274. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  275. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  276. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  277. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  278. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  279. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  280. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  281. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  282. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  283. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  284. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  285. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  286. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  287. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  288. {mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/keras/quantization → mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/keras/quantizer}/__init__.py +0 -0
  289. {mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/keras/quantization → mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/keras/quantizer}/fake_quant_builder.py +0 -0
  290. {mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/keras/quantization → mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/keras/quantizer}/lut_fake_quant.py +0 -0
  291. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  292. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  293. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  294. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  295. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  296. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  297. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  298. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  299. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  300. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  301. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  302. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  303. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  304. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  305. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  306. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  307. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  308. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  309. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  310. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  311. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  312. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
  313. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  314. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  315. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  316. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  317. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  318. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  319. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/convtranspose_dynamic_padding.py +0 -0
  320. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  321. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  322. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
  323. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  324. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +0 -0
  325. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  326. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  327. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  328. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  329. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  330. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  331. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  332. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  333. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  334. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  335. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  336. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  337. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  338. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  339. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  340. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  341. {mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/pytorch/quantization → mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/pytorch/quantizer}/__init__.py +0 -0
  342. {mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/pytorch/quantization → mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/pytorch/quantizer}/fake_quant_builder.py +0 -0
  343. {mct_nightly-2.4.0.20250924.535/model_compression_toolkit/core/pytorch/quantization → mct_nightly-2.4.2.20250926.532/model_compression_toolkit/core/pytorch/quantizer}/lut_fake_quant.py +0 -0
  344. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  345. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  346. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  347. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  348. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  349. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  350. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  351. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/__init__.py +0 -0
  352. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  353. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  354. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  355. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  356. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  357. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  358. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  359. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  360. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  361. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  362. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  363. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  364. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  365. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  366. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  367. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  368. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  369. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  370. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  371. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  372. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  373. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  374. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  375. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  376. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  377. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  378. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  379. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  380. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  381. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  382. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  383. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  384. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  385. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  386. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/defaultdict.py +0 -0
  387. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/__init__.py +0 -0
  388. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  389. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  390. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  391. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  392. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  393. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  394. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  395. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  396. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  397. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  398. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  399. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  400. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  401. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  402. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  403. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  404. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  405. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  406. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  407. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  408. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  409. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  410. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  411. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  412. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  413. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  414. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  415. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  416. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/__init__.py +0 -0
  417. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  418. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  419. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  420. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  421. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
  422. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
  423. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  424. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  425. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  426. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  427. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  428. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  429. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  430. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  431. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  432. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  433. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  434. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  435. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  436. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  437. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  438. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  439. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  440. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  441. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  442. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  443. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  444. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  445. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  446. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  447. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/logger.py +0 -0
  448. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/metadata.py +0 -0
  449. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/pruning/__init__.py +0 -0
  450. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  451. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  452. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/ptq/__init__.py +0 -0
  453. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  454. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  455. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/__init__.py +0 -0
  456. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/common/__init__.py +0 -0
  457. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  458. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  459. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
  460. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  461. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  462. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  463. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  464. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  465. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  466. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  467. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  468. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  469. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  470. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  471. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  472. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  473. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  474. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  475. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  476. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  477. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  478. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  479. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  480. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -0
  481. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +0 -0
  482. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/schema/schema_compatability.py +0 -0
  483. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +0 -0
  484. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/schema/v1.py +0 -0
  485. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/schema/v2.py +0 -0
  486. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py +0 -0
  487. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py +0 -0
  488. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +0 -0
  489. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py +0 -0
  490. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py +0 -0
  491. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +0 -0
  492. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +0 -0
  493. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py +0 -0
  494. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py +0 -0
  495. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +0 -0
  496. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  497. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  498. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  499. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  500. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  501. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +0 -0
  502. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  503. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  504. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  505. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +0 -0
  506. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  507. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  508. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  509. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +0 -0
  510. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  511. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  512. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
  513. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  514. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  515. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  516. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  517. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  518. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
  519. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  520. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
  521. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
  522. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
  523. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  524. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
  525. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
  526. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
  527. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
  528. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
  529. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  530. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  531. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  532. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  533. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  534. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  535. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  536. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  537. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  538. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  539. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  540. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  541. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  542. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  543. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  544. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  545. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/verify_packages.py +0 -0
  546. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  547. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  548. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  549. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  550. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  551. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  552. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  553. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  554. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  555. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  556. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  557. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  558. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/setup.cfg +0 -0
  559. {mct_nightly-2.4.0.20250924.535 → mct_nightly-2.4.2.20250926.532}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mct-nightly
3
- Version: 2.4.0.20250924.535
3
+ Version: 2.4.2.20250926.532
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Author-email: ssi-dnn-dev@sony.com
6
6
  Classifier: Programming Language :: Python :: 3
@@ -23,7 +23,7 @@ Requires-Dist: scipy
23
23
  Requires-Dist: protobuf
24
24
  Requires-Dist: mct-quantizers==1.6.0
25
25
  Requires-Dist: pydantic>=2.0
26
- Requires-Dist: edge-mdt-cl>=1.0
26
+ Requires-Dist: edge-mdt-cl-dev
27
27
  Dynamic: author-email
28
28
  Dynamic: classifier
29
29
  Dynamic: description
@@ -69,7 +69,7 @@ Pip install the model compression toolkit package in a Python>=3.9 environment w
69
69
  ```
70
70
  pip install model-compression-toolkit
71
71
  ```
72
- For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
72
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/SonySemiconductorSolutions/mct-model-optimization/blob/main/INSTALLATION.md).
73
73
 
74
74
  **Important note**: In order to use MCT, you’ll need to provide a pre-trained floating point model (PyTorch/Keras) as an input.
75
75
 
@@ -139,6 +139,9 @@ Modify your model's quantization configuration for specific layers or apply a cu
139
139
  **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html).
140
140
 
141
141
  **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
142
+
143
+ **🔑 XQuant Extension Tool.** Calculates the error for each layer by comparing the float model and quantized model, using both models along with the quantization log. The results are presented in reports. It identifies the causes of the detected errors and recommends appropriate improvement measures for each cause. [Read more](docs/guidelines/XQuant_Extension_Tool.html) [Troubleshoot Manual](docs/docs_troubleshoot/index.html)
144
+
142
145
  __________________________________________________________________________________________________________
143
146
  ### Enhanced Post-Training Quantization (EPTQ)
144
147
  As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
@@ -34,7 +34,7 @@ Pip install the model compression toolkit package in a Python>=3.9 environment w
34
34
  ```
35
35
  pip install model-compression-toolkit
36
36
  ```
37
- For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
37
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/SonySemiconductorSolutions/mct-model-optimization/blob/main/INSTALLATION.md).
38
38
 
39
39
  **Important note**: In order to use MCT, you’ll need to provide a pre-trained floating point model (PyTorch/Keras) as an input.
40
40
 
@@ -104,6 +104,9 @@ Modify your model's quantization configuration for specific layers or apply a cu
104
104
  **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html).
105
105
 
106
106
  **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
107
+
108
+ **🔑 XQuant Extension Tool.** Calculates the error for each layer by comparing the float model and quantized model, using both models along with the quantization log. The results are presented in reports. It identifies the causes of the detected errors and recommends appropriate improvement measures for each cause. [Read more](docs/guidelines/XQuant_Extension_Tool.html) [Troubleshoot Manual](docs/docs_troubleshoot/index.html)
109
+
107
110
  __________________________________________________________________________________________________________
108
111
  ### Enhanced Post-Training Quantization (EPTQ)
109
112
  As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mct-nightly
3
- Version: 2.4.0.20250924.535
3
+ Version: 2.4.2.20250926.532
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Author-email: ssi-dnn-dev@sony.com
6
6
  Classifier: Programming Language :: Python :: 3
@@ -23,7 +23,7 @@ Requires-Dist: scipy
23
23
  Requires-Dist: protobuf
24
24
  Requires-Dist: mct-quantizers==1.6.0
25
25
  Requires-Dist: pydantic>=2.0
26
- Requires-Dist: edge-mdt-cl>=1.0
26
+ Requires-Dist: edge-mdt-cl-dev
27
27
  Dynamic: author-email
28
28
  Dynamic: classifier
29
29
  Dynamic: description
@@ -69,7 +69,7 @@ Pip install the model compression toolkit package in a Python>=3.9 environment w
69
69
  ```
70
70
  pip install model-compression-toolkit
71
71
  ```
72
- For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
72
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/SonySemiconductorSolutions/mct-model-optimization/blob/main/INSTALLATION.md).
73
73
 
74
74
  **Important note**: In order to use MCT, you’ll need to provide a pre-trained floating point model (PyTorch/Keras) as an input.
75
75
 
@@ -139,6 +139,9 @@ Modify your model's quantization configuration for specific layers or apply a cu
139
139
  **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html).
140
140
 
141
141
  **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
142
+
143
+ **🔑 XQuant Extension Tool.** Calculates the error for each layer by comparing the float model and quantized model, using both models along with the quantization log. The results are presented in reports. It identifies the causes of the detected errors and recommends appropriate improvement measures for each cause. [Read more](docs/guidelines/XQuant_Extension_Tool.html) [Troubleshoot Manual](docs/docs_troubleshoot/index.html)
144
+
142
145
  __________________________________________________________________________________________________________
143
146
  ### Enhanced Post-Training Quantization (EPTQ)
144
147
  As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
@@ -25,6 +25,7 @@ model_compression_toolkit/core/common/framework_info.py
25
25
  model_compression_toolkit/core/common/memory_computation.py
26
26
  model_compression_toolkit/core/common/model_builder_mode.py
27
27
  model_compression_toolkit/core/common/model_collector.py
28
+ model_compression_toolkit/core/common/model_validation.py
28
29
  model_compression_toolkit/core/common/node_prior_info.py
29
30
  model_compression_toolkit/core/common/similarity_analyzer.py
30
31
  model_compression_toolkit/core/common/user_info.py
@@ -117,6 +118,7 @@ model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py
117
118
  model_compression_toolkit/core/common/quantization/node_quantization_config.py
118
119
  model_compression_toolkit/core/common/quantization/quantization_config.py
119
120
  model_compression_toolkit/core/common/quantization/quantization_fn_selection.py
121
+ model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py
120
122
  model_compression_toolkit/core/common/quantization/quantize_graph_weights.py
121
123
  model_compression_toolkit/core/common/quantization/quantize_node.py
122
124
  model_compression_toolkit/core/common/quantization/set_node_quantization_config.py
@@ -166,6 +168,7 @@ model_compression_toolkit/core/keras/custom_layer_validation.py
166
168
  model_compression_toolkit/core/keras/data_util.py
167
169
  model_compression_toolkit/core/keras/default_framework_info.py
168
170
  model_compression_toolkit/core/keras/keras_implementation.py
171
+ model_compression_toolkit/core/keras/keras_model_validation.py
169
172
  model_compression_toolkit/core/keras/keras_node_prior_info.py
170
173
  model_compression_toolkit/core/keras/resource_utilization_data_facade.py
171
174
  model_compression_toolkit/core/keras/tf_tensor_numpy.py
@@ -208,10 +211,9 @@ model_compression_toolkit/core/keras/mixed_precision/configurable_activation_qua
208
211
  model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py
209
212
  model_compression_toolkit/core/keras/pruning/__init__.py
210
213
  model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py
211
- model_compression_toolkit/core/keras/quantization/__init__.py
212
- model_compression_toolkit/core/keras/quantization/activation_quantization_fn_factory.py
213
- model_compression_toolkit/core/keras/quantization/fake_quant_builder.py
214
- model_compression_toolkit/core/keras/quantization/lut_fake_quant.py
214
+ model_compression_toolkit/core/keras/quantizer/__init__.py
215
+ model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py
216
+ model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py
215
217
  model_compression_toolkit/core/keras/reader/__init__.py
216
218
  model_compression_toolkit/core/keras/reader/common.py
217
219
  model_compression_toolkit/core/keras/reader/connectivity_handler.py
@@ -279,10 +281,9 @@ model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_q
279
281
  model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py
280
282
  model_compression_toolkit/core/pytorch/pruning/__init__.py
281
283
  model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py
282
- model_compression_toolkit/core/pytorch/quantization/__init__.py
283
- model_compression_toolkit/core/pytorch/quantization/activation_quantization_fn_factory.py
284
- model_compression_toolkit/core/pytorch/quantization/fake_quant_builder.py
285
- model_compression_toolkit/core/pytorch/quantization/lut_fake_quant.py
284
+ model_compression_toolkit/core/pytorch/quantizer/__init__.py
285
+ model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py
286
+ model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py
286
287
  model_compression_toolkit/core/pytorch/reader/__init__.py
287
288
  model_compression_toolkit/core/pytorch/reader/graph_builders.py
288
289
  model_compression_toolkit/core/pytorch/reader/node_holders.py
@@ -438,8 +439,6 @@ model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py
438
439
  model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py
439
440
  model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py
440
441
  model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py
441
- model_compression_toolkit/quantization_preparation/__init__.py
442
- model_compression_toolkit/quantization_preparation/load_fqc.py
443
442
  model_compression_toolkit/target_platform_capabilities/__init__.py
444
443
  model_compression_toolkit/target_platform_capabilities/constants.py
445
444
  model_compression_toolkit/target_platform_capabilities/immutable.py
@@ -515,26 +514,33 @@ model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers
515
514
  model_compression_toolkit/xquant/__init__.py
516
515
  model_compression_toolkit/xquant/common/__init__.py
517
516
  model_compression_toolkit/xquant/common/constants.py
518
- model_compression_toolkit/xquant/common/core_report_generator.py
519
517
  model_compression_toolkit/xquant/common/dataset_utils.py
520
- model_compression_toolkit/xquant/common/framework_report_utils.py
521
518
  model_compression_toolkit/xquant/common/model_analyzer.py
522
519
  model_compression_toolkit/xquant/common/model_folding_utils.py
523
- model_compression_toolkit/xquant/common/similarity_calculator.py
524
520
  model_compression_toolkit/xquant/common/similarity_functions.py
525
521
  model_compression_toolkit/xquant/common/tensorboard_utils.py
526
522
  model_compression_toolkit/xquant/common/xquant_config.py
527
523
  model_compression_toolkit/xquant/keras/__init__.py
524
+ model_compression_toolkit/xquant/keras/core_report_generator.py
528
525
  model_compression_toolkit/xquant/keras/dataset_utils.py
529
526
  model_compression_toolkit/xquant/keras/facade_xquant_report.py
527
+ model_compression_toolkit/xquant/keras/framework_report_utils.py
530
528
  model_compression_toolkit/xquant/keras/keras_report_utils.py
531
529
  model_compression_toolkit/xquant/keras/model_analyzer.py
530
+ model_compression_toolkit/xquant/keras/similarity_calculator.py
532
531
  model_compression_toolkit/xquant/keras/similarity_functions.py
533
532
  model_compression_toolkit/xquant/keras/tensorboard_utils.py
534
533
  model_compression_toolkit/xquant/pytorch/__init__.py
534
+ model_compression_toolkit/xquant/pytorch/core_detect_degrade_layer.py
535
+ model_compression_toolkit/xquant/pytorch/core_judge_troubleshoot.py
536
+ model_compression_toolkit/xquant/pytorch/core_report_generator.py
535
537
  model_compression_toolkit/xquant/pytorch/dataset_utils.py
538
+ model_compression_toolkit/xquant/pytorch/detect_degrade_utils.py
536
539
  model_compression_toolkit/xquant/pytorch/facade_xquant_report.py
540
+ model_compression_toolkit/xquant/pytorch/framework_report_utils.py
541
+ model_compression_toolkit/xquant/pytorch/judge_troubleshoot_utils.py
537
542
  model_compression_toolkit/xquant/pytorch/model_analyzer.py
538
543
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py
544
+ model_compression_toolkit/xquant/pytorch/similarity_calculator.py
539
545
  model_compression_toolkit/xquant/pytorch/similarity_functions.py
540
546
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py
@@ -11,4 +11,4 @@ scipy
11
11
  protobuf
12
12
  mct-quantizers==1.6.0
13
13
  pydantic>=2.0
14
- edge-mdt-cl>=1.0
14
+ edge-mdt-cl-dev
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.4.0.20250924.000535"
30
+ __version__ = "2.4.2.20250926.000532"
@@ -32,7 +32,8 @@ def analyzer_model_quantization(representative_data_gen: Callable,
32
32
  tb_w: TensorboardWriter,
33
33
  float_graph: Graph,
34
34
  quantized_graph: Graph,
35
- fw_impl: FrameworkImplementation):
35
+ fw_impl: FrameworkImplementation,
36
+ fw_info: FrameworkInfo):
36
37
  """
37
38
  Plot the cosine similarity of different points on the graph between the float and quantized
38
39
  graphs. Add them to the passed TensorboardWriter object and close all tensorboard writer open
@@ -44,12 +45,14 @@ def analyzer_model_quantization(representative_data_gen: Callable,
44
45
  float_graph: Graph of float model.
45
46
  quantized_graph: Graph of quantized model.
46
47
  fw_impl: FrameworkImplementation object with a specific framework methods implementation.
48
+ fw_info: Information needed for quantization about the specific framework.
47
49
 
48
50
  """
49
51
  if tb_w is not None:
50
52
  visual = NNVisualizer(float_graph,
51
53
  quantized_graph,
52
- fw_impl=fw_impl)
54
+ fw_impl=fw_impl,
55
+ fw_info=fw_info)
53
56
  if not visual.has_compare_points():
54
57
  Logger.error(f'No comparing points were found to plot analyze similarity.')
55
58
  else:
@@ -15,6 +15,7 @@
15
15
  from abc import ABC, abstractmethod
16
16
  from typing import Any, Tuple
17
17
 
18
+ from model_compression_toolkit.core.common.framework_info import FrameworkInfo
18
19
  from model_compression_toolkit.core import common
19
20
  from model_compression_toolkit.core.common.user_info import UserInformation
20
21
 
@@ -27,17 +28,20 @@ class BaseModelBuilder(ABC):
27
28
  def __init__(self,
28
29
  graph: common.Graph,
29
30
  append2output=None,
31
+ fw_info: FrameworkInfo = None,
30
32
  return_float_outputs: bool = False):
31
33
  """
32
34
 
33
35
  Args:
34
36
  graph: Graph to build the model from.
35
37
  append2output: Nodes of graph to append to model's output.
38
+ fw_info: Information about the specific framework of the model that is built.
36
39
  return_float_outputs: Whether the model returns float tensors or not.
37
40
  """
38
41
 
39
42
  self.graph = graph
40
43
  self.append2output = append2output
44
+ self.fw_info = fw_info
41
45
  self.return_float_outputs = return_float_outputs
42
46
 
43
47
  @abstractmethod
@@ -13,12 +13,11 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
- from abc import ABC, abstractmethod
17
16
  import numpy as np
18
17
  from model_compression_toolkit.logger import Logger
19
18
 
20
19
 
21
- class BaseCollector(ABC):
20
+ class BaseCollector(object):
22
21
  """
23
22
  Base class for statistics collection object.
24
23
  """
@@ -27,7 +26,6 @@ class BaseCollector(ABC):
27
26
  # When manipulation statistics in a granularity they were not collected by, the data is invalid.
28
27
  self.is_legal = True
29
28
 
30
- @abstractmethod
31
29
  def scale(self, scale_factor: np.ndarray):
32
30
  """
33
31
  Scale all statistics in collector by some factor.
@@ -39,7 +37,6 @@ class BaseCollector(ABC):
39
37
  raise NotImplemented(
40
38
  f'{self.__class__.__name__} needs to implement scale operation for its state.') # pragma: no cover
41
39
 
42
- @abstractmethod
43
40
  def shift(self, shift_value: np.ndarray):
44
41
  """
45
42
  Shift all statistics in collector by some value.
@@ -87,13 +87,10 @@ class MeanCollector(BaseCollector):
87
87
  x: Tensor that goes through the mean collector and needs to be considered in the mean computation.
88
88
  """
89
89
  self.i += 1 # Update the iteration index
90
- if self.axis is None:
91
- mu = np.mean(np.reshape(x, [1, -1]), axis=-1) # mean per channel for a batch
92
- else:
93
- axis = (len(x.shape) - 1) if self.axis == LAST_AXIS else self.axis
94
- n = x.shape[axis]
95
- transpose_index = [axis, *[i for i in range(len(x.shape)) if i != axis]]
96
- mu = np.mean(np.reshape(np.transpose(x, transpose_index), [n, -1]), axis=-1) # mean per channel for a batch
90
+ axis = (len(x.shape) - 1) if self.axis == LAST_AXIS else self.axis
91
+ n = x.shape[axis]
92
+ transpose_index = [axis, *[i for i in range(len(x.shape)) if i != axis]]
93
+ mu = np.mean(np.reshape(np.transpose(x, transpose_index), [n, -1]), axis=-1) # mean per channel for a batch
97
94
  self.current_sum += mu # sum of all batches
98
95
  self.current_mean = self.current_sum / self.i # mean of all batches
99
96
 
@@ -130,13 +130,10 @@ class MinMaxPerChannelCollector(BaseCollector):
130
130
  x: Tensor that goes through the collector and needs to be considered in the min/max computation.
131
131
  """
132
132
 
133
- if self.axis is None:
134
- x_reshape = np.reshape(x, [1, -1])
135
- else:
136
- axis = (len(x.shape) - 1) if self.axis == LAST_AXIS else self.axis
137
- n = x.shape[axis]
138
- transpose_index = [axis, *[i for i in range(len(x.shape)) if i != axis]]
139
- x_reshape = np.reshape(np.transpose(x, transpose_index), [n, -1])
133
+ axis = (len(x.shape) - 1) if self.axis == LAST_AXIS else self.axis
134
+ n = x.shape[axis]
135
+ transpose_index = [axis, *[i for i in range(len(x.shape)) if i != axis]]
136
+ x_reshape = np.reshape(np.transpose(x, transpose_index), [n, -1])
140
137
  if self.state is None:
141
138
  x_max = np.max(x_reshape, axis=-1)
142
139
  x_min = np.min(x_reshape, axis=-1)
@@ -125,16 +125,18 @@ class FrameworkImplementation(ABC):
125
125
  graph: Graph,
126
126
  mode: ModelBuilderMode,
127
127
  append2output: List[Any],
128
+ fw_info: FrameworkInfo,
128
129
  return_float_outputs: bool = False) -> Tuple:
129
130
  """
130
131
  Build a framework model from a graph.
131
- The mode determines how the model should be built. append2output is a list of Nodes
132
+ The mode determines how the model should be build. append2output is a list of Nodes
132
133
  to set as the model outputs.
133
134
 
134
135
  Args:
135
136
  graph: Graph to build the model from it.
136
137
  mode: Mode for how to build the model.
137
138
  append2output: List of Nodes to set as the model's outputs.
139
+ fw_info: FrameworkInfo object with information about the specific framework's model
138
140
  return_float_outputs (bool): whether to return outputs before or after quantization nodes (default)
139
141
 
140
142
  Returns:
@@ -168,13 +170,15 @@ class FrameworkImplementation(ABC):
168
170
  @abstractmethod
169
171
  def shift_negative_correction(self,
170
172
  graph: Graph,
171
- core_config: CoreConfig) -> Graph:
173
+ core_config: CoreConfig,
174
+ fw_info: FrameworkInfo) -> Graph:
172
175
  """
173
176
  Apply shift negative correction (SNC) on a graph.
174
177
 
175
178
  Args:
176
179
  graph: Graph to apply SNC on.
177
180
  core_config: Quantization configuration.
181
+ fw_info: FrameworkInfo object with information about the specific framework's model.
178
182
 
179
183
  Returns:
180
184
  Graph after SNC.
@@ -185,13 +189,15 @@ class FrameworkImplementation(ABC):
185
189
  @abstractmethod
186
190
  def compute_activation_bias_correction(self,
187
191
  graph: Graph,
188
- quant_config: QuantizationConfig) -> Graph:
192
+ quant_config: QuantizationConfig,
193
+ fw_info: FrameworkInfo) -> Graph:
189
194
  """
190
195
  Compute activation bias correction on a graph.
191
196
 
192
197
  Args:
193
198
  graph: Graph to apply activation bias correction on.
194
199
  quant_config: QuantizationConfig of how the model should be quantized.
200
+ fw_info: FrameworkInfo object with information about the specific framework's model.
195
201
 
196
202
  Returns:
197
203
  Graph after activation bias correction computing.
@@ -201,28 +207,30 @@ class FrameworkImplementation(ABC):
201
207
 
202
208
  @abstractmethod
203
209
  def get_substitutions_channel_equalization(self,
204
- quant_config: QuantizationConfig) -> List[common.BaseSubstitution]:
210
+ quant_config: QuantizationConfig,
211
+ fw_info: FrameworkInfo) -> List[common.BaseSubstitution]:
205
212
  """
206
213
  Return a list of the framework substitutions used for channel equalization.
207
214
 
208
215
  Args:
209
216
  quant_config: QuantizationConfig to determine which substitutions to return.
217
+ fw_info: FrameworkInfo object with information about the specific framework's model.
210
218
 
211
219
  Returns:
212
220
  A list of the framework substitutions used after we collect statistics.
213
221
  """
214
222
  raise NotImplementedError(f'{self.__class__.__name__} has to implement the '
215
- f'framework\'s get_substitutions_channel_equalization method.') # pragma: no cover
223
+ f'framework\'s get_substitutions_channel_equalization method.') # pragma: no cover
216
224
 
217
225
  @abstractmethod
218
- def get_substitutions_prepare_graph(self) -> List[common.BaseSubstitution]:
226
+ def get_substitutions_prepare_graph(self, fw_info: FrameworkInfo = None) -> List[common.BaseSubstitution]:
219
227
  """
220
228
 
221
229
  Returns: A list of the framework substitutions used to prepare the graph.
222
230
 
223
231
  """
224
232
  raise NotImplementedError(f'{self.__class__.__name__} has to implement the '
225
- f'framework\'s get_substitutions_prepare_graph method.') # pragma: no cover
233
+ f'framework\'s get_substitutions_prepare_graph method.') # pragma: no cover
226
234
 
227
235
  @abstractmethod
228
236
  def get_substitutions_pre_statistics_collection(self, quant_config: QuantizationConfig) -> \
@@ -320,12 +328,14 @@ class FrameworkImplementation(ABC):
320
328
  f'method.') # pragma: no cover
321
329
 
322
330
  def get_node_prior_info(self, node: BaseNode,
331
+ fw_info: FrameworkInfo,
323
332
  graph: Graph) -> NodePriorInfo:
324
333
  """
325
334
  Get a NodePriorInfo object for a node.
326
335
 
327
336
  Args:
328
337
  node: Node to get its prior info.
338
+ fw_info: Framework specific information needed to create the prior info of the node.
329
339
  graph: Graph to check the next node type.
330
340
 
331
341
  Returns:
@@ -333,7 +343,7 @@ class FrameworkImplementation(ABC):
333
343
  """
334
344
 
335
345
  raise NotImplementedError(f'{self.__class__.__name__} has to implement the '
336
- f'framework\'s get_node_prior_info method.') # pragma: no cover
346
+ f'framework\'s get_node_prior_info method.') # pragma: no cover
337
347
 
338
348
  def count_node_for_mixed_precision_interest_points(self, node: BaseNode) -> bool:
339
349
  """
@@ -384,18 +394,20 @@ class FrameworkImplementation(ABC):
384
394
 
385
395
  @abstractmethod
386
396
  def get_node_mac_operations(self,
387
- node: BaseNode) -> float:
397
+ node: BaseNode,
398
+ fw_info: FrameworkInfo) -> float:
388
399
  """
389
400
  Gets the MAC operation count for a given operation.
390
401
 
391
402
  Args:
392
403
  node: A graph node that wraps the operation for which the MAC count is computed.
404
+ fw_info: FrameworkInfo object with information about the specific framework's model.
393
405
 
394
406
  Returns: The MAC count of the operation
395
407
  """
396
408
 
397
409
  raise NotImplementedError(f'{self.__class__.__name__} has to implement the '
398
- f'framework\'s get_node_mac_operations method.') # pragma: no cover
410
+ f'framework\'s get_node_mac_operations method.') # pragma: no cover
399
411
 
400
412
  @abstractmethod
401
413
  def apply_second_moment_correction(self,
@@ -0,0 +1,150 @@
1
+ # Copyright 2021 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ from collections.abc import Callable
18
+ from enum import Enum
19
+ from typing import Dict, Any, List
20
+
21
+ from mct_quantizers import QuantizationMethod
22
+ from model_compression_toolkit.defaultdict import DefaultDict
23
+
24
+
25
+ # Default value to use for ops without kernel.
26
+ # This is a weird default, but it's used all over the place, so for now only extract it to const so that it can be
27
+ # referenced by variable instead of hard-coded.
28
+ DEFAULT_KERNEL_ATTRIBUTES = [None]
29
+
30
+
31
+ class ChannelAxis(Enum):
32
+ """
33
+
34
+ Index of output channels axis:
35
+
36
+ NHWC - Output channels index is last.
37
+
38
+ NCHW - Output channels index is 1.
39
+
40
+ """
41
+ NHWC = -1
42
+ NCHW = 1
43
+
44
+
45
+ class FrameworkInfo:
46
+
47
+ def __init__(self,
48
+ activation_quantizer_mapping: Dict[QuantizationMethod, Callable],
49
+ kernel_channels_mapping: DefaultDict,
50
+ activation_min_max_mapping: Dict[str, tuple],
51
+ layer_min_max_mapping: Dict[Any, tuple],
52
+ kernel_ops_attributes_mapping: DefaultDict,
53
+ out_channel_axis_mapping: DefaultDict):
54
+ """
55
+ A class to wrap all information about a specific framework the library needs to quantize a model.
56
+ Specifically, FrameworkInfo holds lists of layers by how they should be quantized, and multiple mappings such as
57
+ layer to it kernel channels indices, and a layer to its min/max values, etc.
58
+ The layers lists are divided into three groups:
59
+ kernel_ops: Layers that have coefficients and need to get quantized (e.g., Conv2D, Dense, etc.)
60
+ activation_ops: Layers that their outputs should get quantized (e.g., Add, ReLU, etc.)
61
+ no_quantization_ops:Layers that should not get quantized (e.g., Reshape, Transpose, etc.)
62
+
63
+ Args:
64
+ activation_quantizer_mapping (Dict[QuantizationMethod, Callable]): A dictionary mapping from QuantizationMethod to a quantization function.
65
+ kernel_channels_mapping (DefaultDict): Dictionary from a layer to a tuple of its kernel in/out channels indices.
66
+ activation_min_max_mapping (Dict[str, tuple]): Dictionary from an activation function to its min/max output values.
67
+ layer_min_max_mapping (Dict[Any, tuple]): Dictionary from a layer to its min/max output values.
68
+ kernel_ops_attributes_mapping (DefaultDict): Dictionary from a framework operator to a list of its weights attirbutes to quantize.
69
+ out_channel_axis_mapping (DefaultDict): Dictionary of output channels of the model's layers (for computing statistics per-channel).
70
+
71
+ Examples:
72
+ When quantizing a Keras model, if we want to quantize the kernels of Conv2D layers only, we can
73
+ set, and we know it's kernel out/in channel indices are (3, 2) respectivly:
74
+
75
+ >>> import tensorflow as tf
76
+ >>> kernel_ops = [tf.keras.layers.Conv2D]
77
+ >>> kernel_channels_mapping = DefaultDict({tf.keras.layers.Conv2D: (3,2)})
78
+
79
+ Then, we can create a FrameworkInfo object:
80
+
81
+ >>> FrameworkInfo(kernel_channels_mapping, {}, {})
82
+
83
+ If an activation layer (tf.keras.layers.Activation) should be quantized and we know it's min/max outputs range in advanced, we can add it to activation_min_max_mapping for saving the statistics collection time. For example:
84
+
85
+ >>> activation_min_max_mapping = {'softmax': (0, 1)}
86
+ >>> FrameworkInfo(kernel_channels_mapping, activation_min_max_mapping, {})
87
+
88
+ If a layer's activations should be quantized and we know it's min/max outputs range in advanced, we can add it to layer_min_max_mapping for saving the statistics collection time. For example:
89
+
90
+ >>> layer_min_max_mapping = {tf.keras.layers.Softmax: (0, 1)}
91
+ >>> FrameworkInfo(kernel_channels_mapping, activation_min_max_mapping, layer_min_max_mapping)
92
+
93
+ """
94
+
95
+ self.activation_quantizer_mapping = activation_quantizer_mapping
96
+ self.kernel_channels_mapping = kernel_channels_mapping
97
+ self.activation_min_max_mapping = activation_min_max_mapping
98
+ self.layer_min_max_mapping = layer_min_max_mapping
99
+ self.kernel_ops_attributes_mapping = kernel_ops_attributes_mapping
100
+ self.out_channel_axis_mapping = out_channel_axis_mapping
101
+
102
+ def get_kernel_op_attributes(self, node_type: Any) -> List[str]:
103
+ """
104
+ Get a list of attributes of a layer's weights to quantize.
105
+
106
+ Args:
107
+ node_type: Layer to get its attributes.
108
+
109
+ Returns:
110
+ A list of attributes the layer has and should be quantized.
111
+ """
112
+ attr_list = self.kernel_ops_attributes_mapping.get(node_type)
113
+ return attr_list
114
+
115
+ def is_kernel_op(self, node_type: Any) -> bool:
116
+ """
117
+ Check is the node is a kernel operation.
118
+
119
+ Args:
120
+ node_type: Layer to get its attributes.
121
+
122
+ Returns:
123
+ True if node type is a kernel operation, else False.
124
+ """
125
+ return node_type in self.kernel_ops_attributes_mapping.keys()
126
+
127
+ def layers_has_min_max(self, layer: Any) -> bool:
128
+ """
129
+ Check if a layer is in a layer to min/max mapping the FrameworkInfo holds.
130
+ Args:
131
+ layer: A layer to check if has a min/max known values.
132
+
133
+ Returns:
134
+ Whether a layer has a min/max known values or not.
135
+ """
136
+
137
+ return layer in self.layer_min_max_mapping
138
+
139
+ def activation_has_min_max(self, activation_name: str) -> bool:
140
+ """
141
+ Check if an activation layer has a min/max mapping.
142
+
143
+ Args:
144
+ activation_name: String of the activation function to check for its min/max values.
145
+
146
+ Returns:
147
+ Whether an activation layer has a min/max known values or not.
148
+ """
149
+
150
+ return activation_name in self.activation_min_max_mapping