mct-nightly 2.4.0.20250629.706__tar.gz → 2.4.0.20250701.185106__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (547) hide show
  1. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/PKG-INFO +16 -16
  2. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/README.md +15 -15
  3. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/mct_nightly.egg-info/PKG-INFO +16 -16
  4. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/mct_nightly.egg-info/SOURCES.txt +10 -7
  5. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/__init__.py +1 -1
  6. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -1
  7. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/framework_info.py +5 -32
  8. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/fusion/graph_fuser.py +12 -9
  9. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/base_graph.py +20 -37
  10. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/base_node.py +13 -106
  11. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/functional_node.py +1 -1
  12. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +12 -10
  13. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +14 -9
  14. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +9 -15
  15. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/metric_calculators.py +2 -3
  16. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/network_editors/__init__.py +8 -1
  17. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/network_editors/actions.py +4 -96
  18. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/bit_width_config.py +10 -10
  19. mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +144 -0
  20. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +1 -1
  21. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +55 -179
  22. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +21 -1
  23. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +8 -5
  24. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +76 -70
  25. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +10 -12
  26. mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +94 -0
  27. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantize_node.py +8 -8
  28. mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +199 -0
  29. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +2 -5
  30. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +2 -4
  31. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +5 -6
  32. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +12 -6
  33. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +1 -1
  34. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +1 -2
  35. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +33 -33
  36. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +2 -4
  37. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/graph_prep_runner.py +31 -20
  38. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +5 -2
  39. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/default_framework_info.py +0 -11
  40. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +9 -6
  41. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +3 -1
  42. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +1 -1
  43. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +2 -1
  44. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +1 -1
  45. mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/keras/quantization/activation_quantization_fn_factory.py +47 -0
  46. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +3 -2
  47. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +5 -2
  48. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -12
  49. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +5 -5
  50. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +2 -0
  51. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +1 -1
  52. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +2 -1
  53. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +1 -1
  54. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +1 -1
  55. mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/pytorch/quantization/activation_quantization_fn_factory.py +45 -0
  56. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +3 -2
  57. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/runner.py +1 -1
  58. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +7 -3
  59. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +1 -1
  60. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +12 -3
  61. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/pruning/keras/pruning_facade.py +5 -9
  62. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +2 -5
  63. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/ptq/keras/quantization_facade.py +1 -1
  64. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantization_facade.py +1 -1
  65. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/quantization_facade.py +1 -1
  66. mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/quantization_preparation/__init__.py +14 -0
  67. mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/quantization_preparation/load_fqc.py +223 -0
  68. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/constants.py +1 -1
  69. mct_nightly-2.4.0.20250629.706/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -84
  70. mct_nightly-2.4.0.20250629.706/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -78
  71. mct_nightly-2.4.0.20250629.706/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -70
  72. mct_nightly-2.4.0.20250629.706/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -504
  73. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/LICENSE.md +0 -0
  74. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/mct_nightly.egg-info/dependency_links.txt +0 -0
  75. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/mct_nightly.egg-info/requires.txt +0 -0
  76. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/mct_nightly.egg-info/top_level.txt +0 -0
  77. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/constants.py +0 -0
  78. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/__init__.py +0 -0
  79. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/analyzer.py +0 -0
  80. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/__init__.py +0 -0
  81. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  82. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  83. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  84. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  85. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  86. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  87. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  88. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  89. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py +0 -0
  90. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  91. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  92. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/fusion/fusing_info.py +0 -0
  93. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  94. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  95. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  96. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  97. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  98. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  99. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  100. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  101. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  102. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  103. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  104. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  105. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  106. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  107. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  108. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  109. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  110. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  111. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  112. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  113. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  114. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  115. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  116. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  117. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  118. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  119. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  120. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  121. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +0 -0
  122. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  123. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  124. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  125. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  126. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +0 -0
  127. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  128. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  129. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  130. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/__init__.py +0 -0
  131. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/sensitivity_evaluation.py +0 -0
  132. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/sensitivity_eval/set_layer_to_bitwidth.py +0 -0
  133. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  134. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  135. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/model_collector.py +0 -0
  136. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/model_validation.py +0 -0
  137. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  138. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  139. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  140. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  141. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  142. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  143. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  144. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  145. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  146. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  147. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  148. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  149. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  150. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  151. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  152. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  153. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  154. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  155. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  156. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  157. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  158. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  159. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  160. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  161. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  162. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  163. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  164. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  165. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  166. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  167. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  168. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  169. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  170. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  171. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  172. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  173. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  174. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  175. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  176. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  177. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  178. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  179. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  180. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  181. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  182. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  183. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  184. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  185. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  186. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  187. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  188. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/user_info.py +0 -0
  189. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  190. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  191. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  192. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/__init__.py +0 -0
  193. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  194. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  195. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  196. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  197. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  198. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  199. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/constants.py +0 -0
  200. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  201. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/data_util.py +0 -0
  202. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  203. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  204. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  205. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  206. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  207. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  208. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  209. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  210. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  211. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  212. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  213. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  214. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  215. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  216. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  217. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  218. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  219. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  220. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  221. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  222. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  223. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  224. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  225. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  226. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  227. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  228. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  229. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  230. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  231. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  232. {mct_nightly-2.4.0.20250629.706/model_compression_toolkit/core/keras/quantizer → mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/keras/quantization}/__init__.py +0 -0
  233. {mct_nightly-2.4.0.20250629.706/model_compression_toolkit/core/keras/quantizer → mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/keras/quantization}/fake_quant_builder.py +0 -0
  234. {mct_nightly-2.4.0.20250629.706/model_compression_toolkit/core/keras/quantizer → mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/keras/quantization}/lut_fake_quant.py +0 -0
  235. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  236. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  237. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  238. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  239. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  240. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  241. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  242. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  243. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  244. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  245. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  246. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  247. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  248. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  249. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  250. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  251. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  252. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  253. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  254. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  255. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  256. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  257. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  258. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  259. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  260. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  261. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
  262. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  263. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  264. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  265. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  266. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  267. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  268. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  269. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/convtranspose_dynamic_padding.py +0 -0
  270. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  271. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  272. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
  273. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  274. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +0 -0
  275. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  276. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  277. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  278. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  279. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  280. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  281. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  282. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  283. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  284. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  285. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  286. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  287. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  288. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  289. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  290. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  291. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  292. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  293. {mct_nightly-2.4.0.20250629.706/model_compression_toolkit/core/pytorch/quantizer → mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/pytorch/quantization}/__init__.py +0 -0
  294. {mct_nightly-2.4.0.20250629.706/model_compression_toolkit/core/pytorch/quantizer → mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/pytorch/quantization}/fake_quant_builder.py +0 -0
  295. {mct_nightly-2.4.0.20250629.706/model_compression_toolkit/core/pytorch/quantizer → mct_nightly-2.4.0.20250701.185106/model_compression_toolkit/core/pytorch/quantization}/lut_fake_quant.py +0 -0
  296. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  297. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  298. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  299. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  300. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  301. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  302. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  303. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  304. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  305. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/__init__.py +0 -0
  306. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  307. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  308. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  309. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  310. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  311. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  312. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  313. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  314. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  315. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  316. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  317. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  318. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  319. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  320. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  321. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  322. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  323. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  324. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  325. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  326. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  327. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  328. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  329. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  330. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  331. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  332. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  333. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  334. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  335. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  336. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  337. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  338. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  339. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  340. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  341. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  342. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/defaultdict.py +0 -0
  343. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/__init__.py +0 -0
  344. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  345. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  346. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  347. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  348. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  349. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  350. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  351. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  352. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  353. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  354. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  355. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  356. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  357. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  358. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  359. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  360. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  361. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  362. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  363. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  364. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  365. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  366. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  367. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  368. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  369. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  370. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  371. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  372. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/__init__.py +0 -0
  373. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  374. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  375. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  376. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  377. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  378. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  379. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
  380. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
  381. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  382. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  383. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  384. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  385. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  386. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  387. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  388. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  389. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  390. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  391. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  392. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  393. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  394. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  395. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  396. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  397. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  398. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  399. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  400. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  401. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  402. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  403. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  404. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  405. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  406. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  407. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  408. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  409. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  410. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  411. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  412. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  413. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/gptq/runner.py +0 -0
  414. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/logger.py +0 -0
  415. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/metadata.py +0 -0
  416. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/pruning/__init__.py +0 -0
  417. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  418. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  419. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/ptq/__init__.py +0 -0
  420. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  421. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  422. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  423. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/ptq/runner.py +0 -0
  424. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/__init__.py +0 -0
  425. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/common/__init__.py +0 -0
  426. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  427. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  428. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  429. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
  430. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  431. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  432. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  433. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  434. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  435. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  436. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  437. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  438. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  439. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  440. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  441. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  442. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  443. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  444. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  445. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  446. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  447. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  448. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  449. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  450. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -0
  451. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +0 -0
  452. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/schema/schema_compatability.py +0 -0
  453. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +0 -0
  454. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/schema/v1.py +0 -0
  455. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/schema/v2.py +0 -0
  456. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py +0 -0
  457. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py +0 -0
  458. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +0 -0
  459. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py +0 -0
  460. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py +0 -0
  461. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py +0 -0
  462. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +0 -0
  463. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +0 -0
  464. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py +0 -0
  465. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py +0 -0
  466. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +0 -0
  467. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  468. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  469. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  470. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  471. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  472. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +0 -0
  473. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  474. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  475. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  476. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +0 -0
  477. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  478. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  479. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  480. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +0 -0
  481. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  482. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  483. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
  484. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  485. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  486. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  487. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  488. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  489. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  490. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  491. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
  492. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  493. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
  494. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
  495. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
  496. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  497. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
  498. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
  499. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
  500. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
  501. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
  502. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  503. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  504. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  505. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  506. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  507. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  508. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  509. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  510. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  511. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  512. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  513. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  514. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  515. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  516. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  517. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  518. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  519. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/verify_packages.py +0 -0
  520. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/__init__.py +0 -0
  521. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  522. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/constants.py +0 -0
  523. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  524. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  525. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  526. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  527. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  528. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  529. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  530. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  531. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  532. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  533. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  534. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  535. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  536. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  537. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  538. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  539. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  540. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  541. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  542. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  543. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  544. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  545. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  546. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/setup.cfg +0 -0
  547. {mct_nightly-2.4.0.20250629.706 → mct_nightly-2.4.0.20250701.185106}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mct-nightly
3
- Version: 2.4.0.20250629.706
3
+ Version: 2.4.0.20250701.185106
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Author-email: ssi-dnn-dev@sony.com
6
6
  Classifier: Programming Language :: Python :: 3
@@ -35,7 +35,7 @@ Dynamic: summary
35
35
 
36
36
  <div align="center" markdown="1">
37
37
  <p>
38
- <a href="https://sony.github.io/model_optimization/" target="_blank">
38
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization/" target="_blank">
39
39
  <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
40
40
  </p>
41
41
 
@@ -52,9 +52,9 @@ ______________________________________________________________________
52
52
  <a href="#license">License</a>
53
53
  </p>
54
54
  <p align="center">
55
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
56
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
57
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
55
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
56
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
57
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
58
58
  <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
59
59
  <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
60
60
 
@@ -85,9 +85,9 @@ MCT supports various quantization methods as appears below.
85
85
 
86
86
  Quantization Method | Complexity | Computational Cost | API | Tutorial
87
87
  -------------------- | -----------|--------------------|---------|--------
88
- PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
89
- GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
90
- QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
88
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
89
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
90
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
91
91
 
92
92
  </p>
93
93
  </div>
@@ -130,13 +130,13 @@ Generates synthetic images based on the statistics stored in the model's batch n
130
130
  The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
131
131
  __________________________________________________________________________________________________________
132
132
  ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
133
- Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
133
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_pruning_experimental.html)).
134
134
  __________________________________________________________________________________________________________
135
135
  ### **Debugging and Visualization**
136
136
  **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
137
137
  Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
138
138
 
139
- **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
139
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html).
140
140
 
141
141
  **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
142
142
  __________________________________________________________________________________________________________
@@ -146,15 +146,15 @@ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhance
146
146
  More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
147
147
 
148
148
  ## <div align="center">Resources</div>
149
- * [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
149
+ * [User Guide](https://sonysemiconductorsolutions.github.io/mct-model-optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
150
150
 
151
- * MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
151
+ * MCT's [API Docs](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/) is separated per quantization methods:
152
152
 
153
- * [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
154
- * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
155
- * [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
153
+ * [Post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#ptq) | PTQ API docs
154
+ * [Gradient-based post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#gptq) | GPTQ API docs
155
+ * [Quantization-aware training](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | QAT API docs
156
156
 
157
- * [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
157
+ * [Debug](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
158
158
 
159
159
  * [Release notes](https://github.com/sony/model_optimization/releases)
160
160
 
@@ -1,6 +1,6 @@
1
1
  <div align="center" markdown="1">
2
2
  <p>
3
- <a href="https://sony.github.io/model_optimization/" target="_blank">
3
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization/" target="_blank">
4
4
  <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
5
5
  </p>
6
6
 
@@ -17,9 +17,9 @@ ______________________________________________________________________
17
17
  <a href="#license">License</a>
18
18
  </p>
19
19
  <p align="center">
20
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
21
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
22
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
20
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
21
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
22
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
23
23
  <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
24
24
  <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
25
25
 
@@ -50,9 +50,9 @@ MCT supports various quantization methods as appears below.
50
50
 
51
51
  Quantization Method | Complexity | Computational Cost | API | Tutorial
52
52
  -------------------- | -----------|--------------------|---------|--------
53
- PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
54
- GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
55
- QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
53
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
54
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
55
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
56
56
 
57
57
  </p>
58
58
  </div>
@@ -95,13 +95,13 @@ Generates synthetic images based on the statistics stored in the model's batch n
95
95
  The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
96
96
  __________________________________________________________________________________________________________
97
97
  ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
98
- Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
98
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_pruning_experimental.html)).
99
99
  __________________________________________________________________________________________________________
100
100
  ### **Debugging and Visualization**
101
101
  **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
102
102
  Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
103
103
 
104
- **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
104
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html).
105
105
 
106
106
  **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
107
107
  __________________________________________________________________________________________________________
@@ -111,15 +111,15 @@ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhance
111
111
  More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
112
112
 
113
113
  ## <div align="center">Resources</div>
114
- * [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
114
+ * [User Guide](https://sonysemiconductorsolutions.github.io/mct-model-optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
115
115
 
116
- * MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
116
+ * MCT's [API Docs](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/) is separated per quantization methods:
117
117
 
118
- * [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
119
- * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
120
- * [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
118
+ * [Post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#ptq) | PTQ API docs
119
+ * [Gradient-based post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#gptq) | GPTQ API docs
120
+ * [Quantization-aware training](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | QAT API docs
121
121
 
122
- * [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
122
+ * [Debug](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
123
123
 
124
124
  * [Release notes](https://github.com/sony/model_optimization/releases)
125
125
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mct-nightly
3
- Version: 2.4.0.20250629.706
3
+ Version: 2.4.0.20250701.185106
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Author-email: ssi-dnn-dev@sony.com
6
6
  Classifier: Programming Language :: Python :: 3
@@ -35,7 +35,7 @@ Dynamic: summary
35
35
 
36
36
  <div align="center" markdown="1">
37
37
  <p>
38
- <a href="https://sony.github.io/model_optimization/" target="_blank">
38
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization/" target="_blank">
39
39
  <img src="https://raw.githubusercontent.com/sony/model_optimization/refs/heads/main/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
40
40
  </p>
41
41
 
@@ -52,9 +52,9 @@ ______________________________________________________________________
52
52
  <a href="#license">License</a>
53
53
  </p>
54
54
  <p align="center">
55
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
56
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
57
- <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
55
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.3%20%7C%202.4%20%7C%202.5%20%7C%202.6-blue" /></a>
56
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/tensorflow-2.14%20%7C%202.15-blue" /></a>
57
+ <a href="https://sonysemiconductorsolutions.github.io/mct-model-optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue" /></a>
58
58
  <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
59
59
  <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
60
60
 
@@ -85,9 +85,9 @@ MCT supports various quantization methods as appears below.
85
85
 
86
86
  Quantization Method | Complexity | Computational Cost | API | Tutorial
87
87
  -------------------- | -----------|--------------------|---------|--------
88
- PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
89
- GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
90
- QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
88
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
89
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
90
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
91
91
 
92
92
  </p>
93
93
  </div>
@@ -130,13 +130,13 @@ Generates synthetic images based on the statistics stored in the model's batch n
130
130
  The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
131
131
  __________________________________________________________________________________________________________
132
132
  ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
133
- Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
133
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/methods/keras_pruning_experimental.html)).
134
134
  __________________________________________________________________________________________________________
135
135
  ### **Debugging and Visualization**
136
136
  **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
137
137
  Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
138
138
 
139
- **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
139
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html).
140
140
 
141
141
  **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
142
142
  __________________________________________________________________________________________________________
@@ -146,15 +146,15 @@ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhance
146
146
  More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
147
147
 
148
148
  ## <div align="center">Resources</div>
149
- * [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
149
+ * [User Guide](https://sonysemiconductorsolutions.github.io/mct-model-optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
150
150
 
151
- * MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
151
+ * MCT's [API Docs](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/) is separated per quantization methods:
152
152
 
153
- * [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
154
- * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
155
- * [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
153
+ * [Post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#ptq) | PTQ API docs
154
+ * [Gradient-based post-training quantization](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#gptq) | GPTQ API docs
155
+ * [Quantization-aware training](https://sonysemiconductorsolutions.github.io/mct-model-optimization/api/api_docs/index.html#qat) | QAT API docs
156
156
 
157
- * [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
157
+ * [Debug](https://sonysemiconductorsolutions.github.io/mct-model-optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
158
158
 
159
159
  * [Release notes](https://github.com/sony/model_optimization/releases)
160
160
 
@@ -118,7 +118,6 @@ model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py
118
118
  model_compression_toolkit/core/common/quantization/node_quantization_config.py
119
119
  model_compression_toolkit/core/common/quantization/quantization_config.py
120
120
  model_compression_toolkit/core/common/quantization/quantization_fn_selection.py
121
- model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py
122
121
  model_compression_toolkit/core/common/quantization/quantize_graph_weights.py
123
122
  model_compression_toolkit/core/common/quantization/quantize_node.py
124
123
  model_compression_toolkit/core/common/quantization/set_node_quantization_config.py
@@ -211,9 +210,10 @@ model_compression_toolkit/core/keras/mixed_precision/configurable_activation_qua
211
210
  model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py
212
211
  model_compression_toolkit/core/keras/pruning/__init__.py
213
212
  model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py
214
- model_compression_toolkit/core/keras/quantizer/__init__.py
215
- model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py
216
- model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py
213
+ model_compression_toolkit/core/keras/quantization/__init__.py
214
+ model_compression_toolkit/core/keras/quantization/activation_quantization_fn_factory.py
215
+ model_compression_toolkit/core/keras/quantization/fake_quant_builder.py
216
+ model_compression_toolkit/core/keras/quantization/lut_fake_quant.py
217
217
  model_compression_toolkit/core/keras/reader/__init__.py
218
218
  model_compression_toolkit/core/keras/reader/common.py
219
219
  model_compression_toolkit/core/keras/reader/connectivity_handler.py
@@ -281,9 +281,10 @@ model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_q
281
281
  model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py
282
282
  model_compression_toolkit/core/pytorch/pruning/__init__.py
283
283
  model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py
284
- model_compression_toolkit/core/pytorch/quantizer/__init__.py
285
- model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py
286
- model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py
284
+ model_compression_toolkit/core/pytorch/quantization/__init__.py
285
+ model_compression_toolkit/core/pytorch/quantization/activation_quantization_fn_factory.py
286
+ model_compression_toolkit/core/pytorch/quantization/fake_quant_builder.py
287
+ model_compression_toolkit/core/pytorch/quantization/lut_fake_quant.py
287
288
  model_compression_toolkit/core/pytorch/reader/__init__.py
288
289
  model_compression_toolkit/core/pytorch/reader/graph_builders.py
289
290
  model_compression_toolkit/core/pytorch/reader/node_holders.py
@@ -439,6 +440,8 @@ model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py
439
440
  model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py
440
441
  model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py
441
442
  model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py
443
+ model_compression_toolkit/quantization_preparation/__init__.py
444
+ model_compression_toolkit/quantization_preparation/load_fqc.py
442
445
  model_compression_toolkit/target_platform_capabilities/__init__.py
443
446
  model_compression_toolkit/target_platform_capabilities/constants.py
444
447
  model_compression_toolkit/target_platform_capabilities/immutable.py
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.4.0.20250629.000706"
30
+ __version__ = "2.4.0.20250701.185106"
@@ -15,7 +15,6 @@
15
15
  from abc import ABC, abstractmethod
16
16
  from typing import Any, Tuple
17
17
 
18
- from model_compression_toolkit.core.common.framework_info import FrameworkInfo
19
18
  from model_compression_toolkit.core import common
20
19
  from model_compression_toolkit.core.common.user_info import UserInformation
21
20
 
@@ -13,20 +13,10 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
 
16
-
17
- from collections.abc import Callable
18
16
  from enum import Enum
19
- from typing import Dict, Any, Tuple, NamedTuple
17
+ from typing import Dict, Any, Tuple, NamedTuple, Optional
20
18
  from abc import ABC, abstractmethod
21
19
 
22
- from mct_quantizers import QuantizationMethod
23
-
24
-
25
- # Default value to use for ops without kernel.
26
- # This is a weird default, but it's used all over the place, so for now only extract it to const so that it can be
27
- # referenced by variable instead of hard-coded.
28
- DEFAULT_KERNEL_ATTRIBUTE = None
29
-
30
20
 
31
21
  class ChannelAxis(Enum):
32
22
  """
@@ -58,24 +48,21 @@ class FrameworkInfo(ABC):
58
48
  no_quantization_ops:Layers that should not get quantized (e.g., Reshape, Transpose, etc.)
59
49
 
60
50
  Fields:
61
- activation_quantizer_mapping (Dict[QuantizationMethod, Callable]): A dictionary mapping from QuantizationMethod to a quantization function.
62
51
  kernel_channels_mapping (Dict): Dictionary from a layer to a tuple of its kernel in/out channels indices.
63
52
  kernel_ops_attribute_mapping (Dict): Dictionary from a framework operator to its weight attribute to quantize.
64
53
  out_channel_axis_mapping (Dict): Dictionary of output channels of the model's layers (for computing statistics per-channel).
65
54
  _layer_min_max_mapping (Dict[Any, tuple]): Dictionary from a layer to its min/max output values.
66
-
67
55
  """
68
56
 
69
- activation_quantizer_mapping: Dict[QuantizationMethod, Callable]
70
- kernel_channels_mapping: Dict[Any, ChannelAxisMapping]
71
57
  kernel_ops_attribute_mapping: Dict[Any, str]
58
+ kernel_channels_mapping: Dict[Any, ChannelAxisMapping]
72
59
  out_channel_axis_mapping: Dict[Any, int]
73
- _layer_min_max_mapping: Dict[Any, tuple]
74
60
 
61
+ _layer_min_max_mapping: Dict[Any, tuple]
75
62
  _default_channel_mapping = ChannelAxisMapping(None, None)
76
63
 
77
64
  @classmethod
78
- def get_kernel_op_attribute(cls, node_type: Any) -> str:
65
+ def get_kernel_op_attribute(cls, node_type: Any) -> Optional[str]:
79
66
  """
80
67
  Get attribute of a layer's weight to quantize.
81
68
 
@@ -85,20 +72,7 @@ class FrameworkInfo(ABC):
85
72
  Returns:
86
73
  Attribute the layer has and should be quantized.
87
74
  """
88
- return cls.kernel_ops_attribute_mapping.get(node_type, DEFAULT_KERNEL_ATTRIBUTE)
89
-
90
- @classmethod
91
- def is_kernel_op(cls, node_type: Any) -> bool:
92
- """
93
- Check is the node is a kernel operation.
94
-
95
- Args:
96
- node_type: Layer to get its attributes.
97
-
98
- Returns:
99
- True if node type is a kernel operation, else False.
100
- """
101
- return node_type in cls.kernel_ops_attribute_mapping
75
+ return cls.kernel_ops_attribute_mapping.get(node_type)
102
76
 
103
77
  @classmethod
104
78
  def get_layer_min_max(cls, layer: Any, fw_attrs: Dict) -> Tuple[float, float]:
@@ -169,7 +143,6 @@ def get_fw_info():
169
143
  Returns: FrameworkInfo class.
170
144
  """
171
145
  assert _current_framework_info is not None, "fw_info isn't initialized."
172
- assert issubclass(_current_framework_info, FrameworkInfo), "fw_info isn't initialized to a FrameworkInfo class."
173
146
  return _current_framework_info
174
147
 
175
148
 
@@ -14,12 +14,12 @@
14
14
  # ==============================================================================
15
15
 
16
16
  import copy
17
- from typing import List, Tuple
17
+ from typing import Tuple
18
18
 
19
19
  from model_compression_toolkit.core.common.fusion.fusing_info import FusingInfoGenerator
20
20
  from model_compression_toolkit.core.common.graph.base_graph import Graph, BaseNode, OutTensor
21
- from model_compression_toolkit.core.common.quantization.candidate_node_quantization_config import CandidateNodeQuantizationConfig
22
- from itertools import product
21
+ from model_compression_toolkit.core.common.quantization.candidate_node_quantization_config import \
22
+ CandidateNodeQuantizationConfig, NodeQuantizationConfig
23
23
 
24
24
 
25
25
  class FusedLayerType:
@@ -30,6 +30,7 @@ class FusedLayerType:
30
30
  def __init__(self):
31
31
  self.__name__ = 'FusedLayer'
32
32
 
33
+
33
34
  class GraphFuser:
34
35
  def apply_node_fusion(self, graph: Graph) -> Graph:
35
36
  """
@@ -64,7 +65,6 @@ class GraphFuser:
64
65
 
65
66
  return graph_copy
66
67
 
67
-
68
68
  @staticmethod
69
69
  def _create_fused_node(fused_node_id: str, nodes: Tuple[BaseNode]) -> BaseNode:
70
70
  """
@@ -86,10 +86,15 @@ class GraphFuser:
86
86
  weights={},
87
87
  layer_class=FusedLayerType)
88
88
 
89
+ base_cfg = CandidateNodeQuantizationConfig(
90
+ activation_quantization_cfg=nodes[-1].quantization_cfg.base_quantization_cfg.activation_quantization_cfg,
91
+ weights_quantization_cfg=None
92
+ )
89
93
  activation_cfgs = [c.activation_quantization_cfg for c in nodes[-1].candidates_quantization_cfg]
90
- fused_node.candidates_quantization_cfg = [
91
- CandidateNodeQuantizationConfig(weights_quantization_cfg=None, activation_quantization_cfg=a) for a in
92
- activation_cfgs]
94
+ candidates = [CandidateNodeQuantizationConfig(weights_quantization_cfg=None, activation_quantization_cfg=a)
95
+ for a in activation_cfgs]
96
+ fused_node.quantization_cfg = NodeQuantizationConfig(base_quantization_cfg=base_cfg,
97
+ candidates_quantization_cfg=candidates)
93
98
 
94
99
  # Keep the final configurations if they were set already.
95
100
  fused_node.final_weights_quantization_cfg = nodes[0].final_weights_quantization_cfg
@@ -158,5 +163,3 @@ class GraphFuser:
158
163
 
159
164
  # Finally, add the new fused node to the graph
160
165
  graph.add_node(fused_node)
161
-
162
-
@@ -39,6 +39,7 @@ from model_compression_toolkit.target_platform_capabilities.targetplatform2frame
39
39
  from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.framework_quantization_capabilities import \
40
40
  FrameworkQuantizationCapabilities
41
41
 
42
+
42
43
  def validate_graph_after_change(method: Callable) -> Callable:
43
44
  """
44
45
  Decorator for graph-mutating methods. After the decorated method executes,
@@ -120,28 +121,13 @@ class Graph(nx.MultiDiGraph, GraphSearches):
120
121
  def fusing_info(self, fusing_info: FusingInfo):
121
122
  self._fusing_info = fusing_info
122
123
 
123
- def set_fqc(self,
124
- fqc: FrameworkQuantizationCapabilities):
124
+ def set_fqc(self, fqc: FrameworkQuantizationCapabilities):
125
125
  """
126
126
  Set the graph's FQC.
127
127
  Args:
128
128
  fqc: FrameworkQuantizationCapabilities object.
129
129
  """
130
- # validate graph nodes are either from the framework or a custom layer defined in the FQC
131
- # Validate graph nodes are either built-in layers from the framework or custom layers defined in the FQC
132
- fqc_layers = fqc.op_sets_to_layers.get_layers()
133
- fqc_filtered_layers = [layer for layer in fqc_layers if isinstance(layer, LayerFilterParams)]
134
- for n in self.nodes:
135
- is_node_in_fqc = any([n.is_match_type(_type) for _type in fqc_layers]) or \
136
- any([n.is_match_filter_params(filtered_layer) for filtered_layer in fqc_filtered_layers])
137
- if n.is_custom:
138
- if not is_node_in_fqc:
139
- Logger.critical(f'MCT does not support optimizing Keras custom layers. Found a layer of type {n.type}. '
140
- ' Please add the custom layer to Framework Quantization Capabilities (FQC), or file a feature '
141
- 'request or an issue if you believe this should be supported.') # pragma: no cover
142
- if any([qc.default_weight_attr_config.enable_weights_quantization for qc in n.get_qco(fqc).quantization_configurations]):
143
- Logger.critical(f'Layer identified: {n.type}. MCT does not support weight quantization for Keras custom layers.') # pragma: no cover
144
-
130
+ # TODO irena: this is only passed for negative shift activation.
145
131
  self.fqc = fqc
146
132
 
147
133
  def get_topo_sorted_nodes(self):
@@ -578,7 +564,7 @@ class Graph(nx.MultiDiGraph, GraphSearches):
578
564
  A list of nodes that their weights can be configured (namely, has one or more weight qc candidate).
579
565
  """
580
566
  # configurability is only relevant for kernel attribute quantization
581
- potential_conf_nodes = [n for n in list(self) if n.is_kernel_op]
567
+ potential_conf_nodes = [n for n in self.nodes if n.kernel_attr]
582
568
 
583
569
  def is_configurable(n):
584
570
  return n.is_configurable_weight(n.kernel_attr) and (not n.reuse or include_reused_nodes)
@@ -693,10 +679,8 @@ class Graph(nx.MultiDiGraph, GraphSearches):
693
679
  """
694
680
  Gets the final number of bits for quantization of each weights' configurable layer.
695
681
 
696
- Args:
697
- fw_info: fw_info: FrameworkInfo object with information about the specific framework's model.
698
-
699
- Returns: A list of pairs of (node type, node's weights quantization bitwidth).
682
+ Returns:
683
+ A list of pairs of (node type, node's weights quantization bitwidth).
700
684
 
701
685
  """
702
686
  sorted_conf_weights = self.get_sorted_weights_configurable_nodes()
@@ -876,32 +860,31 @@ class Graph(nx.MultiDiGraph, GraphSearches):
876
860
 
877
861
  return intermediate_nodes, next_node
878
862
 
863
+ # TODO irena move to load_fqc and clean up tests (currently tests_pytest/common_tests/unit_tests/core/graph/test_base_graph.py)
879
864
  def override_fused_node_activation_quantization_candidates(self):
880
865
  """
881
866
  Override fused node activation quantization candidates for all nodes in fused operations,
882
867
  except for the last node in each fused group.
883
868
  Update the value of quantization_config with the value of op_quaitization_cfg from FusingInfo.
884
869
  """
885
- from model_compression_toolkit.core.common.quantization.candidate_node_quantization_config import CandidateNodeQuantizationConfig
886
-
887
870
  nodes_in_fln = self.fusing_info.get_inner_fln_nodes()
888
871
  for node in nodes_in_fln:
889
872
  fused_node_op_id = self.fusing_info.get_fused_op_id_for_node(node.name)
890
- fusiong_op_quaitization_cfg = self.fusing_info.get_fused_op_quantization_config(fused_node_op_id)
891
- org_candidate = node.candidates_quantization_cfg[0]
892
- if fusiong_op_quaitization_cfg is not None and fusiong_op_quaitization_cfg.enable_activation_quantization:
893
- # Set ActivationQuantizationMode to FLN_QUANT and update the value of quantization_config
894
- activation_quantization_cfg = NodeActivationQuantizationConfig(qc=org_candidate,
895
- op_cfg=fusiong_op_quaitization_cfg,
896
- activation_quantization_fn=org_candidate.activation_quantization_cfg.activation_quantization_fn,
897
- activation_quantization_params_fn=org_candidate.activation_quantization_cfg.activation_quantization_params_fn)
898
- activation_quantization_cfg.quant_mode = ActivationQuantizationMode.FLN_QUANT
899
- for qc in node.candidates_quantization_cfg:
900
- qc.activation_quantization_cfg = activation_quantization_cfg
873
+ fusing_op_quantization_cfg = self.fusing_info.get_fused_op_quantization_config(fused_node_op_id)
874
+ if fusing_op_quantization_cfg is not None and fusing_op_quantization_cfg.enable_activation_quantization:
875
+ def update(qc):
876
+ qc.activation_quantization_cfg = NodeActivationQuantizationConfig(fusing_op_quantization_cfg)
877
+ qc.activation_quantization_cfg.quant_mode = ActivationQuantizationMode.FLN_QUANT
878
+ node.quantization_cfg.update_all(update, remove_duplicates=True)
901
879
  else:
902
- # Set ActivationQuantizationMode to FLN_NO_QUANT
880
+ node.quantization_cfg.update_activation_quantization_mode(ActivationQuantizationMode.FLN_NO_QUANT)
881
+ # Remove duplicate candidates. We cannot compare whole candidates since activation configs might not
882
+ # be identical, but we do want to treat them as such. So we only check duplication by weight configs.
883
+ uniq_qcs = []
903
884
  for qc in node.candidates_quantization_cfg:
904
- qc.activation_quantization_cfg.quant_mode = ActivationQuantizationMode.FLN_NO_QUANT
885
+ if not any(qc.weights_quantization_cfg == uqc.weights_quantization_cfg for uqc in uniq_qcs):
886
+ uniq_qcs.append(qc)
887
+ node.quantization_cfg.candidates_quantization_cfg = uniq_qcs
905
888
 
906
889
  def validate(self):
907
890
  """