mct-nightly 2.3.0.20250331.610__tar.gz → 2.3.0.20250402.536__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/PKG-INFO +1 -1
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/mct_nightly.egg-info/SOURCES.txt +1 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/__init__.py +1 -1
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/base_graph.py +17 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/base_node.py +13 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +35 -12
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +1 -1
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +1 -1
- mct_nightly-2.3.0.20250402.536/model_compression_toolkit/target_platform_capabilities/schema/v2.py +177 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +1 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py +2 -1
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/LICENSE.md +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/README.md +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/mct_nightly.egg-info/requires.txt +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/constants.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/data_util.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/convtranspose_dynamic_padding.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/core/runner.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/defaultdict.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/logger.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/metadata.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/schema/v1.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/verify_packages.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/setup.cfg +0 -0
- {mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/setup.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.3.0.
|
3
|
+
Version: 2.3.0.20250402.536
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/mct_nightly.egg-info/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.3.0.
|
3
|
+
Version: 2.3.0.20250402.536
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/mct_nightly.egg-info/SOURCES.txt
RENAMED
@@ -446,6 +446,7 @@ model_compression_toolkit/target_platform_capabilities/schema/__init__.py
|
|
446
446
|
model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py
|
447
447
|
model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py
|
448
448
|
model_compression_toolkit/target_platform_capabilities/schema/v1.py
|
449
|
+
model_compression_toolkit/target_platform_capabilities/schema/v2.py
|
449
450
|
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py
|
450
451
|
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py
|
451
452
|
model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.3.0.
|
30
|
+
__version__ = "2.3.0.20250402.000536"
|
@@ -696,6 +696,23 @@ class Graph(nx.MultiDiGraph, GraphSearches):
|
|
696
696
|
sorted_conf_activation = self.get_sorted_activation_configurable_nodes()
|
697
697
|
return [(n, n.final_activation_quantization_cfg.activation_n_bits) for n in sorted_conf_activation]
|
698
698
|
|
699
|
+
def retrieve_preserved_quantization_node(self, node: BaseNode) -> BaseNode:
|
700
|
+
"""
|
701
|
+
For a node with quantization_preserving == True, get the previous non-quantization_preserving node
|
702
|
+
to get activation quantization config from. If quantization_preserving is False return node.
|
703
|
+
Args:
|
704
|
+
node: quantization preserving node.
|
705
|
+
|
706
|
+
Returns:
|
707
|
+
The node that the quantization preserving node should get the activation quantization from.
|
708
|
+
|
709
|
+
"""
|
710
|
+
while node.is_quantization_preserving():
|
711
|
+
prev_nodes = self.get_prev_nodes(node)
|
712
|
+
assert len(prev_nodes) == 1, "Activation preserving node should have only 1 input."
|
713
|
+
node = prev_nodes[0]
|
714
|
+
return node
|
715
|
+
|
699
716
|
def update_fused_nodes(self, fusion: List[Any]):
|
700
717
|
"""
|
701
718
|
Updates the graphs fusions list with a new list of nodes that have been fused.
|
@@ -131,6 +131,19 @@ class BaseNode:
|
|
131
131
|
qc.activation_quantization_cfg.enable_activation_quantization
|
132
132
|
return self.candidates_quantization_cfg[0].activation_quantization_cfg.enable_activation_quantization
|
133
133
|
|
134
|
+
def is_quantization_preserving(self) -> bool:
|
135
|
+
"""
|
136
|
+
Returns: Whether node activation quantization information is preserved from its inputs.
|
137
|
+
"""
|
138
|
+
if self.final_activation_quantization_cfg:
|
139
|
+
# if we have a final configuration, then we only care to check if it enables activation quantization.
|
140
|
+
return self.final_activation_quantization_cfg.quantization_preserving
|
141
|
+
|
142
|
+
for qc in self.candidates_quantization_cfg:
|
143
|
+
assert self.candidates_quantization_cfg[0].activation_quantization_cfg.quantization_preserving == \
|
144
|
+
qc.activation_quantization_cfg.quantization_preserving
|
145
|
+
return self.candidates_quantization_cfg[0].activation_quantization_cfg.quantization_preserving
|
146
|
+
|
134
147
|
def is_weights_quantization_enabled(self, attr_name: str) -> bool:
|
135
148
|
"""
|
136
149
|
Checks whether a node's weights attribute quantization is enabled.
|
@@ -335,13 +335,35 @@ class ResourceUtilizationCalculator:
|
|
335
335
|
"""
|
336
336
|
return self.compute_activation_utilization_by_cut(target_criterion, bitwidth_mode, act_qcs)
|
337
337
|
|
338
|
+
def _extract_qc(self, n: BaseNode, act_qcs: Optional[ActivationQCfgPerNode] = None
|
339
|
+
) -> Union[NodeActivationQuantizationConfig, None]:
|
340
|
+
"""
|
341
|
+
Extract quantization config the activation configs dictionary is provided. If node is quantization
|
342
|
+
preserving, extract the quantization config from the preceding activation quantized node (i.e.
|
343
|
+
the Quantization the original node preserves).
|
344
|
+
|
345
|
+
Args:
|
346
|
+
n: Node to extract qc for.
|
347
|
+
act_qcs: custom activations quantization configuration. If not provided, the default
|
348
|
+
configuration will be extracted from the node.
|
349
|
+
|
350
|
+
Returns:
|
351
|
+
The relevant quantization config.
|
352
|
+
"""
|
353
|
+
if act_qcs:
|
354
|
+
assert not (n.is_quantization_preserving() and act_qcs.get(n.name) is not None), \
|
355
|
+
f"Quantization preserving node {n.name} should not have a qc for this computation."
|
356
|
+
return act_qcs.get(self.graph.retrieve_preserved_quantization_node(n).name)
|
357
|
+
return None
|
358
|
+
|
338
359
|
def compute_activation_utilization_by_cut(self,
|
339
360
|
target_criterion: TargetInclusionCriterion,
|
340
361
|
bitwidth_mode: BitwidthMode,
|
341
362
|
act_qcs: Optional[ActivationQCfgPerNode] = None) \
|
342
363
|
-> Tuple[float, Dict[Cut, Utilization], Dict[Cut, Dict[BaseNode, Utilization]]]:
|
343
364
|
"""
|
344
|
-
Compute graph activation cuts utilization.
|
365
|
+
Compute graph activation cuts utilization. If activation quantization configs are provided, then for
|
366
|
+
quantization preserving nodes, get the previous quantized activation node bit-width.
|
345
367
|
|
346
368
|
Args:
|
347
369
|
target_criterion: criterion to include weights for computation.
|
@@ -369,7 +391,7 @@ class ResourceUtilizationCalculator:
|
|
369
391
|
if not cut_target_nodes:
|
370
392
|
continue
|
371
393
|
for n in cut_target_nodes:
|
372
|
-
qc =
|
394
|
+
qc = self._extract_qc(n, act_qcs)
|
373
395
|
util_per_cut_per_node[cut][n.name] = self.compute_node_activation_tensor_utilization(n, target_criterion,
|
374
396
|
bitwidth_mode, qc)
|
375
397
|
util_per_cut[cut] = sum(util_per_cut_per_node[cut].values()) # type: ignore
|
@@ -384,7 +406,8 @@ class ResourceUtilizationCalculator:
|
|
384
406
|
include_reused=False) \
|
385
407
|
-> Tuple[float, Dict[NodeName, Utilization]]:
|
386
408
|
"""
|
387
|
-
Compute resource utilization for graph's activations tensors.
|
409
|
+
Compute resource utilization for graph's activations tensors. If activation quantization configs are provided, then for
|
410
|
+
quantization preserving nodes, get the previous quantized activation node bit-width.
|
388
411
|
|
389
412
|
Args:
|
390
413
|
target_criterion: criterion to include weights for computation.
|
@@ -405,7 +428,7 @@ class ResourceUtilizationCalculator:
|
|
405
428
|
|
406
429
|
util_per_node: Dict[NodeName, Utilization] = {}
|
407
430
|
for n in self._topo_sort(nodes):
|
408
|
-
qc =
|
431
|
+
qc = self._extract_qc(n, act_qcs)
|
409
432
|
util = self.compute_node_activation_tensor_utilization(n, None, bitwidth_mode, qc)
|
410
433
|
util_per_node[n.name] = util
|
411
434
|
|
@@ -659,7 +682,7 @@ class ResourceUtilizationCalculator:
|
|
659
682
|
if target_criterion == TargetInclusionCriterion.QConfigurable:
|
660
683
|
nodes = [n for n in nodes if n.has_configurable_activation()]
|
661
684
|
elif target_criterion == TargetInclusionCriterion.AnyQuantized:
|
662
|
-
nodes = [n for n in nodes if n.is_activation_quantization_enabled()]
|
685
|
+
nodes = [n for n in nodes if n.is_activation_quantization_enabled() or n.is_quantization_preserving()]
|
663
686
|
elif target_criterion == TargetInclusionCriterion.QNonConfigurable:
|
664
687
|
nodes = [n for n in nodes if n.is_activation_quantization_enabled() and not n.has_configurable_activation()]
|
665
688
|
elif target_criterion != TargetInclusionCriterion.Any: # pragma: no cover
|
@@ -668,8 +691,7 @@ class ResourceUtilizationCalculator:
|
|
668
691
|
nodes = [n for n in nodes if not n.reuse]
|
669
692
|
return nodes
|
670
693
|
|
671
|
-
|
672
|
-
def _get_activation_nbits(cls,
|
694
|
+
def _get_activation_nbits(self,
|
673
695
|
n: BaseNode,
|
674
696
|
bitwidth_mode: BitwidthMode,
|
675
697
|
act_qc: Optional[NodeActivationQuantizationConfig]) -> int:
|
@@ -690,21 +712,22 @@ class ResourceUtilizationCalculator:
|
|
690
712
|
assert bitwidth_mode == BitwidthMode.QCustom
|
691
713
|
return act_qc.activation_n_bits if act_qc.enable_activation_quantization else FLOAT_BITWIDTH
|
692
714
|
|
693
|
-
if bitwidth_mode == BitwidthMode.Float or not n.is_activation_quantization_enabled()
|
715
|
+
if bitwidth_mode == BitwidthMode.Float or not (n.is_activation_quantization_enabled() or
|
716
|
+
n.is_quantization_preserving()):
|
694
717
|
return FLOAT_BITWIDTH
|
695
718
|
|
696
719
|
if bitwidth_mode == BitwidthMode.Q8Bit:
|
697
720
|
return 8
|
698
721
|
|
699
|
-
if bitwidth_mode in
|
722
|
+
if bitwidth_mode in self._bitwidth_mode_fn:
|
700
723
|
candidates_nbits = [c.activation_quantization_cfg.activation_n_bits for c in n.candidates_quantization_cfg]
|
701
|
-
return
|
724
|
+
return self._bitwidth_mode_fn[bitwidth_mode](candidates_nbits)
|
702
725
|
|
703
726
|
if bitwidth_mode in [BitwidthMode.QCustom, BitwidthMode.QDefaultSP]:
|
704
|
-
qcs = n.get_unique_activation_candidates()
|
727
|
+
qcs = self.graph.retrieve_preserved_quantization_node(n).get_unique_activation_candidates()
|
705
728
|
if len(qcs) != 1:
|
706
729
|
raise ValueError(f'Could not retrieve the activation quantization candidate for node {n} '
|
707
|
-
f'as it has {len(qcs)}!=1 unique candidates
|
730
|
+
f'as it has {len(qcs)}!=1 unique candidates.')
|
708
731
|
return qcs[0].activation_quantization_cfg.activation_n_bits
|
709
732
|
|
710
733
|
raise ValueError(f'Unknown mode {bitwidth_mode}') # pragma: no cover
|
@@ -14,7 +14,7 @@
|
|
14
14
|
# ==============================================================================
|
15
15
|
import numpy as np
|
16
16
|
from pulp import *
|
17
|
-
from typing import Dict, Tuple
|
17
|
+
from typing import Dict, Tuple, List
|
18
18
|
|
19
19
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import RUTarget
|
20
20
|
|
mct_nightly-2.3.0.20250402.536/model_compression_toolkit/target_platform_capabilities/schema/v2.py
ADDED
@@ -0,0 +1,177 @@
|
|
1
|
+
# Copyright 2025 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import pprint
|
16
|
+
from enum import Enum
|
17
|
+
from typing import Dict, Any, Tuple, Optional
|
18
|
+
|
19
|
+
from pydantic import BaseModel, root_validator
|
20
|
+
|
21
|
+
from mct_quantizers import QuantizationMethod
|
22
|
+
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
23
|
+
from model_compression_toolkit.logger import Logger
|
24
|
+
from model_compression_toolkit.target_platform_capabilities.schema.v1 import (
|
25
|
+
Signedness,
|
26
|
+
AttributeQuantizationConfig,
|
27
|
+
OpQuantizationConfig,
|
28
|
+
QuantizationConfigOptions,
|
29
|
+
TargetPlatformModelComponent,
|
30
|
+
OperatorsSetBase,
|
31
|
+
OperatorsSet,
|
32
|
+
OperatorSetGroup,
|
33
|
+
Fusing)
|
34
|
+
|
35
|
+
|
36
|
+
class OperatorSetNames(str, Enum):
|
37
|
+
CONV = "Conv"
|
38
|
+
DEPTHWISE_CONV = "DepthwiseConv2D"
|
39
|
+
CONV_TRANSPOSE = "ConvTranspose"
|
40
|
+
FULLY_CONNECTED = "FullyConnected"
|
41
|
+
CONCATENATE = "Concatenate"
|
42
|
+
STACK = "Stack"
|
43
|
+
UNSTACK = "Unstack"
|
44
|
+
GATHER = "Gather"
|
45
|
+
EXPAND = "Expend"
|
46
|
+
BATCH_NORM = "BatchNorm"
|
47
|
+
L2NORM = "L2Norm"
|
48
|
+
RELU = "ReLU"
|
49
|
+
RELU6 = "ReLU6"
|
50
|
+
LEAKY_RELU = "LeakyReLU"
|
51
|
+
ELU = "Elu"
|
52
|
+
HARD_TANH = "HardTanh"
|
53
|
+
ADD = "Add"
|
54
|
+
SUB = "Sub"
|
55
|
+
MUL = "Mul"
|
56
|
+
DIV = "Div"
|
57
|
+
MIN = "Min"
|
58
|
+
MAX = "Max"
|
59
|
+
PRELU = "PReLU"
|
60
|
+
ADD_BIAS = "AddBias"
|
61
|
+
SWISH = "Swish"
|
62
|
+
SIGMOID = "Sigmoid"
|
63
|
+
SOFTMAX = "Softmax"
|
64
|
+
LOG_SOFTMAX = "LogSoftmax"
|
65
|
+
TANH = "Tanh"
|
66
|
+
GELU = "Gelu"
|
67
|
+
HARDSIGMOID = "HardSigmoid"
|
68
|
+
HARDSWISH = "HardSwish"
|
69
|
+
FLATTEN = "Flatten"
|
70
|
+
GET_ITEM = "GetItem"
|
71
|
+
RESHAPE = "Reshape"
|
72
|
+
UNSQUEEZE = "Unsqueeze"
|
73
|
+
SQUEEZE = "Squeeze"
|
74
|
+
PERMUTE = "Permute"
|
75
|
+
TRANSPOSE = "Transpose"
|
76
|
+
DROPOUT = "Dropout"
|
77
|
+
SPLIT_CHUNK = "SplitChunk"
|
78
|
+
MAXPOOL = "MaxPool"
|
79
|
+
AVGPOOL = "AvgPool"
|
80
|
+
SIZE = "Size"
|
81
|
+
SHAPE = "Shape"
|
82
|
+
EQUAL = "Equal"
|
83
|
+
ARGMAX = "ArgMax"
|
84
|
+
TOPK = "TopK"
|
85
|
+
FAKE_QUANT = "FakeQuant"
|
86
|
+
COMBINED_NON_MAX_SUPPRESSION = "CombinedNonMaxSuppression"
|
87
|
+
BOX_DECODE = "BoxDecode"
|
88
|
+
ZERO_PADDING2D = "ZeroPadding2D"
|
89
|
+
CAST = "Cast"
|
90
|
+
RESIZE = "Resize"
|
91
|
+
PAD = "Pad"
|
92
|
+
FOLD = "Fold"
|
93
|
+
STRIDED_SLICE = "StridedSlice"
|
94
|
+
SSD_POST_PROCESS = "SSDPostProcess"
|
95
|
+
|
96
|
+
@classmethod
|
97
|
+
def get_values(cls):
|
98
|
+
return [v.value for v in cls]
|
99
|
+
|
100
|
+
|
101
|
+
class TargetPlatformCapabilities(BaseModel):
|
102
|
+
"""
|
103
|
+
Represents the hardware configuration used for quantized model inference.
|
104
|
+
|
105
|
+
Attributes:
|
106
|
+
default_qco (QuantizationConfigOptions): Default quantization configuration options for the model.
|
107
|
+
operator_set (Optional[Tuple[OperatorsSet, ...]]): Tuple of operator sets within the model.
|
108
|
+
fusing_patterns (Optional[Tuple[Fusing, ...]]): Tuple of fusing patterns for the model.
|
109
|
+
tpc_minor_version (Optional[int]): Minor version of the Target Platform Configuration.
|
110
|
+
tpc_patch_version (Optional[int]): Patch version of the Target Platform Configuration.
|
111
|
+
tpc_platform_type (Optional[str]): Type of the platform for the Target Platform Configuration.
|
112
|
+
add_metadata (bool): Flag to determine if metadata should be added.
|
113
|
+
name (str): Name of the Target Platform Model.
|
114
|
+
is_simd_padding (bool): Indicates if SIMD padding is applied.
|
115
|
+
SCHEMA_VERSION (int): Version of the schema for the Target Platform Model.
|
116
|
+
"""
|
117
|
+
default_qco: QuantizationConfigOptions
|
118
|
+
operator_set: Optional[Tuple[OperatorsSet, ...]]
|
119
|
+
fusing_patterns: Optional[Tuple[Fusing, ...]]
|
120
|
+
tpc_minor_version: Optional[int]
|
121
|
+
tpc_patch_version: Optional[int]
|
122
|
+
tpc_platform_type: Optional[str]
|
123
|
+
add_metadata: bool = True
|
124
|
+
name: Optional[str] = "default_tpc"
|
125
|
+
is_simd_padding: bool = False
|
126
|
+
|
127
|
+
SCHEMA_VERSION: int = 2
|
128
|
+
|
129
|
+
class Config:
|
130
|
+
frozen = True
|
131
|
+
|
132
|
+
@root_validator(allow_reuse=True)
|
133
|
+
def validate_after_initialization(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
134
|
+
"""
|
135
|
+
Perform validation after the model has been instantiated.
|
136
|
+
|
137
|
+
Args:
|
138
|
+
values (Dict[str, Any]): The instantiated target platform model.
|
139
|
+
|
140
|
+
Returns:
|
141
|
+
Dict[str, Any]: The validated values.
|
142
|
+
"""
|
143
|
+
# Validate `default_qco`
|
144
|
+
default_qco = values.get('default_qco')
|
145
|
+
if len(default_qco.quantization_configurations) != 1:
|
146
|
+
Logger.critical("Default QuantizationConfigOptions must contain exactly one option.") # pragma: no cover
|
147
|
+
|
148
|
+
# Validate `operator_set` uniqueness
|
149
|
+
operator_set = values.get('operator_set')
|
150
|
+
if operator_set is not None:
|
151
|
+
opsets_names = [
|
152
|
+
op.name.value if isinstance(op.name, OperatorSetNames) else op.name
|
153
|
+
for op in operator_set
|
154
|
+
]
|
155
|
+
if len(set(opsets_names)) != len(opsets_names):
|
156
|
+
Logger.critical("Operator Sets must have unique names.") # pragma: no cover
|
157
|
+
|
158
|
+
return values
|
159
|
+
|
160
|
+
def get_info(self) -> Dict[str, Any]:
|
161
|
+
"""
|
162
|
+
Get a dictionary summarizing the TargetPlatformCapabilities properties.
|
163
|
+
|
164
|
+
Returns:
|
165
|
+
Dict[str, Any]: Summary of the TargetPlatformCapabilities properties.
|
166
|
+
"""
|
167
|
+
return {
|
168
|
+
"Model name": self.name,
|
169
|
+
"Operators sets": [o.get_info() for o in self.operator_set] if self.operator_set else [],
|
170
|
+
"Fusing patterns": [f.get_info() for f in self.fusing_patterns] if self.fusing_patterns else [],
|
171
|
+
}
|
172
|
+
|
173
|
+
def show(self):
|
174
|
+
"""
|
175
|
+
Display the TargetPlatformCapabilities.
|
176
|
+
"""
|
177
|
+
pprint.pprint(self.get_info(), sort_dicts=False)
|
@@ -93,6 +93,7 @@ class AttachTpcToKeras(AttachTpcToFramework):
|
|
93
93
|
OperatorSetNames.TOPK: [tf.nn.top_k],
|
94
94
|
OperatorSetNames.FAKE_QUANT: [tf.quantization.fake_quant_with_min_max_vars],
|
95
95
|
OperatorSetNames.COMBINED_NON_MAX_SUPPRESSION: [tf.image.combined_non_max_suppression],
|
96
|
+
OperatorSetNames.BOX_DECODE: [], # no such operator in keras
|
96
97
|
OperatorSetNames.ZERO_PADDING2D: [ZeroPadding2D],
|
97
98
|
OperatorSetNames.CAST: [tf.cast],
|
98
99
|
OperatorSetNames.STRIDED_SLICE: [tf.strided_slice],
|
@@ -97,7 +97,8 @@ class AttachTpcToPytorch(AttachTpcToFramework):
|
|
97
97
|
OperatorSetNames.L2NORM: [LayerFilterParams(torch.nn.functional.normalize,
|
98
98
|
Eq('p', 2) | Eq('p', None))],
|
99
99
|
OperatorSetNames.SSD_POST_PROCESS: [], # no such operator in pytorch
|
100
|
-
OperatorSetNames.COMBINED_NON_MAX_SUPPRESSION: [] # no such operator in pytorch
|
100
|
+
OperatorSetNames.COMBINED_NON_MAX_SUPPRESSION: [], # no such operator in pytorch
|
101
|
+
OperatorSetNames.BOX_DECODE: [] # no such operator in pytorch
|
101
102
|
}
|
102
103
|
|
103
104
|
pytorch_linear_attr_mapping = {KERNEL_ATTR: DefaultDict(default_value=PYTORCH_KERNEL),
|
File without changes
|
File without changes
|
File without changes
|
{mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/mct_nightly.egg-info/requires.txt
RENAMED
File without changes
|
{mct_nightly-2.3.0.20250331.610 → mct_nightly-2.3.0.20250402.536}/mct_nightly.egg-info/top_level.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|