mct-nightly 2.3.0.20250312.514__tar.gz → 2.3.0.20250314.509__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/PKG-INFO +1 -1
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/mct_nightly.egg-info/SOURCES.txt +1 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/__init__.py +1 -1
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/base_node.py +8 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +20 -12
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +2 -1
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +50 -69
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +16 -46
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +1 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +1 -3
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +162 -70
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +35 -15
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +3 -3
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/constants.py +1 -0
- mct_nightly-2.3.0.20250314.509/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/convtranspose_dynamic_padding.py +77 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +4 -1
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/runner.py +2 -2
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/__init__.py +3 -2
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/LICENSE.md +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/README.md +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/mct_nightly.egg-info/requires.txt +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/constants.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/data_util.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/defaultdict.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/logger.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/metadata.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/schema/v1.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/verify_packages.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/setup.cfg +0 -0
- {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/setup.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.3.0.
|
3
|
+
Version: 2.3.0.20250314.509
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/mct_nightly.egg-info/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.3.0.
|
3
|
+
Version: 2.3.0.20250314.509
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250314.509}/mct_nightly.egg-info/SOURCES.txt
RENAMED
@@ -253,6 +253,7 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchno
|
|
253
253
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py
|
254
254
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py
|
255
255
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py
|
256
|
+
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/convtranspose_dynamic_padding.py
|
256
257
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py
|
257
258
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py
|
258
259
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.3.0.
|
30
|
+
__version__ = "2.3.0.20250314.000509"
|
@@ -167,6 +167,14 @@ class BaseNode:
|
|
167
167
|
"""
|
168
168
|
return self.is_weights_quantization_enabled(attr_name) and not self.is_all_weights_candidates_equal(attr_name)
|
169
169
|
|
170
|
+
def has_any_configurable_weight(self) -> bool:
|
171
|
+
"""
|
172
|
+
Check whether any of the node's weights is configurable.
|
173
|
+
Returns:
|
174
|
+
Whether any of the node's weights is configurable.
|
175
|
+
"""
|
176
|
+
return any(self.is_configurable_weight(attr) for attr in self.weights)
|
177
|
+
|
170
178
|
def has_configurable_activation(self) -> bool:
|
171
179
|
"""
|
172
180
|
Checks whether the activation has a configurable quantization.
|
@@ -12,28 +12,36 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
from dataclasses import dataclass, field
|
16
|
+
|
15
17
|
from typing import List, Set
|
16
18
|
|
17
19
|
from model_compression_toolkit.core.common import BaseNode
|
18
20
|
from model_compression_toolkit.core.common.graph.memory_graph.memory_element import MemoryElements
|
19
21
|
|
20
22
|
|
23
|
+
@dataclass(frozen=True)
|
21
24
|
class Cut:
|
22
25
|
"""
|
23
26
|
A Cut object that contains a set of ordered nodes and their memory elements.
|
24
|
-
"""
|
25
27
|
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
28
|
+
Args:
|
29
|
+
op_order: A list of the cut's nodes (model layers), ordered by their addition to the cut (first-to-last).
|
30
|
+
op_record: A (unordered) set of the nodes in the cut.
|
31
|
+
mem_elements: MemoryElements object which represents the activation tensors of the cut's nodes.
|
32
|
+
"""
|
33
|
+
op_order: List[BaseNode]
|
34
|
+
op_record: Set[BaseNode]
|
35
|
+
mem_elements: MemoryElements
|
36
|
+
|
37
|
+
_sorted_elements_signature: str = field(init=False, default=None)
|
38
|
+
|
39
|
+
@property
|
40
|
+
def sorted_elements_signature(self):
|
41
|
+
if self._sorted_elements_signature is None:
|
42
|
+
object.__setattr__(self, '_sorted_elements_signature',
|
43
|
+
'_'.join(sorted([e.node_name for e in self.mem_elements.elements])))
|
44
|
+
return self._sorted_elements_signature
|
37
45
|
|
38
46
|
def memory_size(self) -> float:
|
39
47
|
"""
|
@@ -232,7 +232,8 @@ class MaxCutAstar:
|
|
232
232
|
max_cut_len = max([len(routes[c]) for c in open_list])
|
233
233
|
ordered_cuts_list = sorted(open_list,
|
234
234
|
key=lambda c: (self.accumulate(costs[c], self.estimate(c, estimate)),
|
235
|
-
max_cut_len - len(routes[c])
|
235
|
+
max_cut_len - len(routes[c]),
|
236
|
+
c.sorted_elements_signature))
|
236
237
|
|
237
238
|
assert len(ordered_cuts_list) > 0
|
238
239
|
return ordered_cuts_list[0]
|
@@ -24,7 +24,6 @@ import numpy as np
|
|
24
24
|
|
25
25
|
from model_compression_toolkit.core.common.quantization.candidate_node_quantization_config import \
|
26
26
|
CandidateNodeQuantizationConfig
|
27
|
-
from model_compression_toolkit.logger import Logger
|
28
27
|
|
29
28
|
|
30
29
|
class VirtualSplitNode(BaseNode):
|
@@ -73,11 +72,14 @@ class VirtualSplitWeightsNode(VirtualSplitNode):
|
|
73
72
|
super().__init__(origin_node)
|
74
73
|
|
75
74
|
self.name = origin_node.name + VIRTUAL_WEIGHTS_SUFFIX
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
75
|
+
# Virtual weights node is created only to be absorbed into virtual composed node right away.
|
76
|
+
# However, in some cases composition is impossible and virtual weights node can remain in the graph.
|
77
|
+
# In such case it messes up resource utilization computation, specifically activation cuts. In order to minimize
|
78
|
+
# the impact, we preserve the behavior of the original node wrt activation (shape and quantization),
|
79
|
+
# so that prev - virtualW cut is identical to prev-origin_node. Only the cut virtualW-virtualA will be different
|
80
|
+
# from the original graph, so in the worst case the utilization will be higher in virtual graph.
|
81
|
+
# This should guarantee that the utilization of the original graph does not exceed the requested target.
|
82
|
+
self.candidates_quantization_cfg = origin_node.candidates_quantization_cfg
|
81
83
|
|
82
84
|
|
83
85
|
class VirtualSplitActivationNode(VirtualSplitNode):
|
@@ -126,89 +128,68 @@ class VirtualActivationWeightsNode(BaseNode):
|
|
126
128
|
def __init__(self,
|
127
129
|
act_node: BaseNode,
|
128
130
|
weights_node: BaseNode,
|
129
|
-
|
130
|
-
framework_attr: Dict[str, Any],
|
131
|
-
input_shape: Tuple[Any],
|
132
|
-
output_shape: Tuple[Any],
|
133
|
-
weights: Dict[str, np.ndarray],
|
134
|
-
layer_class: type,
|
135
|
-
fw_info: FrameworkInfo,
|
136
|
-
reuse: bool = False,
|
137
|
-
reuse_group: str = None,
|
138
|
-
quantization_attr: Dict[str, Any] = None,
|
139
|
-
has_activation: bool = True,
|
140
|
-
**kwargs):
|
131
|
+
fw_info: FrameworkInfo):
|
141
132
|
"""
|
142
133
|
Init a VirtualActivationWeightsNode object.
|
143
134
|
|
144
135
|
Args:
|
145
136
|
act_node: The original activation node.
|
146
137
|
weights_node: The original weights node.
|
147
|
-
|
148
|
-
framework_attr: Framework attributes the layer had which the node holds.
|
149
|
-
input_shape: Input tensor shape of the node.
|
150
|
-
output_shape: Input tensor shape of the node.
|
151
|
-
weights: Dictionary from a variable name to the weights with that name in the layer the node represents.
|
152
|
-
layer_class: Class path of the layer this node represents.
|
153
|
-
fw_info: A FrameworkInfo object with framework specific information,
|
154
|
-
reuse: Whether this node was duplicated and represents a reused layer.
|
155
|
-
reuse_group: Name of group of nodes from the same reused layer.
|
156
|
-
quantization_attr: Attributes the node holds regarding how it should be quantized.
|
157
|
-
has_activation: Whether the node has activations that we might want to quantize.
|
158
|
-
**kwargs: Additional arguments that can be passed but are not used (allows to init the object with an
|
159
|
-
existing node's __dict__).
|
160
|
-
|
138
|
+
fw_info: A FrameworkInfo object with framework specific information.
|
161
139
|
"""
|
162
|
-
|
140
|
+
# Validate weights node
|
141
|
+
kernel_attrs = fw_info.get_kernel_op_attributes(weights_node.type)
|
142
|
+
assert len(kernel_attrs) == 1 and kernel_attrs[0] is not None, 'Expected exactly one kernel attr.'
|
143
|
+
kernel_attr = kernel_attrs[0]
|
144
|
+
conf_weights = [attr for attr in weights_node.weights if weights_node.is_configurable_weight(attr)]
|
145
|
+
if len(conf_weights) > 1 or len(conf_weights) == 1 and not weights_node.is_configurable_weight(kernel_attr):
|
146
|
+
raise NotImplementedError('Only kernel weight can be configurable.') # pragma: no cover
|
147
|
+
|
148
|
+
weights = weights_node.weights
|
149
|
+
if act_node.weights:
|
150
|
+
assert fw_info.get_kernel_op_attributes(act_node)[0] is None, \
|
151
|
+
f'Node {act_node} with kernel cannot be used as activation for VirtualActivationWeightsNode.'
|
152
|
+
if set(weights_node.weights.keys()).intersection(set(act_node.weights.keys())):
|
153
|
+
raise ValueError('Activation and weight nodes are not expected to have the same weight attribute') # pragma: no cover
|
154
|
+
if act_node.has_any_configurable_weight():
|
155
|
+
raise NotImplementedError('Node with a configurable weight cannot be used as activation for '
|
156
|
+
'VirtualActivationWeightsNode.') # pragma: no cover
|
157
|
+
# combine weights from activation and weights
|
158
|
+
weights.update(act_node.weights)
|
159
|
+
|
160
|
+
name = f"{VIRTUAL_ACTIVATION_WEIGHTS_NODE_PREFIX}_{act_node.name}_{weights_node.name}"
|
163
161
|
super().__init__(name,
|
164
|
-
framework_attr,
|
165
|
-
input_shape,
|
166
|
-
output_shape,
|
167
|
-
weights,
|
168
|
-
layer_class,
|
169
|
-
reuse,
|
170
|
-
reuse_group,
|
171
|
-
quantization_attr,
|
172
|
-
has_activation)
|
173
|
-
|
174
|
-
self.name = f"{VIRTUAL_ACTIVATION_WEIGHTS_NODE_PREFIX}_{act_node.name}_{weights_node.name}"
|
162
|
+
framework_attr=weights_node.framework_attr,
|
163
|
+
input_shape=act_node.input_shape,
|
164
|
+
output_shape=act_node.output_shape,
|
165
|
+
weights=weights,
|
166
|
+
layer_class=weights_node.layer_class,
|
167
|
+
reuse=weights_node.reuse,
|
168
|
+
reuse_group=weights_node.reuse_group,
|
169
|
+
quantization_attr=weights_node.quantization_attr,
|
170
|
+
has_activation=False)
|
175
171
|
|
176
172
|
self.original_activation_node = act_node
|
177
173
|
self.original_weights_node = weights_node
|
178
174
|
|
179
175
|
v_candidates = []
|
176
|
+
weights_candidates_quantization_cfg = weights_node.get_unique_weights_candidates(kernel_attr)
|
180
177
|
for c_a in act_node.candidates_quantization_cfg:
|
181
|
-
for c_w in
|
178
|
+
for c_w in weights_candidates_quantization_cfg:
|
182
179
|
composed_candidate = CandidateNodeQuantizationConfig(activation_quantization_cfg=c_a.activation_quantization_cfg,
|
183
180
|
weights_quantization_cfg=c_w.weights_quantization_cfg)
|
181
|
+
if act_node.weights:
|
182
|
+
# add non-kernel weights cfg from activation node to the composed node's weights cfg
|
183
|
+
composed_candidate.weights_quantization_cfg.attributes_config_mapping.update(
|
184
|
+
c_a.weights_quantization_cfg.attributes_config_mapping
|
185
|
+
)
|
186
|
+
composed_candidate.weights_quantization_cfg.pos_attributes_config_mapping.update(
|
187
|
+
c_a.weights_quantization_cfg.pos_attributes_config_mapping
|
188
|
+
)
|
184
189
|
v_candidates.append(composed_candidate)
|
185
190
|
|
186
191
|
# sorting the candidates by weights number of bits first and then by activation number of bits (reversed order)
|
187
|
-
kernel_attr = fw_info.get_kernel_op_attributes(self.type)[0]
|
188
192
|
v_candidates.sort(key=lambda c: (c.weights_quantization_cfg.get_attr_config(kernel_attr).weights_n_bits,
|
189
193
|
c.activation_quantization_cfg.activation_n_bits), reverse=True)
|
190
194
|
|
191
195
|
self.candidates_quantization_cfg = v_candidates
|
192
|
-
|
193
|
-
def get_bops_count(self, fw_impl: Any, fw_info: FrameworkInfo, candidate_idx: int) -> float:
|
194
|
-
"""
|
195
|
-
Computes the composed node's (edge) bit-operation count.
|
196
|
-
|
197
|
-
Args:
|
198
|
-
fw_impl: A FrameworkImplementation object with framework specific methods.
|
199
|
-
fw_info: A FrameworkInfo object with framework specific information,
|
200
|
-
candidate_idx: The index of the node's quantization candidate configuration.
|
201
|
-
|
202
|
-
Returns: The BOPS count of the composed node.
|
203
|
-
|
204
|
-
"""
|
205
|
-
kernel_attr = fw_info.get_kernel_op_attributes(self.original_weights_node.type)[0]
|
206
|
-
node_mac = fw_impl.get_node_mac_operations(self.original_weights_node, fw_info)
|
207
|
-
candidate = self.candidates_quantization_cfg[candidate_idx]
|
208
|
-
kernel_attr_cfg = candidate.weights_quantization_cfg.get_attr_config(kernel_attr)
|
209
|
-
weights_bit = kernel_attr_cfg.weights_n_bits if \
|
210
|
-
kernel_attr_cfg.enable_weights_quantization else FLOAT_BITWIDTH
|
211
|
-
activation_bit = candidate.activation_quantization_cfg.activation_n_bits if \
|
212
|
-
candidate.activation_quantization_cfg.enable_activation_quantization else FLOAT_BITWIDTH
|
213
|
-
node_bops = weights_bit * activation_bit * node_mac
|
214
|
-
return node_bops
|
@@ -19,7 +19,6 @@ import numpy as np
|
|
19
19
|
from model_compression_toolkit.core import FrameworkInfo
|
20
20
|
from model_compression_toolkit.core.common import Graph, BaseNode
|
21
21
|
from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
|
22
|
-
from model_compression_toolkit.core.common.graph.virtual_activation_weights_node import VirtualActivationWeightsNode
|
23
22
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import \
|
24
23
|
RUTarget
|
25
24
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization_calculator import \
|
@@ -28,9 +27,6 @@ from model_compression_toolkit.core.common.quantization.node_quantization_config
|
|
28
27
|
NodeActivationQuantizationConfig
|
29
28
|
|
30
29
|
|
31
|
-
# TODO take into account Virtual nodes. Are candidates defined with respect to virtual or original nodes?
|
32
|
-
# Can we use the virtual graph only for bops and the original graph for everything else?
|
33
|
-
|
34
30
|
class MixedPrecisionRUHelper:
|
35
31
|
""" Helper class for resource utilization computations for mixed precision optimization. """
|
36
32
|
|
@@ -65,7 +61,7 @@ class MixedPrecisionRUHelper:
|
|
65
61
|
ru[RUTarget.ACTIVATION] = np.array(list(au.values()))
|
66
62
|
|
67
63
|
if RUTarget.BOPS in ru_targets:
|
68
|
-
ru[RUTarget.BOPS] = self._bops_utilization(
|
64
|
+
ru[RUTarget.BOPS] = self._bops_utilization(act_qcs=act_qcs, w_qcs=w_qcs)
|
69
65
|
|
70
66
|
if RUTarget.TOTAL in ru_targets:
|
71
67
|
raise ValueError('Total target should be computed based on weights and activations targets.')
|
@@ -88,8 +84,8 @@ class MixedPrecisionRUHelper:
|
|
88
84
|
"""
|
89
85
|
mp_nodes = self.graph.get_configurable_sorted_nodes(self.fw_info)
|
90
86
|
node_qcs = {n: n.candidates_quantization_cfg[mp_cfg[i]] for i, n in enumerate(mp_nodes)}
|
91
|
-
act_qcs = {n: cfg.activation_quantization_cfg for n, cfg in node_qcs.items()}
|
92
|
-
w_qcs = {n: cfg.weights_quantization_cfg for n, cfg in node_qcs.items()}
|
87
|
+
act_qcs = {n.name: cfg.activation_quantization_cfg for n, cfg in node_qcs.items()}
|
88
|
+
w_qcs = {n.name: cfg.weights_quantization_cfg for n, cfg in node_qcs.items()}
|
93
89
|
return act_qcs, w_qcs
|
94
90
|
|
95
91
|
def _weights_utilization(self, w_qcs: Optional[Dict[BaseNode, NodeWeightsQuantizationConfig]]) -> Dict[BaseNode, float]:
|
@@ -137,51 +133,25 @@ class MixedPrecisionRUHelper:
|
|
137
133
|
cuts_util = {c: u.bytes for c, u in cuts_util.items()}
|
138
134
|
return cuts_util
|
139
135
|
|
140
|
-
def _bops_utilization(self,
|
136
|
+
def _bops_utilization(self,
|
137
|
+
act_qcs: Optional[Dict[BaseNode, NodeActivationQuantizationConfig]],
|
138
|
+
w_qcs: Optional[Dict[BaseNode, NodeWeightsQuantizationConfig]]) -> np.ndarray:
|
141
139
|
"""
|
142
|
-
Computes a resource utilization vector with the respective bit-operations (BOPS) count
|
143
|
-
according to the given mixed-precision configuration
|
140
|
+
Computes a resource utilization vector with the respective bit-operations (BOPS) count
|
141
|
+
according to the given mixed-precision configuration.
|
144
142
|
|
145
143
|
Args:
|
146
|
-
|
144
|
+
act_qcs: nodes activation configuration or None.
|
145
|
+
w_qcs: nodes quantization configuration to compute, or None.
|
146
|
+
Either both are provided, or both are None.
|
147
147
|
|
148
148
|
Returns:
|
149
149
|
A vector of node's BOPS count.
|
150
150
|
"""
|
151
|
-
|
152
|
-
|
153
|
-
if not mp_cfg:
|
151
|
+
assert [act_qcs, w_qcs].count(None) in [0, 2], 'act_qcs and w_qcs should both be provided or both be None.'
|
152
|
+
if act_qcs is None:
|
154
153
|
return np.array([])
|
155
154
|
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
mp_nodes = self.graph.get_configurable_sorted_nodes_names(self.fw_info)
|
160
|
-
|
161
|
-
bops = [n.get_bops_count(self.fw_impl, self.fw_info, candidate_idx=_get_node_cfg_idx(n, mp_cfg, mp_nodes))
|
162
|
-
for n in virtual_bops_nodes]
|
163
|
-
|
164
|
-
return np.array(bops)
|
165
|
-
|
166
|
-
|
167
|
-
def _get_node_cfg_idx(node: BaseNode, mp_cfg: List[int], sorted_configurable_nodes_names: List[str]) -> int:
|
168
|
-
"""
|
169
|
-
Returns the index of a node's quantization configuration candidate according to the given
|
170
|
-
mixed-precision configuration. If the node is not configurable, then it must have a single configuration,
|
171
|
-
therefore, the index 0 is returned.
|
172
|
-
|
173
|
-
Args:
|
174
|
-
node: A node to get its candidate configuration index.
|
175
|
-
mp_cfg: A mixed-precision configuration (list of candidates index for each configurable node)
|
176
|
-
sorted_configurable_nodes_names: A list of configurable nodes names.
|
177
|
-
|
178
|
-
Returns: An index (integer) of a node's quantization configuration candidate.
|
179
|
-
"""
|
180
|
-
|
181
|
-
if node.name in sorted_configurable_nodes_names:
|
182
|
-
node_idx = sorted_configurable_nodes_names.index(node.name)
|
183
|
-
return mp_cfg[node_idx]
|
184
|
-
else: # pragma: no cover
|
185
|
-
assert len(node.candidates_quantization_cfg) > 0, \
|
186
|
-
"Any node should have at least one candidate configuration."
|
187
|
-
return 0
|
155
|
+
_, detailed_bops = self.ru_calculator.compute_bops(TargetInclusionCriterion.Any, BitwidthMode.QCustom,
|
156
|
+
act_qcs=act_qcs, w_qcs=w_qcs)
|
157
|
+
return np.array(list(detailed_bops.values()))
|
@@ -83,6 +83,7 @@ def search_bit_width(graph_to_search_cfg: Graph,
|
|
83
83
|
# Set graph for MP search
|
84
84
|
graph = copy.deepcopy(graph_to_search_cfg) # Copy graph before searching
|
85
85
|
if target_resource_utilization.bops_restricted():
|
86
|
+
# TODO: we only need the virtual graph is both activations and weights are configurable
|
86
87
|
# Since Bit-operations count target resource utilization is set, we need to reconstruct the graph for the MP search
|
87
88
|
graph = substitute(graph, fw_impl.get_substitutions_virtual_weights_activation_coupling())
|
88
89
|
|
@@ -189,11 +189,9 @@ class MixedPrecisionSearchManager:
|
|
189
189
|
|
190
190
|
"""
|
191
191
|
act_qcs, w_qcs = self.ru_helper.get_quantization_candidates(config)
|
192
|
-
act_qcs = None if (RUTarget.ACTIVATION not in self.ru_targets_to_compute and RUTarget.TOTAL not in self.ru_targets_to_compute) else act_qcs
|
193
|
-
w_qcs = None if (RUTarget.WEIGHTS not in self.ru_targets_to_compute and RUTarget.TOTAL not in self.ru_targets_to_compute) else w_qcs
|
194
192
|
ru = self.ru_helper.ru_calculator.compute_resource_utilization(
|
195
193
|
target_criterion=TargetInclusionCriterion.AnyQuantized, bitwidth_mode=BitwidthMode.QCustom, act_qcs=act_qcs,
|
196
|
-
w_qcs=w_qcs, ru_targets=self.ru_targets_to_compute)
|
194
|
+
w_qcs=w_qcs, ru_targets=self.ru_targets_to_compute, allow_unused_qcs=True)
|
197
195
|
return ru
|
198
196
|
|
199
197
|
def finalize_distance_metric(self, layer_to_metrics_mapping: Dict[int, Dict[int, float]]):
|