mct-nightly 2.3.0.20250312.514__tar.gz → 2.3.0.20250313.526__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (537) hide show
  1. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/PKG-INFO +1 -1
  2. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/mct_nightly.egg-info/SOURCES.txt +1 -0
  4. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/__init__.py +1 -1
  5. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/base_node.py +8 -0
  6. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +20 -12
  7. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +2 -1
  8. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +50 -69
  9. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +16 -46
  10. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +1 -0
  11. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +1 -3
  12. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +162 -70
  13. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +35 -15
  14. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +3 -3
  15. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/constants.py +1 -0
  16. mct_nightly-2.3.0.20250313.526/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/convtranspose_dynamic_padding.py +77 -0
  17. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +4 -1
  18. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/runner.py +2 -2
  19. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/__init__.py +3 -2
  20. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/LICENSE.md +0 -0
  21. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/README.md +0 -0
  22. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/mct_nightly.egg-info/dependency_links.txt +0 -0
  23. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/mct_nightly.egg-info/requires.txt +0 -0
  24. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/mct_nightly.egg-info/top_level.txt +0 -0
  25. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/constants.py +0 -0
  26. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/__init__.py +0 -0
  27. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/analyzer.py +0 -0
  28. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/__init__.py +0 -0
  29. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  30. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  31. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  32. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  33. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  34. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  35. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  36. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  37. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  38. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py +0 -0
  39. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  40. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/framework_info.py +0 -0
  41. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  42. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  43. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  44. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  45. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  46. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  47. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  48. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  49. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  50. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  51. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  52. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  53. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  54. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  55. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  56. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  57. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  58. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  59. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  60. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  61. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  62. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  63. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  64. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  65. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  66. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  67. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  68. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  69. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  70. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  71. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  72. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  73. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  74. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  75. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  76. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  77. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  78. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  79. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  80. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  81. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  82. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  83. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  84. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/model_collector.py +0 -0
  85. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/model_validation.py +0 -0
  86. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  87. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  88. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  89. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  90. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  91. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  92. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  93. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  94. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  95. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  96. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  97. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  98. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  99. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  100. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  101. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  102. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  103. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  104. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  105. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  106. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  107. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  108. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  109. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  110. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  111. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  112. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  113. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  114. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  115. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  116. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  117. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  118. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  119. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  120. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  121. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  122. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  123. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  124. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  125. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  126. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  127. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  128. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  129. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  130. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  131. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  132. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  133. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  134. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  135. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  136. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  137. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  138. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
  139. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  140. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  141. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
  142. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  143. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  144. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  145. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  146. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  147. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  148. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  149. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  150. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  151. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  152. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  153. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  154. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  155. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  156. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/user_info.py +0 -0
  157. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  158. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  159. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  160. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  161. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  162. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/__init__.py +0 -0
  163. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  164. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  165. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  166. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  167. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  168. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  169. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  170. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/constants.py +0 -0
  171. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  172. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/data_util.py +0 -0
  173. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  174. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  175. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  176. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  177. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  178. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  179. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  180. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  181. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  182. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  183. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  184. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  185. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  186. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  187. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  188. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  189. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  190. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  191. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  192. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  193. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  194. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  195. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  196. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  197. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  198. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  199. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  200. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  201. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  202. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  203. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  204. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  205. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  206. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  207. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  208. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  209. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  210. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  211. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  212. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  213. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  214. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  215. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  216. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  217. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  218. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  219. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  220. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  221. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  222. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  223. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  224. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  225. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
  226. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  227. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  228. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  229. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  230. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  231. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  232. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  233. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  234. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  235. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  236. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  237. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  238. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  239. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
  240. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  241. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  242. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  243. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  244. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  245. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  246. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  247. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  248. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  249. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  250. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
  251. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  252. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +0 -0
  253. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  254. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  255. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  256. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  257. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  258. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  259. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  260. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  261. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  262. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  263. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  264. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  265. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  266. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  267. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  268. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  269. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  270. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  271. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  272. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  273. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  274. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  275. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  276. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  277. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  278. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  279. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  280. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  281. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  282. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  283. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  284. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  285. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  286. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
  287. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  288. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  289. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/__init__.py +0 -0
  290. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  291. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  292. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  293. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  294. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  295. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  296. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  297. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  298. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  299. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  300. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  301. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  302. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  303. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  304. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  305. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  306. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  307. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  308. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  309. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  310. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  311. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  312. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  313. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  314. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  315. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  316. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  317. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  318. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  319. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  320. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  321. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  322. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  323. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  324. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  325. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  326. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/defaultdict.py +0 -0
  327. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/__init__.py +0 -0
  328. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  329. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  330. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  331. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  332. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  333. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  334. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  335. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  336. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  337. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  338. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  339. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  340. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  341. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  342. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  343. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  344. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  345. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  346. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  347. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  348. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  349. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  350. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  351. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  352. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  353. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  354. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  355. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  356. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  357. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  358. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  359. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/__init__.py +0 -0
  360. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  361. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  362. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  363. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  364. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  365. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  366. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
  367. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
  368. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  369. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  370. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  371. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  372. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  373. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  374. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  375. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  376. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  377. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  378. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  379. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  380. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  381. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  382. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  383. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  384. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  385. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  386. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  387. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  388. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  389. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  390. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  391. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  392. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  393. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  394. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  395. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  396. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  397. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  398. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  399. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  400. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/gptq/runner.py +0 -0
  401. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/logger.py +0 -0
  402. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/metadata.py +0 -0
  403. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/pruning/__init__.py +0 -0
  404. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  405. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  406. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  407. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  408. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/ptq/__init__.py +0 -0
  409. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  410. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  411. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  412. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  413. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/ptq/runner.py +0 -0
  414. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/__init__.py +0 -0
  415. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/common/__init__.py +0 -0
  416. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  417. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  418. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  419. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  420. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
  421. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  422. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  423. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  424. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  425. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  426. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  427. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  428. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  429. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  430. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  431. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  432. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  433. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  434. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  435. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  436. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  437. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  438. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  439. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  440. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  441. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  442. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -0
  443. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +0 -0
  444. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +0 -0
  445. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/schema/v1.py +0 -0
  446. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py +0 -0
  447. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py +0 -0
  448. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +0 -0
  449. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py +0 -0
  450. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py +0 -0
  451. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py +0 -0
  452. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +0 -0
  453. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +0 -0
  454. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py +0 -0
  455. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py +0 -0
  456. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +0 -0
  457. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  458. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  459. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  460. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  461. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  462. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +0 -0
  463. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  464. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  465. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  466. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +0 -0
  467. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  468. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  469. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  470. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +0 -0
  471. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  472. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  473. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
  474. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  475. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  476. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  477. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  478. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  479. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  480. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  481. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
  482. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  483. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
  484. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
  485. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
  486. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  487. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
  488. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
  489. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
  490. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
  491. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
  492. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  493. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  494. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  495. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  496. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  497. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  498. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  499. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  500. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  501. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  502. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  503. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  504. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  505. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  506. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  507. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  508. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  509. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/verify_packages.py +0 -0
  510. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/__init__.py +0 -0
  511. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  512. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/constants.py +0 -0
  513. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  514. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  515. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  516. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  517. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  518. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  519. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  520. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  521. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  522. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  523. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  524. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  525. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  526. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  527. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  528. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  529. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  530. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  531. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  532. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  533. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  534. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  535. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  536. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/setup.cfg +0 -0
  537. {mct_nightly-2.3.0.20250312.514 → mct_nightly-2.3.0.20250313.526}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250312.514
3
+ Version: 2.3.0.20250313.526
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250312.514
3
+ Version: 2.3.0.20250313.526
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -253,6 +253,7 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchno
253
253
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py
254
254
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py
255
255
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py
256
+ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/convtranspose_dynamic_padding.py
256
257
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py
257
258
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py
258
259
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.3.0.20250312.000514"
30
+ __version__ = "2.3.0.20250313.000526"
@@ -167,6 +167,14 @@ class BaseNode:
167
167
  """
168
168
  return self.is_weights_quantization_enabled(attr_name) and not self.is_all_weights_candidates_equal(attr_name)
169
169
 
170
+ def has_any_configurable_weight(self) -> bool:
171
+ """
172
+ Check whether any of the node's weights is configurable.
173
+ Returns:
174
+ Whether any of the node's weights is configurable.
175
+ """
176
+ return any(self.is_configurable_weight(attr) for attr in self.weights)
177
+
170
178
  def has_configurable_activation(self) -> bool:
171
179
  """
172
180
  Checks whether the activation has a configurable quantization.
@@ -12,28 +12,36 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ from dataclasses import dataclass, field
16
+
15
17
  from typing import List, Set
16
18
 
17
19
  from model_compression_toolkit.core.common import BaseNode
18
20
  from model_compression_toolkit.core.common.graph.memory_graph.memory_element import MemoryElements
19
21
 
20
22
 
23
+ @dataclass(frozen=True)
21
24
  class Cut:
22
25
  """
23
26
  A Cut object that contains a set of ordered nodes and their memory elements.
24
- """
25
27
 
26
- def __init__(self, op_order: List[BaseNode], op_record: Set[BaseNode], mem_elements: MemoryElements):
27
- """
28
- Args:
29
- op_order: A list of the cut's nodes (model layers), ordered by their addition to the cut (first-to-last).
30
- op_record: A (unordered) set of the nodes in the cut.
31
- mem_elements: MemoryElements object which represents the activation tensors of the cut's nodes.
32
- """
33
-
34
- self.op_order = op_order
35
- self.op_record = op_record
36
- self.mem_elements = mem_elements
28
+ Args:
29
+ op_order: A list of the cut's nodes (model layers), ordered by their addition to the cut (first-to-last).
30
+ op_record: A (unordered) set of the nodes in the cut.
31
+ mem_elements: MemoryElements object which represents the activation tensors of the cut's nodes.
32
+ """
33
+ op_order: List[BaseNode]
34
+ op_record: Set[BaseNode]
35
+ mem_elements: MemoryElements
36
+
37
+ _sorted_elements_signature: str = field(init=False, default=None)
38
+
39
+ @property
40
+ def sorted_elements_signature(self):
41
+ if self._sorted_elements_signature is None:
42
+ object.__setattr__(self, '_sorted_elements_signature',
43
+ '_'.join(sorted([e.node_name for e in self.mem_elements.elements])))
44
+ return self._sorted_elements_signature
37
45
 
38
46
  def memory_size(self) -> float:
39
47
  """
@@ -232,7 +232,8 @@ class MaxCutAstar:
232
232
  max_cut_len = max([len(routes[c]) for c in open_list])
233
233
  ordered_cuts_list = sorted(open_list,
234
234
  key=lambda c: (self.accumulate(costs[c], self.estimate(c, estimate)),
235
- max_cut_len - len(routes[c])))
235
+ max_cut_len - len(routes[c]),
236
+ c.sorted_elements_signature))
236
237
 
237
238
  assert len(ordered_cuts_list) > 0
238
239
  return ordered_cuts_list[0]
@@ -24,7 +24,6 @@ import numpy as np
24
24
 
25
25
  from model_compression_toolkit.core.common.quantization.candidate_node_quantization_config import \
26
26
  CandidateNodeQuantizationConfig
27
- from model_compression_toolkit.logger import Logger
28
27
 
29
28
 
30
29
  class VirtualSplitNode(BaseNode):
@@ -73,11 +72,14 @@ class VirtualSplitWeightsNode(VirtualSplitNode):
73
72
  super().__init__(origin_node)
74
73
 
75
74
  self.name = origin_node.name + VIRTUAL_WEIGHTS_SUFFIX
76
-
77
- self.candidates_quantization_cfg = origin_node.get_unique_weights_candidates(kernel_attr)
78
- for c in self.candidates_quantization_cfg:
79
- c.activation_quantization_cfg.enable_activation_quantization = False
80
- c.activation_quantization_cfg.activation_n_bits = FLOAT_BITWIDTH
75
+ # Virtual weights node is created only to be absorbed into virtual composed node right away.
76
+ # However, in some cases composition is impossible and virtual weights node can remain in the graph.
77
+ # In such case it messes up resource utilization computation, specifically activation cuts. In order to minimize
78
+ # the impact, we preserve the behavior of the original node wrt activation (shape and quantization),
79
+ # so that prev - virtualW cut is identical to prev-origin_node. Only the cut virtualW-virtualA will be different
80
+ # from the original graph, so in the worst case the utilization will be higher in virtual graph.
81
+ # This should guarantee that the utilization of the original graph does not exceed the requested target.
82
+ self.candidates_quantization_cfg = origin_node.candidates_quantization_cfg
81
83
 
82
84
 
83
85
  class VirtualSplitActivationNode(VirtualSplitNode):
@@ -126,89 +128,68 @@ class VirtualActivationWeightsNode(BaseNode):
126
128
  def __init__(self,
127
129
  act_node: BaseNode,
128
130
  weights_node: BaseNode,
129
- name: str,
130
- framework_attr: Dict[str, Any],
131
- input_shape: Tuple[Any],
132
- output_shape: Tuple[Any],
133
- weights: Dict[str, np.ndarray],
134
- layer_class: type,
135
- fw_info: FrameworkInfo,
136
- reuse: bool = False,
137
- reuse_group: str = None,
138
- quantization_attr: Dict[str, Any] = None,
139
- has_activation: bool = True,
140
- **kwargs):
131
+ fw_info: FrameworkInfo):
141
132
  """
142
133
  Init a VirtualActivationWeightsNode object.
143
134
 
144
135
  Args:
145
136
  act_node: The original activation node.
146
137
  weights_node: The original weights node.
147
- name: Node's name
148
- framework_attr: Framework attributes the layer had which the node holds.
149
- input_shape: Input tensor shape of the node.
150
- output_shape: Input tensor shape of the node.
151
- weights: Dictionary from a variable name to the weights with that name in the layer the node represents.
152
- layer_class: Class path of the layer this node represents.
153
- fw_info: A FrameworkInfo object with framework specific information,
154
- reuse: Whether this node was duplicated and represents a reused layer.
155
- reuse_group: Name of group of nodes from the same reused layer.
156
- quantization_attr: Attributes the node holds regarding how it should be quantized.
157
- has_activation: Whether the node has activations that we might want to quantize.
158
- **kwargs: Additional arguments that can be passed but are not used (allows to init the object with an
159
- existing node's __dict__).
160
-
138
+ fw_info: A FrameworkInfo object with framework specific information.
161
139
  """
162
-
140
+ # Validate weights node
141
+ kernel_attrs = fw_info.get_kernel_op_attributes(weights_node.type)
142
+ assert len(kernel_attrs) == 1 and kernel_attrs[0] is not None, 'Expected exactly one kernel attr.'
143
+ kernel_attr = kernel_attrs[0]
144
+ conf_weights = [attr for attr in weights_node.weights if weights_node.is_configurable_weight(attr)]
145
+ if len(conf_weights) > 1 or len(conf_weights) == 1 and not weights_node.is_configurable_weight(kernel_attr):
146
+ raise NotImplementedError('Only kernel weight can be configurable.') # pragma: no cover
147
+
148
+ weights = weights_node.weights
149
+ if act_node.weights:
150
+ assert fw_info.get_kernel_op_attributes(act_node)[0] is None, \
151
+ f'Node {act_node} with kernel cannot be used as activation for VirtualActivationWeightsNode.'
152
+ if set(weights_node.weights.keys()).intersection(set(act_node.weights.keys())):
153
+ raise ValueError('Activation and weight nodes are not expected to have the same weight attribute') # pragma: no cover
154
+ if act_node.has_any_configurable_weight():
155
+ raise NotImplementedError('Node with a configurable weight cannot be used as activation for '
156
+ 'VirtualActivationWeightsNode.') # pragma: no cover
157
+ # combine weights from activation and weights
158
+ weights.update(act_node.weights)
159
+
160
+ name = f"{VIRTUAL_ACTIVATION_WEIGHTS_NODE_PREFIX}_{act_node.name}_{weights_node.name}"
163
161
  super().__init__(name,
164
- framework_attr,
165
- input_shape,
166
- output_shape,
167
- weights,
168
- layer_class,
169
- reuse,
170
- reuse_group,
171
- quantization_attr,
172
- has_activation)
173
-
174
- self.name = f"{VIRTUAL_ACTIVATION_WEIGHTS_NODE_PREFIX}_{act_node.name}_{weights_node.name}"
162
+ framework_attr=weights_node.framework_attr,
163
+ input_shape=act_node.input_shape,
164
+ output_shape=act_node.output_shape,
165
+ weights=weights,
166
+ layer_class=weights_node.layer_class,
167
+ reuse=weights_node.reuse,
168
+ reuse_group=weights_node.reuse_group,
169
+ quantization_attr=weights_node.quantization_attr,
170
+ has_activation=False)
175
171
 
176
172
  self.original_activation_node = act_node
177
173
  self.original_weights_node = weights_node
178
174
 
179
175
  v_candidates = []
176
+ weights_candidates_quantization_cfg = weights_node.get_unique_weights_candidates(kernel_attr)
180
177
  for c_a in act_node.candidates_quantization_cfg:
181
- for c_w in weights_node.candidates_quantization_cfg:
178
+ for c_w in weights_candidates_quantization_cfg:
182
179
  composed_candidate = CandidateNodeQuantizationConfig(activation_quantization_cfg=c_a.activation_quantization_cfg,
183
180
  weights_quantization_cfg=c_w.weights_quantization_cfg)
181
+ if act_node.weights:
182
+ # add non-kernel weights cfg from activation node to the composed node's weights cfg
183
+ composed_candidate.weights_quantization_cfg.attributes_config_mapping.update(
184
+ c_a.weights_quantization_cfg.attributes_config_mapping
185
+ )
186
+ composed_candidate.weights_quantization_cfg.pos_attributes_config_mapping.update(
187
+ c_a.weights_quantization_cfg.pos_attributes_config_mapping
188
+ )
184
189
  v_candidates.append(composed_candidate)
185
190
 
186
191
  # sorting the candidates by weights number of bits first and then by activation number of bits (reversed order)
187
- kernel_attr = fw_info.get_kernel_op_attributes(self.type)[0]
188
192
  v_candidates.sort(key=lambda c: (c.weights_quantization_cfg.get_attr_config(kernel_attr).weights_n_bits,
189
193
  c.activation_quantization_cfg.activation_n_bits), reverse=True)
190
194
 
191
195
  self.candidates_quantization_cfg = v_candidates
192
-
193
- def get_bops_count(self, fw_impl: Any, fw_info: FrameworkInfo, candidate_idx: int) -> float:
194
- """
195
- Computes the composed node's (edge) bit-operation count.
196
-
197
- Args:
198
- fw_impl: A FrameworkImplementation object with framework specific methods.
199
- fw_info: A FrameworkInfo object with framework specific information,
200
- candidate_idx: The index of the node's quantization candidate configuration.
201
-
202
- Returns: The BOPS count of the composed node.
203
-
204
- """
205
- kernel_attr = fw_info.get_kernel_op_attributes(self.original_weights_node.type)[0]
206
- node_mac = fw_impl.get_node_mac_operations(self.original_weights_node, fw_info)
207
- candidate = self.candidates_quantization_cfg[candidate_idx]
208
- kernel_attr_cfg = candidate.weights_quantization_cfg.get_attr_config(kernel_attr)
209
- weights_bit = kernel_attr_cfg.weights_n_bits if \
210
- kernel_attr_cfg.enable_weights_quantization else FLOAT_BITWIDTH
211
- activation_bit = candidate.activation_quantization_cfg.activation_n_bits if \
212
- candidate.activation_quantization_cfg.enable_activation_quantization else FLOAT_BITWIDTH
213
- node_bops = weights_bit * activation_bit * node_mac
214
- return node_bops
@@ -19,7 +19,6 @@ import numpy as np
19
19
  from model_compression_toolkit.core import FrameworkInfo
20
20
  from model_compression_toolkit.core.common import Graph, BaseNode
21
21
  from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
22
- from model_compression_toolkit.core.common.graph.virtual_activation_weights_node import VirtualActivationWeightsNode
23
22
  from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import \
24
23
  RUTarget
25
24
  from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization_calculator import \
@@ -28,9 +27,6 @@ from model_compression_toolkit.core.common.quantization.node_quantization_config
28
27
  NodeActivationQuantizationConfig
29
28
 
30
29
 
31
- # TODO take into account Virtual nodes. Are candidates defined with respect to virtual or original nodes?
32
- # Can we use the virtual graph only for bops and the original graph for everything else?
33
-
34
30
  class MixedPrecisionRUHelper:
35
31
  """ Helper class for resource utilization computations for mixed precision optimization. """
36
32
 
@@ -65,7 +61,7 @@ class MixedPrecisionRUHelper:
65
61
  ru[RUTarget.ACTIVATION] = np.array(list(au.values()))
66
62
 
67
63
  if RUTarget.BOPS in ru_targets:
68
- ru[RUTarget.BOPS] = self._bops_utilization(mp_cfg)
64
+ ru[RUTarget.BOPS] = self._bops_utilization(act_qcs=act_qcs, w_qcs=w_qcs)
69
65
 
70
66
  if RUTarget.TOTAL in ru_targets:
71
67
  raise ValueError('Total target should be computed based on weights and activations targets.')
@@ -88,8 +84,8 @@ class MixedPrecisionRUHelper:
88
84
  """
89
85
  mp_nodes = self.graph.get_configurable_sorted_nodes(self.fw_info)
90
86
  node_qcs = {n: n.candidates_quantization_cfg[mp_cfg[i]] for i, n in enumerate(mp_nodes)}
91
- act_qcs = {n: cfg.activation_quantization_cfg for n, cfg in node_qcs.items()}
92
- w_qcs = {n: cfg.weights_quantization_cfg for n, cfg in node_qcs.items()}
87
+ act_qcs = {n.name: cfg.activation_quantization_cfg for n, cfg in node_qcs.items()}
88
+ w_qcs = {n.name: cfg.weights_quantization_cfg for n, cfg in node_qcs.items()}
93
89
  return act_qcs, w_qcs
94
90
 
95
91
  def _weights_utilization(self, w_qcs: Optional[Dict[BaseNode, NodeWeightsQuantizationConfig]]) -> Dict[BaseNode, float]:
@@ -137,51 +133,25 @@ class MixedPrecisionRUHelper:
137
133
  cuts_util = {c: u.bytes for c, u in cuts_util.items()}
138
134
  return cuts_util
139
135
 
140
- def _bops_utilization(self, mp_cfg: List[int]) -> np.ndarray:
136
+ def _bops_utilization(self,
137
+ act_qcs: Optional[Dict[BaseNode, NodeActivationQuantizationConfig]],
138
+ w_qcs: Optional[Dict[BaseNode, NodeWeightsQuantizationConfig]]) -> np.ndarray:
141
139
  """
142
- Computes a resource utilization vector with the respective bit-operations (BOPS) count for each configurable node,
143
- according to the given mixed-precision configuration of a virtual graph with composed nodes.
140
+ Computes a resource utilization vector with the respective bit-operations (BOPS) count
141
+ according to the given mixed-precision configuration.
144
142
 
145
143
  Args:
146
- mp_cfg: A mixed-precision configuration (list of candidates index for each configurable node)
144
+ act_qcs: nodes activation configuration or None.
145
+ w_qcs: nodes quantization configuration to compute, or None.
146
+ Either both are provided, or both are None.
147
147
 
148
148
  Returns:
149
149
  A vector of node's BOPS count.
150
150
  """
151
- # bops is computed for all nodes, so non-configurable memory is already covered by the computation of
152
- # configurable nodes
153
- if not mp_cfg:
151
+ assert [act_qcs, w_qcs].count(None) in [0, 2], 'act_qcs and w_qcs should both be provided or both be None.'
152
+ if act_qcs is None:
154
153
  return np.array([])
155
154
 
156
- # TODO keeping old implementation for now
157
- virtual_bops_nodes = [n for n in self.graph.get_topo_sorted_nodes() if isinstance(n, VirtualActivationWeightsNode)]
158
-
159
- mp_nodes = self.graph.get_configurable_sorted_nodes_names(self.fw_info)
160
-
161
- bops = [n.get_bops_count(self.fw_impl, self.fw_info, candidate_idx=_get_node_cfg_idx(n, mp_cfg, mp_nodes))
162
- for n in virtual_bops_nodes]
163
-
164
- return np.array(bops)
165
-
166
-
167
- def _get_node_cfg_idx(node: BaseNode, mp_cfg: List[int], sorted_configurable_nodes_names: List[str]) -> int:
168
- """
169
- Returns the index of a node's quantization configuration candidate according to the given
170
- mixed-precision configuration. If the node is not configurable, then it must have a single configuration,
171
- therefore, the index 0 is returned.
172
-
173
- Args:
174
- node: A node to get its candidate configuration index.
175
- mp_cfg: A mixed-precision configuration (list of candidates index for each configurable node)
176
- sorted_configurable_nodes_names: A list of configurable nodes names.
177
-
178
- Returns: An index (integer) of a node's quantization configuration candidate.
179
- """
180
-
181
- if node.name in sorted_configurable_nodes_names:
182
- node_idx = sorted_configurable_nodes_names.index(node.name)
183
- return mp_cfg[node_idx]
184
- else: # pragma: no cover
185
- assert len(node.candidates_quantization_cfg) > 0, \
186
- "Any node should have at least one candidate configuration."
187
- return 0
155
+ _, detailed_bops = self.ru_calculator.compute_bops(TargetInclusionCriterion.Any, BitwidthMode.QCustom,
156
+ act_qcs=act_qcs, w_qcs=w_qcs)
157
+ return np.array(list(detailed_bops.values()))
@@ -83,6 +83,7 @@ def search_bit_width(graph_to_search_cfg: Graph,
83
83
  # Set graph for MP search
84
84
  graph = copy.deepcopy(graph_to_search_cfg) # Copy graph before searching
85
85
  if target_resource_utilization.bops_restricted():
86
+ # TODO: we only need the virtual graph is both activations and weights are configurable
86
87
  # Since Bit-operations count target resource utilization is set, we need to reconstruct the graph for the MP search
87
88
  graph = substitute(graph, fw_impl.get_substitutions_virtual_weights_activation_coupling())
88
89
 
@@ -189,11 +189,9 @@ class MixedPrecisionSearchManager:
189
189
 
190
190
  """
191
191
  act_qcs, w_qcs = self.ru_helper.get_quantization_candidates(config)
192
- act_qcs = None if (RUTarget.ACTIVATION not in self.ru_targets_to_compute and RUTarget.TOTAL not in self.ru_targets_to_compute) else act_qcs
193
- w_qcs = None if (RUTarget.WEIGHTS not in self.ru_targets_to_compute and RUTarget.TOTAL not in self.ru_targets_to_compute) else w_qcs
194
192
  ru = self.ru_helper.ru_calculator.compute_resource_utilization(
195
193
  target_criterion=TargetInclusionCriterion.AnyQuantized, bitwidth_mode=BitwidthMode.QCustom, act_qcs=act_qcs,
196
- w_qcs=w_qcs, ru_targets=self.ru_targets_to_compute)
194
+ w_qcs=w_qcs, ru_targets=self.ru_targets_to_compute, allow_unused_qcs=True)
197
195
  return ru
198
196
 
199
197
  def finalize_distance_metric(self, layer_to_metrics_mapping: Dict[int, Dict[int, float]]):