mct-nightly 2.3.0.20250301.607__py3-none-any.whl → 2.3.0.20250303.547__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250301.607
3
+ Version: 2.3.0.20250303.547
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=Azc5OjDMUTHIOfiySrkkU3g_S-Pz3L_Ir73nWN8Q1KU,1557
1
+ model_compression_toolkit/__init__.py,sha256=XUmnCPJRShQlD16RUhAF8kEhlRn3s-VGaR8A6to87o4,1557
2
2
  model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=L3q7tn3Uht0i_7phnlOWMR2Te2zvzrt2HOz9vYEInts,4529
@@ -24,7 +24,7 @@ model_compression_toolkit/core/common/back2framework/__init__.py,sha256=cco4TmeI
24
24
  model_compression_toolkit/core/common/back2framework/base_model_builder.py,sha256=V1oShKzbSkdcTvREn8VnQQBzvm-tTHkWMXqMkYozF2s,2023
25
25
  model_compression_toolkit/core/common/collectors/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
26
26
  model_compression_toolkit/core/common/collectors/base_collector.py,sha256=JoBTX3rRcRnUF3_Azjg848aiJt9drCJ5TsR9RahVI0Y,2591
27
- model_compression_toolkit/core/common/collectors/histogram_collector.py,sha256=UM44md-qYpes9zBdXam9YKxEhBlkumYhuDy3wy6vE6w,6735
27
+ model_compression_toolkit/core/common/collectors/histogram_collector.py,sha256=zra5V06Brpjc1cUNIMVVGqdoqAuro62_hGy2Zm5-XMQ,6754
28
28
  model_compression_toolkit/core/common/collectors/mean_collector.py,sha256=mjr3U_z7vn8rrqpkHnfErUOflToIYl4ozBVzP2awqDQ,3414
29
29
  model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py,sha256=5oKsJEKdVmj4C7fKdHhmrFN5k4G2BaFETpmf_xKNs7s,5207
30
30
  model_compression_toolkit/core/common/collectors/statistics_collector.py,sha256=psijsQZefwjMDH8SU5E18n65HiGtQilPhKr1hhzZX-I,8268
@@ -524,8 +524,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
524
524
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=UVN_S9ULHBEldBpShCOt8-soT8YTQ5oE362y96qF_FA,3950
525
525
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
526
526
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
527
- mct_nightly-2.3.0.20250301.607.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
528
- mct_nightly-2.3.0.20250301.607.dist-info/METADATA,sha256=DrcLEqs5Db87W-jQSA4u0jCni7x_L3qxH7rpQo78SuA,27079
529
- mct_nightly-2.3.0.20250301.607.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
530
- mct_nightly-2.3.0.20250301.607.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
531
- mct_nightly-2.3.0.20250301.607.dist-info/RECORD,,
527
+ mct_nightly-2.3.0.20250303.547.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
528
+ mct_nightly-2.3.0.20250303.547.dist-info/METADATA,sha256=-St847XvmURdE0vGMxsGeW34Al2Hi1Zh8HzcPKn_5vo,27079
529
+ mct_nightly-2.3.0.20250303.547.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
530
+ mct_nightly-2.3.0.20250303.547.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
531
+ mct_nightly-2.3.0.20250303.547.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.3.0.20250301.000607"
30
+ __version__ = "2.3.0.20250303.000547"
@@ -78,7 +78,7 @@ class HistogramCollector(BaseCollector):
78
78
  merged_histogram_counts = None
79
79
  for histogram in self._histogram_per_iteration: # Iterate all collected histograms and merge them
80
80
  if merged_histogram_counts is None: # First histogram to consider
81
- merged_histogram_counts = histogram[0].astype(np.float64) # Convert to float64
81
+ merged_histogram_counts = interpolate_histogram(merged_histogram_bins, histogram[1], histogram[0])
82
82
  else: # Merge rest of histograms into existing final histogram
83
83
  merged_histogram_counts += interpolate_histogram(merged_histogram_bins, histogram[1], histogram[0])
84
84