mct-nightly 2.3.0.20250224.520__tar.gz → 2.3.0.20250225.512__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (537) hide show
  1. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/PKG-INFO +1 -1
  2. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/mct_nightly.egg-info/SOURCES.txt +1 -0
  4. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/__init__.py +1 -1
  5. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/collectors/histogram_collector.py +19 -20
  6. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/collectors/statistics_collector.py +7 -3
  7. mct_nightly-2.3.0.20250225.512/model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py +114 -0
  8. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/framework_implementation.py +9 -4
  9. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/base_node.py +16 -6
  10. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +31 -15
  11. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +1 -1
  12. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +7 -2
  13. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/model_collector.py +115 -17
  14. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +2 -0
  15. mct_nightly-2.3.0.20250225.512/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +155 -0
  16. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/keras_implementation.py +35 -27
  17. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +23 -61
  18. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +34 -18
  19. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/quantization_prep_runner.py +1 -0
  20. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py +2 -2
  21. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +2 -1
  22. mct_nightly-2.3.0.20250224.520/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -78
  23. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/LICENSE.md +0 -0
  24. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/README.md +0 -0
  25. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/mct_nightly.egg-info/dependency_links.txt +0 -0
  26. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/mct_nightly.egg-info/requires.txt +0 -0
  27. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/mct_nightly.egg-info/top_level.txt +0 -0
  28. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/constants.py +0 -0
  29. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/__init__.py +0 -0
  30. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/analyzer.py +0 -0
  31. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/__init__.py +0 -0
  32. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  33. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  34. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  35. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  36. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  37. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  38. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  39. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/framework_info.py +0 -0
  40. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  41. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  42. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  43. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  44. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  45. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  46. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  47. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  48. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  49. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  50. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  51. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  52. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  53. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  54. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  55. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  56. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  57. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  58. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  59. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  60. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  61. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  62. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  63. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  64. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  65. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  66. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  67. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  68. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  69. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  70. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  71. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  72. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  73. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  74. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +0 -0
  75. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  76. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  77. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  78. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  79. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +0 -0
  80. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  81. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  82. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  83. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  84. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  85. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  86. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  87. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/model_validation.py +0 -0
  88. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  89. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  90. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  91. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  92. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  93. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  94. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  95. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  96. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  97. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  98. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  99. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  100. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  101. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  102. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  103. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  104. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  105. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  106. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  107. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  108. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  109. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  110. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  111. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  112. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  113. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  114. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  115. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  116. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  117. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  118. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  119. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  120. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  121. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  122. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  123. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  124. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  125. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  126. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  127. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  128. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  129. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  130. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  131. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  132. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  133. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  134. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  135. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  136. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  137. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  138. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
  139. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  140. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  141. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
  142. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  143. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  144. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  145. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  146. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  147. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  148. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  149. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  150. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  151. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  152. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  153. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  154. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  155. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  156. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  157. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  158. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/user_info.py +0 -0
  159. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  160. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  161. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  162. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  163. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  164. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/__init__.py +0 -0
  165. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  166. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  167. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  168. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  169. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  170. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  171. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  172. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/constants.py +0 -0
  173. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  174. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/data_util.py +0 -0
  175. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  176. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  177. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  178. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  179. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  180. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  181. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  182. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  183. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  184. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  185. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  186. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  187. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  188. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  189. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  190. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  191. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  192. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  193. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  194. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  195. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  196. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  197. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  198. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  199. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  200. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  201. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  202. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  203. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  204. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  205. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  206. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  207. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  208. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  209. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  210. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  211. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  212. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  213. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  214. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  215. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  216. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  217. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  218. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  219. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  220. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  221. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  222. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  223. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  224. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  225. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  226. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
  227. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  228. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  229. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  230. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  231. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  232. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  233. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  234. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  235. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  236. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  237. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  238. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  239. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  240. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  241. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
  242. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  243. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  244. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  245. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  246. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  247. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  248. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  249. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  250. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  251. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  252. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
  253. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  254. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +0 -0
  255. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  256. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  257. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  258. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  259. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  260. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  261. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  262. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  263. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  264. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  265. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  266. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  267. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  268. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  269. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  270. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  271. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  272. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  273. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  274. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  275. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  276. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  277. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  278. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  279. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  280. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  281. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  282. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  283. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  284. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  285. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  286. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  287. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
  288. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  289. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/core/runner.py +0 -0
  290. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/__init__.py +0 -0
  291. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  292. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  293. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  294. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  295. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  296. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  297. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  298. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  299. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  300. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  301. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  302. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  303. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  304. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  305. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  306. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  307. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  308. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  309. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  310. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  311. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  312. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  313. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  314. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  315. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  316. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  317. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  318. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  319. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  320. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  321. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  322. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  323. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  324. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  325. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  326. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  327. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/defaultdict.py +0 -0
  328. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/__init__.py +0 -0
  329. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  330. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  331. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  332. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  333. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  334. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  335. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  336. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  337. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  338. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  339. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  340. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  341. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  342. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  343. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  344. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  345. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  346. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  347. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  348. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  349. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  350. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  351. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  352. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  353. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  354. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  355. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  356. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  357. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  358. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  359. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  360. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/__init__.py +0 -0
  361. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  362. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  363. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  364. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  365. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  366. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  367. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
  368. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
  369. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  370. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  371. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  372. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  373. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  374. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  375. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  376. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  377. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  378. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  379. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  380. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  381. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  382. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  383. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  384. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  385. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  386. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  387. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  388. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  389. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  390. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  391. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  392. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  393. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  394. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  395. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  396. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  397. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  398. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  399. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  400. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  401. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/gptq/runner.py +0 -0
  402. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/logger.py +0 -0
  403. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/metadata.py +0 -0
  404. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/pruning/__init__.py +0 -0
  405. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  406. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  407. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  408. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  409. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/ptq/__init__.py +0 -0
  410. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  411. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  412. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  413. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  414. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/ptq/runner.py +0 -0
  415. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/__init__.py +0 -0
  416. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/common/__init__.py +0 -0
  417. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  418. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  419. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  420. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  421. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
  422. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  423. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  424. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  425. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  426. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  427. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  428. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  429. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  430. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  431. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  432. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  433. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  434. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  435. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  436. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  437. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  438. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  439. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  440. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  441. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  442. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  443. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  444. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -0
  445. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +0 -0
  446. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +0 -0
  447. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/schema/v1.py +0 -0
  448. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py +0 -0
  449. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +0 -0
  450. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py +0 -0
  451. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py +0 -0
  452. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py +0 -0
  453. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +0 -0
  454. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py +0 -0
  455. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py +0 -0
  456. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +0 -0
  457. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  458. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  459. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  460. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  461. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  462. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +0 -0
  463. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  464. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  465. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  466. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +0 -0
  467. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  468. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  469. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  470. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +0 -0
  471. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  472. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  473. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
  474. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  475. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  476. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  477. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  478. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  479. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  480. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  481. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
  482. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  483. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
  484. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
  485. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
  486. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  487. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
  488. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
  489. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
  490. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
  491. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
  492. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  493. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  494. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  495. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  496. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  497. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  498. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  499. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  500. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  501. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  502. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  503. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  504. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  505. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  506. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  507. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  508. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  509. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/verify_packages.py +0 -0
  510. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/__init__.py +0 -0
  511. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  512. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/constants.py +0 -0
  513. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  514. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  515. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  516. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  517. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  518. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  519. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  520. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  521. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  522. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  523. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  524. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  525. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  526. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  527. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  528. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  529. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  530. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  531. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  532. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  533. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  534. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  535. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  536. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/setup.cfg +0 -0
  537. {mct_nightly-2.3.0.20250224.520 → mct_nightly-2.3.0.20250225.512}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250224.520
3
+ Version: 2.3.0.20250225.512
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.3.0.20250224.520
3
+ Version: 2.3.0.20250225.512
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -37,6 +37,7 @@ model_compression_toolkit/core/common/collectors/histogram_collector.py
37
37
  model_compression_toolkit/core/common/collectors/mean_collector.py
38
38
  model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py
39
39
  model_compression_toolkit/core/common/collectors/statistics_collector.py
40
+ model_compression_toolkit/core/common/collectors/weighted_histogram_collector.py
40
41
  model_compression_toolkit/core/common/fusion/__init__.py
41
42
  model_compression_toolkit/core/common/fusion/graph_fuser.py
42
43
  model_compression_toolkit/core/common/fusion/layer_fusing.py
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.3.0.20250224.000520"
30
+ __version__ = "2.3.0.20250225.000512"
@@ -53,38 +53,37 @@ class HistogramCollector(BaseCollector):
53
53
  """
54
54
 
55
55
  super().__init__()
56
- self.__n_bins = n_bins
57
- self.__bins = None
58
- self.__counts = None
59
- self.__histogram_per_iteration = []
56
+ self._n_bins = n_bins
57
+ self._bins = None
58
+ self._counts = None
59
+ self._histogram_per_iteration = []
60
60
 
61
- def __merge_histograms(self):
61
+ def _merge_histograms(self):
62
62
  """
63
63
  After collecting histogram per iteration, we merge these histograms to a single histogram
64
64
  containing all samples from all iterations.
65
65
  The merge is done in a lazy manner (is computed only when actually needed).
66
66
  """
67
- if len(self.__histogram_per_iteration) > 0:
67
+ if len(self._histogram_per_iteration) > 0:
68
68
  # Stack all bins that were gathered during inference
69
- bins_stack = np.vstack([hist[1] for hist in self.__histogram_per_iteration])
69
+ bins_stack = np.vstack([hist[1] for hist in self._histogram_per_iteration])
70
70
 
71
71
  # The combined histogram will be computed between new min/max (which is the min/max of all histograms).
72
72
  # The bin width of the merged histogram is the minimal bin width among all histograms (to lose as less
73
73
  # information as possible during the merge).
74
74
  merged_histogram_min = np.min(bins_stack)
75
75
  merged_histogram_max = np.max(bins_stack)
76
- merged_bin_width = (merged_histogram_max - merged_histogram_min) / self.__n_bins
77
- merged_histogram_bins = np.arange(merged_histogram_min, merged_histogram_max+merged_bin_width, merged_bin_width)
76
+ merged_histogram_bins = np.linspace(merged_histogram_min, merged_histogram_max, self._n_bins + 1)
78
77
 
79
78
  merged_histogram_counts = None
80
- for histogram in self.__histogram_per_iteration: # Iterate all collected histograms and merge them
79
+ for histogram in self._histogram_per_iteration: # Iterate all collected histograms and merge them
81
80
  if merged_histogram_counts is None: # First histogram to consider
82
- merged_histogram_counts = interpolate_histogram(merged_histogram_bins, histogram[1], histogram[0])
81
+ merged_histogram_counts = histogram[0].astype(np.float64) # Convert to float64
83
82
  else: # Merge rest of histograms into existing final histogram
84
83
  merged_histogram_counts += interpolate_histogram(merged_histogram_bins, histogram[1], histogram[0])
85
84
 
86
- self.__counts = merged_histogram_counts
87
- self.__bins = merged_histogram_bins
85
+ self._counts = merged_histogram_counts
86
+ self._bins = merged_histogram_bins
88
87
 
89
88
  def scale(self, scale_factor: np.ndarray):
90
89
  """
@@ -102,7 +101,7 @@ class HistogramCollector(BaseCollector):
102
101
  self.update_legal_status(is_illegal=True)
103
102
  else:
104
103
  bins, _ = self.get_histogram()
105
- self.__bins = bins * scale_factor
104
+ self._bins = bins * scale_factor
106
105
 
107
106
  def shift(self, shift_value: np.ndarray):
108
107
  """
@@ -120,7 +119,7 @@ class HistogramCollector(BaseCollector):
120
119
  self.update_legal_status(is_illegal=True)
121
120
  else:
122
121
  bins, _ = self.get_histogram()
123
- self.__bins = bins + shift_value
122
+ self._bins = bins + shift_value
124
123
 
125
124
  def get_histogram(self) -> Tuple[np.ndarray, np.ndarray]:
126
125
  """
@@ -130,9 +129,9 @@ class HistogramCollector(BaseCollector):
130
129
  self.validate_data_correctness()
131
130
  # If collected histograms (one per inference iteration) were not merged before, merge them and return the
132
131
  # merged histogram.
133
- if self.__bins is None or self.__counts is None:
134
- self.__merge_histograms()
135
- return self.__bins, self.__counts
132
+ if self._bins is None or self._counts is None:
133
+ self._merge_histograms()
134
+ return self._bins, self._counts
136
135
 
137
136
  def max(self):
138
137
  """
@@ -156,5 +155,5 @@ class HistogramCollector(BaseCollector):
156
155
  Args:
157
156
  x: Tensor going through the collector to update the histogram according to.
158
157
  """
159
- count, bins = np.histogram(x, bins=self.__n_bins)
160
- self.__histogram_per_iteration.append((count, bins))
158
+ count, bins = np.histogram(x, bins=self._n_bins)
159
+ self._histogram_per_iteration.append((count, bins))
@@ -17,13 +17,12 @@
17
17
  import math
18
18
  from copy import deepcopy
19
19
  from typing import Any, Tuple
20
-
21
20
  import numpy as np
22
21
 
23
- from model_compression_toolkit.core.common.framework_info import FrameworkInfo, ChannelAxis
24
22
  from model_compression_toolkit.core.common.collectors.histogram_collector import HistogramCollector
25
23
  from model_compression_toolkit.core.common.collectors.mean_collector import MeanCollector
26
24
  from model_compression_toolkit.core.common.collectors.min_max_per_channel_collector import MinMaxPerChannelCollector
25
+ from model_compression_toolkit.core.common.collectors.weighted_histogram_collector import WeightedHistogramCollector
27
26
 
28
27
 
29
28
  class BaseStatsCollector(object):
@@ -71,21 +70,24 @@ class StatsCollector(BaseStatsCollector):
71
70
 
72
71
  super().__init__()
73
72
  self.hc = HistogramCollector()
73
+ self.weighted_hc = WeightedHistogramCollector()
74
74
  self.mc = MeanCollector(axis=out_channel_axis)
75
75
  self.mpcc = MinMaxPerChannelCollector(init_min_value=init_min_value,
76
76
  init_max_value=init_max_value,
77
77
  axis=out_channel_axis)
78
78
 
79
- def update_statistics(self, x: Any):
79
+ def update_statistics(self, x: Any, weights: Any=None):
80
80
  """
81
81
  Update statistics in all collectors with a new tensor to consider.
82
82
 
83
83
  Args:
84
84
  x: Tensor to consider when updating statistics.
85
+ weights: Weights tensor to consider when updating statistics.
85
86
  """
86
87
 
87
88
  x = standardize_tensor(x)
88
89
  self.hc.update(x)
90
+ self.weighted_hc.update(x, weights)
89
91
  self.mc.update(x)
90
92
  self.mpcc.update(x)
91
93
 
@@ -228,6 +230,7 @@ def shift_statistics(collector: BaseStatsCollector,
228
230
  shifted_collector.mc.shift(shift_value)
229
231
  if shifted_collector.require_collection():
230
232
  shifted_collector.hc.shift(shift_value)
233
+ shifted_collector.weighted_hc.shift(shift_value)
231
234
 
232
235
  return shifted_collector
233
236
 
@@ -253,5 +256,6 @@ def scale_statistics(collector: BaseStatsCollector,
253
256
  scaled_collector.mc.scale(scale_value)
254
257
  if scaled_collector.require_collection():
255
258
  scaled_collector.hc.scale(scale_value)
259
+ scaled_collector.weighted_hc.scale(scale_value)
256
260
 
257
261
  return scaled_collector
@@ -0,0 +1,114 @@
1
+ # Copyright 2025 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import numpy as np
17
+ from model_compression_toolkit.core.common.collectors.histogram_collector import HistogramCollector
18
+ from model_compression_toolkit.logger import Logger
19
+
20
+
21
+ def check_broadcastable(x: np.ndarray, weights: np.ndarray) -> None:
22
+ """
23
+ Checks if tensor 'weights' can be broadcasted to the shape of tensor 'x'.
24
+
25
+ Args:
26
+ x (np.ndarray): The target tensor.
27
+ weights (np.ndarray): The tensor to check broadcasting compatibility.
28
+
29
+ Raises:
30
+ Logger.critical: If 'weights' cannot be broadcasted to 'x'.
31
+ """
32
+ # Get shapes
33
+ shape_x = x.shape
34
+ shape_w = weights.shape
35
+
36
+ # Ensure weights has less or equal dimensions than x
37
+ if len(shape_w) > len(shape_x):
38
+ Logger.critical(f"Tensor weights with shape {shape_w} has more dimensions than tensor a with shape {shape_x}.")
39
+
40
+ # Align shapes by padding weights' shape with leading ones
41
+ shape_w = (1,) * (len(shape_x) - len(shape_w)) + shape_w
42
+
43
+ # Check if each dimension is either equal or 1
44
+ for i, (sx, sw) in enumerate(zip(shape_x, shape_w)):
45
+ if not (sx == sw or sw == 1):
46
+ Logger.critical(f"Tensor weights with shape {shape_w} cannot be broadcasted to tensor a with shape {shape_x}. "
47
+ f"Dimension mismatch at index {i}: {sw} cannot be broadcasted to {sx}.")
48
+
49
+
50
+ class WeightedHistogramCollector(HistogramCollector):
51
+ """
52
+ Collector for holding weighted histograms of tensors going through it.
53
+ Extends the functionality of the base HistogramCollector by incorporating weights
54
+ into the histogram calculation, allowing for weighted distributions.
55
+ """
56
+ def __init__(self, n_bins: int = 2048):
57
+ """
58
+ Args:
59
+ n_bins: Number of bins in the histogram.
60
+ """
61
+
62
+ super().__init__(n_bins)
63
+
64
+ def update(self, x: np.ndarray, weights: np.ndarray = None):
65
+ """
66
+ Update the current state of the histogram bins and counts based on a new
67
+ tensor that passes through the collector, taking weights into account.
68
+
69
+ Args:
70
+ x: Tensor that passes through the collector to update the histogram.
71
+ weights: Array of weights corresponding to the elements of the tensor `x`.
72
+ If not provided, uniform weights of 1 will be applied to all elements.
73
+
74
+ Details:
75
+ - The `weights` parameter allows each element of `x` to contribute a
76
+ weighted amount to the histogram bins, rather than contributing a simple count.
77
+ - This is particularly useful when the data being processed has an associated
78
+ importance, frequency, or probability value that should influence the histogram.
79
+ For example:
80
+ - Hessian values can serve as weights for each activation in `x`.
81
+ - Normalization of the histogram to reflect relative contributions.
82
+ - The method ensures that `x` and `weights` have matching shapes and logs
83
+ an error if this condition is not met.
84
+ """
85
+ if weights is None or np.all(weights == 0):
86
+ weights = np.ones_like(x) # Assign uniform weights if none are provided.
87
+
88
+ # Checks if tensor 'weights' can be broadcasted to the shape of tensor 'x'.
89
+ check_broadcastable(x, weights)
90
+
91
+ # Get x's shape
92
+ x_shape = x.shape
93
+
94
+ # Get weight's shape
95
+ weights_shape = weights.shape
96
+
97
+ # Determine the correct shape for weights
98
+ weights_new_shape = list(weights_shape) # Convert to list for modification
99
+
100
+ # Ensure weights has the same number of dimensions as x
101
+ while len(weights_new_shape) < len(x_shape):
102
+ weights_new_shape.append(1) # Add singleton dimensions
103
+
104
+ # Reshape weights to the correct shape
105
+ weights = weights.reshape(weights_new_shape)
106
+
107
+ # Broadcast weights to match x's shape
108
+ weights = np.broadcast_to(weights, x_shape)
109
+
110
+ # Compute the weighted histogram.
111
+ count, bins = np.histogram(x, bins=self._n_bins, weights=weights)
112
+
113
+ # Store the weighted histogram (counts and bins) for this iteration.
114
+ self._histogram_per_iteration.append((count, bins))
@@ -137,13 +137,18 @@ class FrameworkImplementation(ABC):
137
137
  @abstractmethod
138
138
  def run_model_inference(self,
139
139
  model: Any,
140
- input_list: List[Any]) -> Tuple[Any]:
140
+ input_list: List[Any],
141
+ requires_grad: bool = False) -> Tuple[Any]:
141
142
  """
142
- Run the model logic on the given the inputs.
143
+ Executes the given model on the provided input data.
144
+
145
+ This method must be implemented by subclasses to provide framework-specific logic
146
+ for running inference (e.g., PyTorch, TensorFlow/Keras).
143
147
 
144
148
  Args:
145
- model: Framework's model.
146
- input_list: List of inputs for the model.
149
+ model: The framework-specific model instance.
150
+ input_list: A list of inputs for the model.
151
+ requires_grad: Whether to enable gradient computation. Defaults to `False`.
147
152
 
148
153
  Returns:
149
154
  The frameworks model's output.
@@ -440,18 +440,28 @@ class BaseNode:
440
440
 
441
441
  return any([self.is_weights_quantization_enabled(attr) for attr in self.get_node_weights_attributes()])
442
442
 
443
- def get_total_output_params(self) -> float:
443
+ # TODO it makes more sense to standardize the input/output shapes at node creation.
444
+ def get_output_shapes_list(self) -> List[tuple]:
444
445
  """
445
- Calculates the output size of the node.
446
+ Return output shape in a standardized form as a list of tuples.
446
447
 
447
- Returns: Output size.
448
+ Returns:
449
+ A list of output shape tuples.
448
450
  """
449
451
  # shape can be tuple or list, and multiple shapes can be packed in list or tuple
450
452
  if self.output_shape and isinstance(self.output_shape[0], (tuple, list)):
451
- output_shapes = self.output_shape
453
+ output_shapes = [tuple(s) for s in self.output_shape]
452
454
  else:
453
- output_shapes = [self.output_shape]
455
+ output_shapes = [tuple(self.output_shape)]
456
+ return output_shapes
457
+
458
+ def get_total_output_params(self) -> float:
459
+ """
460
+ Calculates the output size of the node.
454
461
 
462
+ Returns: Output size.
463
+ """
464
+ output_shapes = self.get_output_shapes_list()
455
465
  # remove batch size (first element) from output shape
456
466
  output_shapes = [s[1:] for s in output_shapes]
457
467
  # for scalar shape (None,) prod returns 1
@@ -550,7 +560,7 @@ class BaseNode:
550
560
  """
551
561
 
552
562
  return len(self.candidates_quantization_cfg) > 0 and \
553
- any([c.activation_quantization_cfg.enable_activation_quantization for c in self.candidates_quantization_cfg])
563
+ any([c.activation_quantization_cfg.enable_activation_quantization for c in self.candidates_quantization_cfg])
554
564
 
555
565
  def get_all_weights_attr_candidates(self, attr: str) -> List[WeightsAttrQuantizationConfig]:
556
566
  """
@@ -13,13 +13,14 @@
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
15
  from dataclasses import dataclass
16
- from typing import List, Dict, Tuple, TYPE_CHECKING
16
+ from typing import List, Dict, Tuple, TYPE_CHECKING, Any, Optional
17
17
 
18
18
  import numpy as np
19
19
 
20
20
  from model_compression_toolkit.constants import HESSIAN_NUM_ITERATIONS
21
21
  from model_compression_toolkit.core.common.hessian.hessian_scores_request import HessianScoresRequest, HessianMode, \
22
22
  HessianScoresGranularity
23
+ from model_compression_toolkit.logger import Logger
23
24
 
24
25
  if TYPE_CHECKING: # pragma: no cover
25
26
  from model_compression_toolkit.core.common import BaseNode
@@ -139,24 +140,31 @@ class HessianInfoService:
139
140
  self.cache = HessianCache()
140
141
 
141
142
  def fetch_hessian(self, request: HessianScoresRequest,
142
- force_compute: bool = False) -> Dict[LayerName, Tensor]:
143
+ activation_tensors: Optional[Tuple[Any]] = None,
144
+ force_compute: bool = False,
145
+ ) -> Dict[LayerName, Tensor]:
143
146
  """
144
- Fetch hessians per request.
145
- If 'force_compute' is False, will first try to retrieve previously cached hessians. If no or not enough
146
- hessians are found in the cache, will compute the remaining number of hessians to fulfill the request.
147
- If 'force_compute' is True, will compute the hessians (use when you need hessians for specific inputs).
147
+ Fetches Hessian approximations based on the given request.
148
+
149
+ This method retrieves Hessians from the cache when available, unless `force_compute` is set to `True`,
150
+ in which case the Hessians are recomputed (use when you need hessians for specific inputs).
151
+ If `compute_from_tensors` in the request is `True`, the Hessians are computed directly from
152
+ the provided activation tensors.
148
153
 
149
154
  Args:
150
155
  request: request per which to fetch the hessians.
156
+ activation_tensors (Optional[Tuple[Any]): List of activation tensors used for Hessian computation
157
+ when `compute_from_tensors` in the request is `True`. Defaults to None.
151
158
  force_compute: if True, will compute the hessians.
152
159
  If False, will look for cached hessians first.
153
160
 
161
+
154
162
  Returns:
155
163
  A dictionary of layers' hessian tensors of shape (samples, ...). The exact shape depends on the
156
164
  requested granularity.
157
165
  """
158
- if request.n_samples is None and not force_compute:
159
- raise ValueError('Number of samples can be None only when force_compute is True.')
166
+ if request.n_samples is None and not (force_compute or request.compute_from_tensors):
167
+ Logger.critical('Number of samples can be None only when force_compute is True.')
160
168
 
161
169
  orig_request = request
162
170
  # replace reused nodes with primary nodes
@@ -165,13 +173,21 @@ class HessianInfoService:
165
173
  target_nodes = [self._get_primary_node(n) for n in request.target_nodes]
166
174
  request = request.clone(target_nodes=target_nodes)
167
175
 
168
- if force_compute:
169
- res = self._compute_hessians(request, self.num_iterations_for_approximation, count_by_cache=False)
176
+ if request.compute_from_tensors:
177
+ if activation_tensors is None:
178
+ Logger.critical(f"The 'compute_from_tensors' option is enabled, but no 'activation_tensors' were provided.")
179
+ # This mode is primarily used for Hessian-weighted histograms in statistical collection.
180
+ # To ensure efficiency, we approximate the Hessian using a single iteration.
181
+ # This provides a sufficiently accurate approximation for this feature.
182
+ res = self._compute_hessian_for_batch(request, activation_tensors, n_iterations=1)
170
183
  else:
171
- res = self._fetch_hessians_with_compute(request, self.num_iterations_for_approximation)
184
+ if force_compute:
185
+ res = self._compute_hessians(request, self.num_iterations_for_approximation, count_by_cache=False)
186
+ else:
187
+ res = self._fetch_hessians_with_compute(request, self.num_iterations_for_approximation)
172
188
 
173
- # restore nodes from the original request
174
- res = {n_orig.name: res[n.name] for n_orig, n in zip(orig_request.target_nodes, request.target_nodes)}
189
+ # restore nodes from the original request
190
+ res = {n_orig.name: res[n.name] for n_orig, n in zip(orig_request.target_nodes, request.target_nodes)}
175
191
  return res
176
192
 
177
193
  def clear_cache(self):
@@ -194,7 +210,7 @@ class HessianInfoService:
194
210
  return res
195
211
 
196
212
  if request.data_loader is None:
197
- raise ValueError(f'Not enough hessians are cached to fulfill the request, but data loader was not passed '
213
+ Logger.critical(f'Not enough hessians are cached to fulfill the request, but data loader was not passed '
198
214
  f'for additional computation. Requested {request.n_samples}, '
199
215
  f'available {min(missing.values())}.')
200
216
 
@@ -249,7 +265,7 @@ class HessianInfoService:
249
265
 
250
266
  if request.n_samples:
251
267
  if n_samples < request.n_samples:
252
- raise ValueError(f'Could not compute the requested number of Hessians ({request.n_samples}), '
268
+ Logger.critical(f'Could not compute the requested number of Hessians ({request.n_samples}), '
253
269
  f'not enough samples in the provided representative dataset.')
254
270
 
255
271
  if n_samples > request.n_samples:
@@ -56,7 +56,7 @@ class HessianScoresCalculator(ABC):
56
56
  self.num_iterations_for_approximation = num_iterations_for_approximation
57
57
 
58
58
  # Validate representative dataset has same inputs as graph
59
- if len(self.input_images) != len(graph.get_inputs()): # pragma: no cover
59
+ if not hessian_scores_request.compute_from_tensors and len(self.input_images) != len(graph.get_inputs()): # pragma: no cover
60
60
  Logger.critical(f"The graph requires {len(graph.get_inputs())} inputs, but the provided representative dataset contains {len(self.input_images)} inputs.")
61
61
 
62
62
  self.fw_impl = fw_impl
@@ -17,6 +17,8 @@ import dataclasses
17
17
 
18
18
  from enum import Enum
19
19
 
20
+ from model_compression_toolkit.logger import Logger
21
+
20
22
  if TYPE_CHECKING: # pragma: no cover
21
23
  from model_compression_toolkit.core.common import BaseNode
22
24
 
@@ -60,16 +62,19 @@ class HessianScoresRequest:
60
62
  the computation. Can be None if all hessians for the request are expected to be pre-computed previously.
61
63
  n_samples: The number of samples to fetch hessian estimations for. If None, fetch hessians for a full pass
62
64
  of the data loader.
65
+ compute_from_tensors: If `True`, Hessians are computed directly from given tensors instead of using the data loader.
66
+
63
67
  """
64
68
  mode: HessianMode
65
69
  granularity: HessianScoresGranularity
66
70
  target_nodes: Sequence['BaseNode']
67
71
  data_loader: Optional[Iterable]
68
72
  n_samples: Optional[int]
73
+ compute_from_tensors: bool = False
69
74
 
70
75
  def __post_init__(self):
71
- if self.data_loader is None and self.n_samples is None:
72
- raise ValueError('Data loader and the number of samples cannot both be None.')
76
+ if self.data_loader is None and self.n_samples is None and not self.compute_from_tensors:
77
+ Logger.critical('Data loader and the number of samples cannot both be None.')
73
78
 
74
79
  def clone(self, **kwargs):
75
80
  """ Create a clone with optional overrides """