mct-nightly 2.2.0.20250116.522__tar.gz → 2.2.0.20250117.527__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/PKG-INFO +1 -1
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/__init__.py +1 -1
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +12 -2
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +2 -2
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +17 -13
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +5 -1
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +2 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +2 -2
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +5 -3
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +5 -3
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantization_facade.py +5 -2
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +4 -2
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/pruning/keras/pruning_facade.py +6 -3
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +6 -3
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/ptq/keras/quantization_facade.py +3 -1
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +5 -3
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantization_facade.py +5 -4
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/quantization_facade.py +7 -4
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +3 -3
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/LICENSE.md +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/README.md +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/mct_nightly.egg-info/requires.txt +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/constants.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/data_util.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/core/runner.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/defaultdict.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/logger.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/metadata.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/schema/v1.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/verify_packages.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/setup.cfg +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/setup.py +0 -0
- {mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/tests/test_suite.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.2.0.
|
3
|
+
Version: 2.2.0.20250117.527
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.2.0.20250116.522 → mct_nightly-2.2.0.20250117.527}/mct_nightly.egg-info/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.2.0.
|
3
|
+
Version: 2.2.0.20250117.527
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.
|
30
|
+
__version__ = "2.2.0.20250117.000527"
|
@@ -13,9 +13,9 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
from collections import namedtuple
|
16
|
-
|
17
16
|
from typing import Tuple, List
|
18
17
|
|
18
|
+
from model_compression_toolkit.logger import Logger
|
19
19
|
from model_compression_toolkit.constants import OPERATORS_SCHEDULING, MAX_CUT, CUTS, FUSED_NODES_MAPPING
|
20
20
|
from model_compression_toolkit.core.common import BaseNode
|
21
21
|
from model_compression_toolkit.core.common.graph.memory_graph.cut import Cut
|
@@ -49,7 +49,17 @@ def compute_graph_max_cut(memory_graph: MemoryGraph,
|
|
49
49
|
it = 0
|
50
50
|
while it < n_iter:
|
51
51
|
estimate = (u_bound + l_bound) / 2
|
52
|
-
|
52
|
+
# Add a timeout of 5 minutes to the solver from the 2nd iteration.
|
53
|
+
try:
|
54
|
+
schedule, max_cut_size, cuts = max_cut_astar.solve(estimate=estimate, iter_limit=astar_n_iter,
|
55
|
+
time_limit=None if it == 0 else 300)
|
56
|
+
except TimeoutError:
|
57
|
+
if last_result[0] is None:
|
58
|
+
Logger.critical(f"Max-cut solver stopped on timeout in iteration {it} before finding a solution.") # pragma: no cover
|
59
|
+
else:
|
60
|
+
Logger.warning(f"Max-cut solver stopped on timeout in iteration {it}.")
|
61
|
+
return last_result
|
62
|
+
|
53
63
|
if schedule is None:
|
54
64
|
l_bound = estimate
|
55
65
|
else:
|
@@ -67,7 +67,7 @@ class Cut:
|
|
67
67
|
return False # pragma: no cover
|
68
68
|
|
69
69
|
def __hash__(self):
|
70
|
-
return
|
70
|
+
return id(self)
|
71
71
|
|
72
72
|
def __repr__(self):
|
73
|
-
return f"<Cut: Nodes={[e.node_name for e in self.mem_elements.elements]}, size={self.memory_size()}>" # pragma: no cover
|
73
|
+
return f"<Cut: Nodes={[e.node_name for e in self.mem_elements.elements]}, size={self.memory_size()}>" # pragma: no cover
|
@@ -13,7 +13,8 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
import copy
|
16
|
-
from typing import List, Tuple, Dict
|
16
|
+
from typing import List, Tuple, Dict, Set
|
17
|
+
from time import time
|
17
18
|
|
18
19
|
from model_compression_toolkit.core.common import BaseNode
|
19
20
|
from model_compression_toolkit.constants import DUMMY_TENSOR, DUMMY_NODE
|
@@ -122,7 +123,7 @@ class MaxCutAstar:
|
|
122
123
|
self.target_cut = Cut([], set(), MemoryElements(elements={target_dummy_b, target_dummy_b2},
|
123
124
|
total_size=0))
|
124
125
|
|
125
|
-
def solve(self, estimate: float, iter_limit: int = 500) -> Tuple[List[BaseNode], float, List[Cut]]:
|
126
|
+
def solve(self, estimate: float, iter_limit: int = 500, time_limit: int = None) -> Tuple[List[BaseNode], float, List[Cut]]:
|
126
127
|
"""
|
127
128
|
The AStar solver function. This method runs an AStar-like search on the memory graph,
|
128
129
|
using the given estimate as a heuristic gap for solutions to consider.
|
@@ -131,6 +132,7 @@ class MaxCutAstar:
|
|
131
132
|
estimate: Cut size estimation to consider larger size of nodes in each
|
132
133
|
expansion step, in order to fasten the algorithm divergence towards a solution.
|
133
134
|
iter_limit: An upper limit for the number of expansion steps that the algorithm preforms.
|
135
|
+
time_limit: Optional time limit to the solver. Defaults to None which means no limit.
|
134
136
|
|
135
137
|
Returns: A solution (if found within the steps limit) which contains:
|
136
138
|
- A schedule for computation of the model (List of nodes).
|
@@ -139,14 +141,17 @@ class MaxCutAstar:
|
|
139
141
|
|
140
142
|
"""
|
141
143
|
|
142
|
-
open_list =
|
143
|
-
closed_list =
|
144
|
+
open_list = {self.src_cut}
|
145
|
+
closed_list = set()
|
144
146
|
costs = {self.src_cut: self.src_cut.memory_size()}
|
145
147
|
routes = {self.src_cut: [self.src_cut]}
|
146
148
|
|
147
149
|
expansion_count = 0
|
148
150
|
|
151
|
+
t1 = time()
|
149
152
|
while expansion_count < iter_limit and len(open_list) > 0:
|
153
|
+
if time_limit is not None and time() - t1 > time_limit:
|
154
|
+
raise TimeoutError
|
150
155
|
# Choose next node to expand
|
151
156
|
next_cut = self._get_cut_to_expand(open_list, costs, routes, estimate)
|
152
157
|
|
@@ -159,22 +164,21 @@ class MaxCutAstar:
|
|
159
164
|
|
160
165
|
if self.is_pivot(next_cut):
|
161
166
|
# Can clear all search history
|
162
|
-
open_list
|
163
|
-
closed_list
|
167
|
+
open_list.clear()
|
168
|
+
closed_list.clear()
|
164
169
|
routes = {}
|
165
170
|
else:
|
166
171
|
# Can remove only next_cut and put it in closed_list
|
167
172
|
open_list.remove(next_cut)
|
168
173
|
del routes[next_cut]
|
169
|
-
closed_list.
|
174
|
+
closed_list.add(next_cut)
|
170
175
|
|
171
176
|
# Expand the chosen cut
|
172
177
|
expanded_cuts = self.expand(next_cut)
|
173
178
|
expansion_count += 1
|
174
179
|
|
175
180
|
# Only consider nodes that where not already visited
|
176
|
-
|
177
|
-
for c in expanded_cuts:
|
181
|
+
for c in filter(lambda _c: _c not in closed_list, expanded_cuts):
|
178
182
|
cost = self.accumulate(cut_cost, c.memory_size())
|
179
183
|
if c not in open_list:
|
180
184
|
self._update_expanded_node(c, cost, cut_route, open_list, costs, routes)
|
@@ -192,7 +196,7 @@ class MaxCutAstar:
|
|
192
196
|
return None, 0, None # pragma: no cover
|
193
197
|
|
194
198
|
@staticmethod
|
195
|
-
def _update_expanded_node(cut: Cut, cost: float, route: List[Cut], open_list:
|
199
|
+
def _update_expanded_node(cut: Cut, cost: float, route: List[Cut], open_list: Set[Cut],
|
196
200
|
costs: Dict[Cut, float], routes: Dict[Cut, List[Cut]]):
|
197
201
|
"""
|
198
202
|
An auxiliary method for updating search data structures according to an expanded node.
|
@@ -201,16 +205,16 @@ class MaxCutAstar:
|
|
201
205
|
cut: A cut to expand the search to.
|
202
206
|
cost: The cost of the cut.
|
203
207
|
route: The rout to the cut.
|
204
|
-
open_list: The search open
|
208
|
+
open_list: The search open set.
|
205
209
|
costs: The search utility mapping between cuts and their cost.
|
206
210
|
routes: The search utility mapping between cuts and their routes.
|
207
211
|
|
208
212
|
"""
|
209
|
-
open_list.
|
213
|
+
open_list.add(cut)
|
210
214
|
costs.update({cut: cost})
|
211
215
|
routes.update({cut: [cut] + route})
|
212
216
|
|
213
|
-
def _get_cut_to_expand(self, open_list:
|
217
|
+
def _get_cut_to_expand(self, open_list: Set[Cut], costs: Dict[Cut, float], routes: Dict[Cut, List[Cut]],
|
214
218
|
estimate: float) -> Cut:
|
215
219
|
"""
|
216
220
|
An auxiliary method for finding a cut for expanding the search out of a set of potential cuts for expansion.
|
@@ -14,6 +14,7 @@
|
|
14
14
|
# ==============================================================================
|
15
15
|
from typing import List
|
16
16
|
from operator import getitem
|
17
|
+
from functools import cache
|
17
18
|
|
18
19
|
from model_compression_toolkit.core.common import Graph, BaseNode
|
19
20
|
from model_compression_toolkit.core.common.graph.edge import EDGE_SOURCE_INDEX
|
@@ -82,7 +83,6 @@ class MemoryGraph(DirectedBipartiteGraph):
|
|
82
83
|
inputs_tensors_memory = [sum([t.total_size for t in self.operation_node_children(n)])
|
83
84
|
for n in nodes if n in model_graph.get_inputs()]
|
84
85
|
|
85
|
-
# TODO maxcut: why both inputs and outputs of each nodes, while the A* solves for node outputs only???
|
86
86
|
nodes_total_memory = [sum([t.total_size for t in self.operation_node_children(n)] +
|
87
87
|
[t.total_size for t in self.operation_node_parents(n)])
|
88
88
|
for n in nodes if n not in model_graph.get_inputs()]
|
@@ -117,6 +117,7 @@ class MemoryGraph(DirectedBipartiteGraph):
|
|
117
117
|
"""
|
118
118
|
self.sinks_b = [n for n in self.b_nodes if len(list(self.successors(n))) == 0]
|
119
119
|
|
120
|
+
@cache
|
120
121
|
def activation_tensor_children(self, activation_tensor: ActivationMemoryTensor) -> List[BaseNode]:
|
121
122
|
"""
|
122
123
|
Returns the children nodes of a side B node (activation tensor) in the bipartite graph.
|
@@ -129,6 +130,7 @@ class MemoryGraph(DirectedBipartiteGraph):
|
|
129
130
|
"""
|
130
131
|
return [oe[1] for oe in self.out_edges(activation_tensor)]
|
131
132
|
|
133
|
+
@cache
|
132
134
|
def activation_tensor_parents(self, activation_tensor: ActivationMemoryTensor) -> List[BaseNode]:
|
133
135
|
"""
|
134
136
|
Returns the parents nodes of a side B node (activation tensor) in the bipartite graph.
|
@@ -141,6 +143,7 @@ class MemoryGraph(DirectedBipartiteGraph):
|
|
141
143
|
"""
|
142
144
|
return [ie[0] for ie in self.in_edges(activation_tensor)]
|
143
145
|
|
146
|
+
@cache
|
144
147
|
def operation_node_children(self, op_node: BaseNode) -> List[ActivationMemoryTensor]:
|
145
148
|
"""
|
146
149
|
Returns the children nodes of a side A node (operation) in the bipartite graph.
|
@@ -153,6 +156,7 @@ class MemoryGraph(DirectedBipartiteGraph):
|
|
153
156
|
"""
|
154
157
|
return [oe[1] for oe in self.out_edges(op_node)]
|
155
158
|
|
159
|
+
@cache
|
156
160
|
def operation_node_parents(self, op_node: BaseNode) -> List[ActivationMemoryTensor]:
|
157
161
|
"""
|
158
162
|
Returns the parents nodes of a side A node (operation) in the bipartite graph.
|
@@ -17,6 +17,7 @@ from copy import deepcopy
|
|
17
17
|
from enum import Enum, auto
|
18
18
|
from typing import Dict, NamedTuple, Optional, Tuple, List, Iterable, Union, Literal, Sequence, Set
|
19
19
|
|
20
|
+
from model_compression_toolkit.logger import Logger
|
20
21
|
from model_compression_toolkit.constants import FLOAT_BITWIDTH
|
21
22
|
from model_compression_toolkit.core import FrameworkInfo
|
22
23
|
from model_compression_toolkit.core.common import Graph, BaseNode
|
@@ -169,6 +170,7 @@ class ResourceUtilizationCalculator:
|
|
169
170
|
w_total, *_ = self.compute_weights_utilization(target_criterion, bitwidth_mode, w_qcs)
|
170
171
|
|
171
172
|
if {RUTarget.ACTIVATION, RUTarget.TOTAL}.intersection(ru_targets):
|
173
|
+
Logger.warning("Using an experimental feature max-cut for activation memory utilization estimation.")
|
172
174
|
a_total = self.compute_activations_utilization(target_criterion, bitwidth_mode, act_qcs)
|
173
175
|
|
174
176
|
ru = ResourceUtilization()
|
@@ -16,7 +16,7 @@
|
|
16
16
|
import numpy as np
|
17
17
|
from pulp import *
|
18
18
|
from tqdm import tqdm
|
19
|
-
from typing import Dict, Tuple,
|
19
|
+
from typing import Dict, Tuple, Any, Optional
|
20
20
|
|
21
21
|
from model_compression_toolkit.logger import Logger
|
22
22
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import ResourceUtilization, RUTarget
|
@@ -182,7 +182,7 @@ def _add_ru_constraints(search_manager: MixedPrecisionSearchManager,
|
|
182
182
|
target_resource_utilization: ResourceUtilization,
|
183
183
|
indicators_matrix: np.ndarray,
|
184
184
|
lp_problem: LpProblem,
|
185
|
-
non_conf_ru_dict:
|
185
|
+
non_conf_ru_dict: Dict[RUTarget, np.ndarray]):
|
186
186
|
"""
|
187
187
|
Adding targets constraints for the Lp problem for the given target resource utilization.
|
188
188
|
The update to the Lp problem object is done inplace.
|
@@ -13,13 +13,14 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from typing import Callable
|
16
|
+
from typing import Callable, Union
|
17
17
|
from model_compression_toolkit.core import MixedPrecisionQuantizationConfig, CoreConfig
|
18
18
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import ResourceUtilization
|
19
19
|
from model_compression_toolkit.logger import Logger
|
20
20
|
from model_compression_toolkit.constants import TENSORFLOW
|
21
21
|
from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformCapabilities
|
22
22
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization_data import compute_resource_utilization_data
|
23
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_io_handler import load_target_platform_capabilities
|
23
24
|
from model_compression_toolkit.verify_packages import FOUND_TF
|
24
25
|
|
25
26
|
if FOUND_TF:
|
@@ -38,7 +39,7 @@ if FOUND_TF:
|
|
38
39
|
representative_data_gen: Callable,
|
39
40
|
core_config: CoreConfig = CoreConfig(
|
40
41
|
mixed_precision_config=MixedPrecisionQuantizationConfig()),
|
41
|
-
target_platform_capabilities: TargetPlatformCapabilities = KERAS_DEFAULT_TPC
|
42
|
+
target_platform_capabilities: Union[TargetPlatformCapabilities, str] = KERAS_DEFAULT_TPC
|
42
43
|
) -> ResourceUtilization:
|
43
44
|
"""
|
44
45
|
Computes resource utilization data that can be used to calculate the desired target resource utilization
|
@@ -50,7 +51,7 @@ if FOUND_TF:
|
|
50
51
|
in_model (Model): Keras model to quantize.
|
51
52
|
representative_data_gen (Callable): Dataset used for calibration.
|
52
53
|
core_config (CoreConfig): CoreConfig containing parameters for quantization and mixed precision of how the model should be quantized.
|
53
|
-
target_platform_capabilities (
|
54
|
+
target_platform_capabilities (Union[TargetPlatformCapabilities, str]): FrameworkQuantizationCapabilities to optimize the Keras model according to.
|
54
55
|
|
55
56
|
Returns:
|
56
57
|
|
@@ -81,6 +82,7 @@ if FOUND_TF:
|
|
81
82
|
|
82
83
|
fw_impl = KerasImplementation()
|
83
84
|
|
85
|
+
target_platform_capabilities = load_target_platform_capabilities(target_platform_capabilities)
|
84
86
|
# Attach tpc model to framework
|
85
87
|
attach2keras = AttachTpcToKeras()
|
86
88
|
target_platform_capabilities = attach2keras.attach(
|
@@ -13,7 +13,7 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from typing import Callable
|
16
|
+
from typing import Callable, Union
|
17
17
|
|
18
18
|
from model_compression_toolkit.logger import Logger
|
19
19
|
from model_compression_toolkit.constants import PYTORCH
|
@@ -23,6 +23,7 @@ from model_compression_toolkit.core.common.mixed_precision.resource_utilization_
|
|
23
23
|
from model_compression_toolkit.core.common.quantization.core_config import CoreConfig
|
24
24
|
from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import MixedPrecisionQuantizationConfig
|
25
25
|
from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
|
26
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_io_handler import load_target_platform_capabilities
|
26
27
|
from model_compression_toolkit.verify_packages import FOUND_TORCH
|
27
28
|
|
28
29
|
if FOUND_TORCH:
|
@@ -40,7 +41,7 @@ if FOUND_TORCH:
|
|
40
41
|
def pytorch_resource_utilization_data(in_model: Module,
|
41
42
|
representative_data_gen: Callable,
|
42
43
|
core_config: CoreConfig = CoreConfig(),
|
43
|
-
target_platform_capabilities: TargetPlatformCapabilities= PYTORCH_DEFAULT_TPC
|
44
|
+
target_platform_capabilities: Union[TargetPlatformCapabilities, str] = PYTORCH_DEFAULT_TPC
|
44
45
|
) -> ResourceUtilization:
|
45
46
|
"""
|
46
47
|
Computes resource utilization data that can be used to calculate the desired target resource utilization for mixed-precision quantization.
|
@@ -50,7 +51,7 @@ if FOUND_TORCH:
|
|
50
51
|
in_model (Model): PyTorch model to quantize.
|
51
52
|
representative_data_gen (Callable): Dataset used for calibration.
|
52
53
|
core_config (CoreConfig): CoreConfig containing parameters for quantization and mixed precision
|
53
|
-
target_platform_capabilities (
|
54
|
+
target_platform_capabilities (Union[TargetPlatformCapabilities, str]): FrameworkQuantizationCapabilities to optimize the PyTorch model according to.
|
54
55
|
|
55
56
|
Returns:
|
56
57
|
|
@@ -81,6 +82,7 @@ if FOUND_TORCH:
|
|
81
82
|
|
82
83
|
fw_impl = PytorchImplementation()
|
83
84
|
|
85
|
+
target_platform_capabilities = load_target_platform_capabilities(target_platform_capabilities)
|
84
86
|
# Attach tpc model to framework
|
85
87
|
attach2pytorch = AttachTpcToPytorch()
|
86
88
|
target_platform_capabilities = (
|
@@ -25,6 +25,7 @@ from model_compression_toolkit.constants import TENSORFLOW, ACT_HESSIAN_DEFAULT_
|
|
25
25
|
from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformCapabilities
|
26
26
|
from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.attach2keras import \
|
27
27
|
AttachTpcToKeras
|
28
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_io_handler import load_target_platform_capabilities
|
28
29
|
from model_compression_toolkit.verify_packages import FOUND_TF
|
29
30
|
from model_compression_toolkit.core.common.user_info import UserInformation
|
30
31
|
from model_compression_toolkit.gptq.common.gptq_config import GradientPTQConfig, GPTQHessianScoresConfig, \
|
@@ -156,7 +157,8 @@ if FOUND_TF:
|
|
156
157
|
gptq_representative_data_gen: Callable = None,
|
157
158
|
target_resource_utilization: ResourceUtilization = None,
|
158
159
|
core_config: CoreConfig = CoreConfig(),
|
159
|
-
target_platform_capabilities: TargetPlatformCapabilities
|
160
|
+
target_platform_capabilities: Union[TargetPlatformCapabilities, str]
|
161
|
+
= DEFAULT_KERAS_TPC) -> Tuple[Model, UserInformation]:
|
160
162
|
"""
|
161
163
|
Quantize a trained Keras model using post-training quantization. The model is quantized using a
|
162
164
|
symmetric constraint quantization thresholds (power of two).
|
@@ -180,7 +182,7 @@ if FOUND_TF:
|
|
180
182
|
gptq_representative_data_gen (Callable): Dataset used for GPTQ training. If None defaults to representative_data_gen
|
181
183
|
target_resource_utilization (ResourceUtilization): ResourceUtilization object to limit the search of the mixed-precision configuration as desired.
|
182
184
|
core_config (CoreConfig): Configuration object containing parameters of how the model should be quantized, including mixed precision parameters.
|
183
|
-
target_platform_capabilities (TargetPlatformCapabilities): TargetPlatformCapabilities to optimize the Keras model according to.
|
185
|
+
target_platform_capabilities (Union[TargetPlatformCapabilities, str]): TargetPlatformCapabilities to optimize the Keras model according to.
|
184
186
|
|
185
187
|
Returns:
|
186
188
|
|
@@ -241,6 +243,7 @@ if FOUND_TF:
|
|
241
243
|
|
242
244
|
fw_impl = GPTQKerasImplemantation()
|
243
245
|
|
246
|
+
target_platform_capabilities = load_target_platform_capabilities(target_platform_capabilities)
|
244
247
|
# Attach tpc model to framework
|
245
248
|
attach2keras = AttachTpcToKeras()
|
246
249
|
framework_platform_capabilities = attach2keras.attach(
|
@@ -32,6 +32,7 @@ from model_compression_toolkit.gptq.runner import gptq_runner
|
|
32
32
|
from model_compression_toolkit.logger import Logger
|
33
33
|
from model_compression_toolkit.metadata import create_model_metadata
|
34
34
|
from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformCapabilities
|
35
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_io_handler import load_target_platform_capabilities
|
35
36
|
from model_compression_toolkit.verify_packages import FOUND_TORCH
|
36
37
|
|
37
38
|
|
@@ -145,7 +146,7 @@ if FOUND_TORCH:
|
|
145
146
|
core_config: CoreConfig = CoreConfig(),
|
146
147
|
gptq_config: GradientPTQConfig = None,
|
147
148
|
gptq_representative_data_gen: Callable = None,
|
148
|
-
target_platform_capabilities: TargetPlatformCapabilities = DEFAULT_PYTORCH_TPC):
|
149
|
+
target_platform_capabilities: Union[TargetPlatformCapabilities, str] = DEFAULT_PYTORCH_TPC):
|
149
150
|
"""
|
150
151
|
Quantize a trained Pytorch module using post-training quantization.
|
151
152
|
By default, the module is quantized using a symmetric constraint quantization thresholds
|
@@ -169,7 +170,7 @@ if FOUND_TORCH:
|
|
169
170
|
core_config (CoreConfig): Configuration object containing parameters of how the model should be quantized, including mixed precision parameters.
|
170
171
|
gptq_config (GradientPTQConfig): Configuration for using gptq (e.g. optimizer).
|
171
172
|
gptq_representative_data_gen (Callable): Dataset used for GPTQ training. If None defaults to representative_data_gen
|
172
|
-
target_platform_capabilities (TargetPlatformCapabilities): TargetPlatformCapabilities to optimize the PyTorch model according to.
|
173
|
+
target_platform_capabilities (Union[TargetPlatformCapabilities, str]): TargetPlatformCapabilities to optimize the PyTorch model according to.
|
173
174
|
|
174
175
|
Returns:
|
175
176
|
A quantized module and information the user may need to handle the quantized module.
|
@@ -214,6 +215,7 @@ if FOUND_TORCH:
|
|
214
215
|
|
215
216
|
fw_impl = GPTQPytorchImplemantation()
|
216
217
|
|
218
|
+
target_platform_capabilities = load_target_platform_capabilities(target_platform_capabilities)
|
217
219
|
# Attach tpc model to framework
|
218
220
|
attach2pytorch = AttachTpcToPytorch()
|
219
221
|
framework_quantization_capabilities = attach2pytorch.attach(target_platform_capabilities,
|
@@ -13,11 +13,12 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from typing import Callable, Tuple
|
16
|
+
from typing import Callable, Tuple, Union
|
17
17
|
|
18
18
|
from model_compression_toolkit import get_target_platform_capabilities
|
19
19
|
from model_compression_toolkit.constants import TENSORFLOW
|
20
20
|
from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformCapabilities
|
21
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_io_handler import load_target_platform_capabilities
|
21
22
|
from model_compression_toolkit.verify_packages import FOUND_TF
|
22
23
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import ResourceUtilization
|
23
24
|
from model_compression_toolkit.core.common.pruning.pruner import Pruner
|
@@ -43,7 +44,8 @@ if FOUND_TF:
|
|
43
44
|
target_resource_utilization: ResourceUtilization,
|
44
45
|
representative_data_gen: Callable,
|
45
46
|
pruning_config: PruningConfig = PruningConfig(),
|
46
|
-
target_platform_capabilities: TargetPlatformCapabilities
|
47
|
+
target_platform_capabilities: Union[TargetPlatformCapabilities, str]
|
48
|
+
= DEFAULT_KERAS_TPC) -> Tuple[Model, PruningInfo]:
|
47
49
|
"""
|
48
50
|
Perform structured pruning on a Keras model to meet a specified target resource utilization.
|
49
51
|
This function prunes the provided model according to the target resource utilization by grouping and pruning
|
@@ -61,7 +63,7 @@ if FOUND_TF:
|
|
61
63
|
target_resource_utilization (ResourceUtilization): The target Key Performance Indicators to be achieved through pruning.
|
62
64
|
representative_data_gen (Callable): A function to generate representative data for pruning analysis.
|
63
65
|
pruning_config (PruningConfig): Configuration settings for the pruning process. Defaults to standard config.
|
64
|
-
target_platform_capabilities (
|
66
|
+
target_platform_capabilities (Union[TargetPlatformCapabilities, str]): Platform-specific constraints and capabilities. Defaults to DEFAULT_KERAS_TPC.
|
65
67
|
|
66
68
|
Returns:
|
67
69
|
Tuple[Model, PruningInfo]: A tuple containing the pruned Keras model and associated pruning information.
|
@@ -112,6 +114,7 @@ if FOUND_TF:
|
|
112
114
|
# Instantiate the Keras framework implementation.
|
113
115
|
fw_impl = PruningKerasImplementation()
|
114
116
|
|
117
|
+
target_platform_capabilities = load_target_platform_capabilities(target_platform_capabilities)
|
115
118
|
# Attach tpc model to framework
|
116
119
|
attach2keras = AttachTpcToKeras()
|
117
120
|
target_platform_capabilities = attach2keras.attach(target_platform_capabilities)
|
@@ -13,10 +13,11 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from typing import Callable, Tuple
|
16
|
+
from typing import Callable, Tuple, Union
|
17
17
|
from model_compression_toolkit import get_target_platform_capabilities
|
18
18
|
from model_compression_toolkit.constants import PYTORCH
|
19
19
|
from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformCapabilities
|
20
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_io_handler import load_target_platform_capabilities
|
20
21
|
from model_compression_toolkit.verify_packages import FOUND_TORCH
|
21
22
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import ResourceUtilization
|
22
23
|
from model_compression_toolkit.core.common.pruning.pruner import Pruner
|
@@ -47,7 +48,8 @@ if FOUND_TORCH:
|
|
47
48
|
target_resource_utilization: ResourceUtilization,
|
48
49
|
representative_data_gen: Callable,
|
49
50
|
pruning_config: PruningConfig = PruningConfig(),
|
50
|
-
target_platform_capabilities: TargetPlatformCapabilities
|
51
|
+
target_platform_capabilities: Union[TargetPlatformCapabilities, str]
|
52
|
+
= DEFAULT_PYOTRCH_TPC) -> \
|
51
53
|
Tuple[Module, PruningInfo]:
|
52
54
|
"""
|
53
55
|
Perform structured pruning on a Pytorch model to meet a specified target resource utilization.
|
@@ -66,7 +68,7 @@ if FOUND_TORCH:
|
|
66
68
|
target_resource_utilization (ResourceUtilization): Key Performance Indicators specifying the pruning targets.
|
67
69
|
representative_data_gen (Callable): A function to generate representative data for pruning analysis.
|
68
70
|
pruning_config (PruningConfig): Configuration settings for the pruning process. Defaults to standard config.
|
69
|
-
target_platform_capabilities (TargetPlatformCapabilities): Platform-specific constraints and capabilities.
|
71
|
+
target_platform_capabilities (Union[TargetPlatformCapabilities, str]): Platform-specific constraints and capabilities.
|
70
72
|
Defaults to DEFAULT_PYTORCH_TPC.
|
71
73
|
|
72
74
|
Returns:
|
@@ -118,6 +120,7 @@ if FOUND_TORCH:
|
|
118
120
|
# Instantiate the Pytorch framework implementation.
|
119
121
|
fw_impl = PruningPytorchImplementation()
|
120
122
|
|
123
|
+
target_platform_capabilities = load_target_platform_capabilities(target_platform_capabilities)
|
121
124
|
# Attach TPC to framework
|
122
125
|
attach2pytorch = AttachTpcToPytorch()
|
123
126
|
framework_platform_capabilities = attach2pytorch.attach(target_platform_capabilities)
|
@@ -23,6 +23,7 @@ from model_compression_toolkit.core.common.visualization.tensorboard_writer impo
|
|
23
23
|
from model_compression_toolkit.logger import Logger
|
24
24
|
from model_compression_toolkit.constants import TENSORFLOW
|
25
25
|
from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformCapabilities
|
26
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_io_handler import load_target_platform_capabilities
|
26
27
|
from model_compression_toolkit.verify_packages import FOUND_TF
|
27
28
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import ResourceUtilization
|
28
29
|
from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import \
|
@@ -70,7 +71,7 @@ if FOUND_TF:
|
|
70
71
|
representative_data_gen (Callable): Dataset used for calibration.
|
71
72
|
target_resource_utilization (ResourceUtilization): ResourceUtilization object to limit the search of the mixed-precision configuration as desired.
|
72
73
|
core_config (CoreConfig): Configuration object containing parameters of how the model should be quantized, including mixed precision parameters.
|
73
|
-
target_platform_capabilities (TargetPlatformCapabilities): TargetPlatformCapabilities to optimize the Keras model according to.
|
74
|
+
target_platform_capabilities (Union[TargetPlatformCapabilities, str]): TargetPlatformCapabilities to optimize the Keras model according to.
|
74
75
|
|
75
76
|
Returns:
|
76
77
|
|
@@ -137,6 +138,7 @@ if FOUND_TF:
|
|
137
138
|
|
138
139
|
fw_impl = KerasImplementation()
|
139
140
|
|
141
|
+
target_platform_capabilities = load_target_platform_capabilities(target_platform_capabilities)
|
140
142
|
attach2keras = AttachTpcToKeras()
|
141
143
|
framework_platform_capabilities = attach2keras.attach(
|
142
144
|
target_platform_capabilities,
|
@@ -14,12 +14,13 @@
|
|
14
14
|
# ==============================================================================
|
15
15
|
import copy
|
16
16
|
|
17
|
-
from typing import Callable
|
17
|
+
from typing import Callable, Union
|
18
18
|
|
19
19
|
from model_compression_toolkit.core.common.visualization.tensorboard_writer import init_tensorboard_writer
|
20
20
|
from model_compression_toolkit.logger import Logger
|
21
21
|
from model_compression_toolkit.constants import PYTORCH
|
22
22
|
from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformCapabilities
|
23
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_io_handler import load_target_platform_capabilities
|
23
24
|
from model_compression_toolkit.verify_packages import FOUND_TORCH
|
24
25
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import ResourceUtilization
|
25
26
|
from model_compression_toolkit.core import CoreConfig
|
@@ -48,7 +49,7 @@ if FOUND_TORCH:
|
|
48
49
|
representative_data_gen: Callable,
|
49
50
|
target_resource_utilization: ResourceUtilization = None,
|
50
51
|
core_config: CoreConfig = CoreConfig(),
|
51
|
-
target_platform_capabilities: TargetPlatformCapabilities = DEFAULT_PYTORCH_TPC):
|
52
|
+
target_platform_capabilities: Union[TargetPlatformCapabilities, str] = DEFAULT_PYTORCH_TPC):
|
52
53
|
"""
|
53
54
|
Quantize a trained Pytorch module using post-training quantization.
|
54
55
|
By default, the module is quantized using a symmetric constraint quantization thresholds
|
@@ -67,7 +68,7 @@ if FOUND_TORCH:
|
|
67
68
|
representative_data_gen (Callable): Dataset used for calibration.
|
68
69
|
target_resource_utilization (ResourceUtilization): ResourceUtilization object to limit the search of the mixed-precision configuration as desired.
|
69
70
|
core_config (CoreConfig): Configuration object containing parameters of how the model should be quantized, including mixed precision parameters.
|
70
|
-
target_platform_capabilities (TargetPlatformCapabilities): TargetPlatformCapabilities to optimize the PyTorch model according to.
|
71
|
+
target_platform_capabilities (Union[TargetPlatformCapabilities, str]): TargetPlatformCapabilities to optimize the PyTorch model according to.
|
71
72
|
|
72
73
|
Returns:
|
73
74
|
A quantized module and information the user may need to handle the quantized module.
|
@@ -109,6 +110,7 @@ if FOUND_TORCH:
|
|
109
110
|
|
110
111
|
fw_impl = PytorchImplementation()
|
111
112
|
|
113
|
+
target_platform_capabilities = load_target_platform_capabilities(target_platform_capabilities)
|
112
114
|
# Attach tpc model to framework
|
113
115
|
attach2pytorch = AttachTpcToPytorch()
|
114
116
|
framework_platform_capabilities = attach2pytorch.attach(target_platform_capabilities,
|
@@ -13,7 +13,7 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
-
from typing import Callable
|
16
|
+
from typing import Callable, Union
|
17
17
|
from functools import partial
|
18
18
|
|
19
19
|
from model_compression_toolkit.core import CoreConfig
|
@@ -22,6 +22,7 @@ from model_compression_toolkit.logger import Logger
|
|
22
22
|
from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformCapabilities
|
23
23
|
from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.attach2keras import \
|
24
24
|
AttachTpcToKeras
|
25
|
+
from model_compression_toolkit.target_platform_capabilities.tpc_io_handler import load_target_platform_capabilities
|
25
26
|
from model_compression_toolkit.verify_packages import FOUND_TF
|
26
27
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import ResourceUtilization
|
27
28
|
from model_compression_toolkit.core.common.mixed_precision.mixed_precision_quantization_config import \
|
@@ -49,7 +50,6 @@ if FOUND_TF:
|
|
49
50
|
from model_compression_toolkit.core import common
|
50
51
|
from model_compression_toolkit.core.common import BaseNode
|
51
52
|
from model_compression_toolkit.constants import TENSORFLOW
|
52
|
-
from model_compression_toolkit.core.common.framework_info import FrameworkInfo
|
53
53
|
from model_compression_toolkit.qat.common.qat_config import is_qat_applicable
|
54
54
|
from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
|
55
55
|
from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
|
@@ -92,7 +92,7 @@ if FOUND_TF:
|
|
92
92
|
target_resource_utilization: ResourceUtilization = None,
|
93
93
|
core_config: CoreConfig = CoreConfig(),
|
94
94
|
qat_config: QATConfig = QATConfig(),
|
95
|
-
target_platform_capabilities: TargetPlatformCapabilities = DEFAULT_KERAS_TPC):
|
95
|
+
target_platform_capabilities: Union[TargetPlatformCapabilities, str] = DEFAULT_KERAS_TPC):
|
96
96
|
"""
|
97
97
|
Prepare a trained Keras model for quantization aware training. First the model quantization is optimized
|
98
98
|
with post-training quantization, then the model layers are wrapped with QuantizeWrappers. The model is
|
@@ -114,7 +114,7 @@ if FOUND_TF:
|
|
114
114
|
target_resource_utilization (ResourceUtilization): ResourceUtilization object to limit the search of the mixed-precision configuration as desired.
|
115
115
|
core_config (CoreConfig): Configuration object containing parameters of how the model should be quantized, including mixed precision parameters.
|
116
116
|
qat_config (QATConfig): QAT configuration
|
117
|
-
target_platform_capabilities (TargetPlatformCapabilities): TargetPlatformCapabilities to optimize the Keras model according to.
|
117
|
+
target_platform_capabilities (Union[TargetPlatformCapabilities, str]): TargetPlatformCapabilities to optimize the Keras model according to.
|
118
118
|
|
119
119
|
Returns:
|
120
120
|
|
@@ -188,6 +188,7 @@ if FOUND_TF:
|
|
188
188
|
|
189
189
|
fw_impl = KerasImplementation()
|
190
190
|
|
191
|
+
target_platform_capabilities = load_target_platform_capabilities(target_platform_capabilities)
|
191
192
|
attach2keras = AttachTpcToKeras()
|
192
193
|
target_platform_capabilities = attach2keras.attach(
|
193
194
|
target_platform_capabilities,
|