mct-nightly 2.2.0.20250114.84821__tar.gz → 2.2.0.20250114.134534__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/PKG-INFO +1 -1
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/SOURCES.txt +1 -1
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/__init__.py +1 -1
- mct_nightly-2.2.0.20250114.84821/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +35 -70
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +20 -38
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +35 -34
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +59 -59
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/LICENSE.md +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/README.md +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/requires.txt +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/constants.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/data_util.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/runner.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/defaultdict.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/logger.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/metadata.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/schema/v1.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/verify_packages.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/setup.cfg +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/setup.py +0 -0
- {mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/tests/test_suite.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: mct-nightly
|
|
3
|
-
Version: 2.2.0.20250114.
|
|
3
|
+
Version: 2.2.0.20250114.134534
|
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.2.0.20250114.84821 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/PKG-INFO
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.2
|
|
2
2
|
Name: mct-nightly
|
|
3
|
-
Version: 2.2.0.20250114.
|
|
3
|
+
Version: 2.2.0.20250114.134534
|
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
|
@@ -74,6 +74,7 @@ model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_uti
|
|
|
74
74
|
model_compression_toolkit/core/common/mixed_precision/distance_weighting.py
|
|
75
75
|
model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py
|
|
76
76
|
model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py
|
|
77
|
+
model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py
|
|
77
78
|
model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py
|
|
78
79
|
model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py
|
|
79
80
|
model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py
|
|
@@ -83,7 +84,6 @@ model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools
|
|
|
83
84
|
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py
|
|
84
85
|
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py
|
|
85
86
|
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py
|
|
86
|
-
model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py
|
|
87
87
|
model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py
|
|
88
88
|
model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py
|
|
89
89
|
model_compression_toolkit/core/common/network_editors/__init__.py
|
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
|
27
27
|
from model_compression_toolkit import pruning
|
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
|
29
29
|
|
|
30
|
-
__version__ = "2.2.0.20250114.
|
|
30
|
+
__version__ = "2.2.0.20250114.134534"
|
|
@@ -12,14 +12,13 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
# ==============================================================================
|
|
15
|
-
from typing import List, Set, Dict, Optional, Tuple
|
|
15
|
+
from typing import List, Set, Dict, Optional, Tuple, Any
|
|
16
16
|
|
|
17
17
|
import numpy as np
|
|
18
18
|
|
|
19
19
|
from model_compression_toolkit.core import FrameworkInfo
|
|
20
20
|
from model_compression_toolkit.core.common import Graph, BaseNode
|
|
21
21
|
from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
|
|
22
|
-
from model_compression_toolkit.core.common.graph.memory_graph.cut import Cut
|
|
23
22
|
from model_compression_toolkit.core.common.graph.virtual_activation_weights_node import VirtualActivationWeightsNode
|
|
24
23
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import \
|
|
25
24
|
RUTarget
|
|
@@ -44,9 +43,8 @@ class MixedPrecisionRUHelper:
|
|
|
44
43
|
def compute_utilization(self, ru_targets: Set[RUTarget], mp_cfg: Optional[List[int]]) -> Dict[RUTarget, np.ndarray]:
|
|
45
44
|
"""
|
|
46
45
|
Compute utilization of requested targets for a specific configuration in the format expected by LP problem
|
|
47
|
-
formulation
|
|
48
|
-
|
|
49
|
-
consistent between configurations).
|
|
46
|
+
formulation namely a vector of ru values for relevant memory elements (nodes or cuts) in a constant order
|
|
47
|
+
(between calls).
|
|
50
48
|
|
|
51
49
|
Args:
|
|
52
50
|
ru_targets: resource utilization targets to compute.
|
|
@@ -57,33 +55,26 @@ class MixedPrecisionRUHelper:
|
|
|
57
55
|
"""
|
|
58
56
|
|
|
59
57
|
ru = {}
|
|
60
|
-
|
|
61
|
-
act_qcs, w_qcs = self.get_configurable_qcs(mp_cfg) if mp_cfg else (None, None)
|
|
62
|
-
w_util = None
|
|
58
|
+
act_qcs, w_qcs = self.get_quantization_candidates(mp_cfg) if mp_cfg else (None, None)
|
|
63
59
|
if RUTarget.WEIGHTS in ru_targets:
|
|
64
|
-
|
|
65
|
-
ru[RUTarget.WEIGHTS] = np.array(list(
|
|
60
|
+
wu = self._weights_utilization(w_qcs)
|
|
61
|
+
ru[RUTarget.WEIGHTS] = np.array(list(wu.values()))
|
|
66
62
|
|
|
67
|
-
# TODO make mp agnostic to activation method
|
|
68
63
|
if RUTarget.ACTIVATION in ru_targets:
|
|
69
|
-
|
|
70
|
-
ru[RUTarget.ACTIVATION] = np.array(list(
|
|
71
|
-
|
|
72
|
-
# TODO use maxcut
|
|
73
|
-
if RUTarget.TOTAL in ru_targets:
|
|
74
|
-
act_tensors_util = self._activation_tensor_utilization(act_qcs)
|
|
75
|
-
w_util = w_util or self._weights_utilization(w_qcs)
|
|
76
|
-
total = {n: (w_util.get(n, 0), act_tensors_util.get(n, 0))
|
|
77
|
-
# for n in self.graph.nodes if n in act_tensors_util or n in w_util}
|
|
78
|
-
for n in self.graph.get_topo_sorted_nodes() if n in act_tensors_util or n in w_util}
|
|
79
|
-
ru[RUTarget.TOTAL] = np.array(list(total.values()))
|
|
64
|
+
au = self._activation_utilization(act_qcs)
|
|
65
|
+
ru[RUTarget.ACTIVATION] = np.array(list(au.values()))
|
|
80
66
|
|
|
81
67
|
if RUTarget.BOPS in ru_targets:
|
|
82
68
|
ru[RUTarget.BOPS] = self._bops_utilization(mp_cfg)
|
|
83
69
|
|
|
70
|
+
if RUTarget.TOTAL in ru_targets:
|
|
71
|
+
raise ValueError('Total target should be computed based on weights and activations targets.')
|
|
72
|
+
|
|
73
|
+
assert len(ru) == len(ru_targets), (f'Mismatch between the number of computed and requested metrics.'
|
|
74
|
+
f'Requested {ru_targets}')
|
|
84
75
|
return ru
|
|
85
76
|
|
|
86
|
-
def
|
|
77
|
+
def get_quantization_candidates(self, mp_cfg) \
|
|
87
78
|
-> Tuple[Dict[BaseNode, NodeActivationQuantizationConfig], Dict[BaseNode, NodeWeightsQuantizationConfig]]:
|
|
88
79
|
"""
|
|
89
80
|
Retrieve quantization candidates objects for weights and activations from the configuration list.
|
|
@@ -92,15 +83,13 @@ class MixedPrecisionRUHelper:
|
|
|
92
83
|
mp_cfg: a list of candidates indices for configurable layers.
|
|
93
84
|
|
|
94
85
|
Returns:
|
|
95
|
-
|
|
86
|
+
A mapping between nodes to weights quantization config, and a mapping between nodes and activation
|
|
96
87
|
quantization config.
|
|
97
88
|
"""
|
|
98
89
|
mp_nodes = self.graph.get_configurable_sorted_nodes(self.fw_info)
|
|
99
90
|
node_qcs = {n: n.candidates_quantization_cfg[mp_cfg[i]] for i, n in enumerate(mp_nodes)}
|
|
100
|
-
act_qcs = {n: node_qcs
|
|
101
|
-
|
|
102
|
-
w_qcs = {n: node_qcs[n].weights_quantization_cfg
|
|
103
|
-
for n in self.graph.get_weights_configurable_nodes(self.fw_info)}
|
|
91
|
+
act_qcs = {n: cfg.activation_quantization_cfg for n, cfg in node_qcs.items()}
|
|
92
|
+
w_qcs = {n: cfg.weights_quantization_cfg for n, cfg in node_qcs.items()}
|
|
104
93
|
return act_qcs, w_qcs
|
|
105
94
|
|
|
106
95
|
def _weights_utilization(self, w_qcs: Optional[Dict[BaseNode, NodeWeightsQuantizationConfig]]) -> Dict[BaseNode, float]:
|
|
@@ -127,8 +116,8 @@ class MixedPrecisionRUHelper:
|
|
|
127
116
|
nodes_util = {n: u.bytes for n, u in nodes_util.items()}
|
|
128
117
|
return nodes_util
|
|
129
118
|
|
|
130
|
-
def
|
|
131
|
-
-> Optional[Dict[
|
|
119
|
+
def _activation_utilization(self, act_qcs: Optional[Dict[BaseNode, NodeActivationQuantizationConfig]]) \
|
|
120
|
+
-> Optional[Dict[Any, float]]:
|
|
132
121
|
"""
|
|
133
122
|
Compute activation utilization using MaxCut for all quantized nodes if configuration is passed.
|
|
134
123
|
|
|
@@ -138,41 +127,17 @@ class MixedPrecisionRUHelper:
|
|
|
138
127
|
Returns:
|
|
139
128
|
Activation utilization per cut, or empty dict if no configuration was passed.
|
|
140
129
|
"""
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
cuts_util = {c: u.bytes for c, u in cuts_util.items()}
|
|
146
|
-
return cuts_util
|
|
147
|
-
|
|
148
|
-
# Computing non-configurable nodes resource utilization for max-cut is included in the calculation of the
|
|
149
|
-
# configurable nodes.
|
|
150
|
-
return {}
|
|
151
|
-
|
|
152
|
-
def _activation_tensor_utilization(self, act_qcs: Optional[Dict[BaseNode, NodeActivationQuantizationConfig]]):
|
|
153
|
-
"""
|
|
154
|
-
Compute activation tensors utilization fo configurable nodes if configuration is passed or
|
|
155
|
-
for non-configurable nodes otherwise.
|
|
130
|
+
# Maxcut activation utilization is computed for all quantized nodes, so non-configurable memory is already
|
|
131
|
+
# covered by the computation of configurable activations.
|
|
132
|
+
if not act_qcs:
|
|
133
|
+
return {}
|
|
156
134
|
|
|
157
|
-
|
|
158
|
-
|
|
135
|
+
_, cuts_util, *_ = self.ru_calculator.compute_activation_utilization_by_cut(
|
|
136
|
+
TargetInclusionCriterion.AnyQuantized, bitwidth_mode=BitwidthMode.QCustom, act_qcs=act_qcs)
|
|
137
|
+
cuts_util = {c: u.bytes for c, u in cuts_util.items()}
|
|
138
|
+
return cuts_util
|
|
159
139
|
|
|
160
|
-
|
|
161
|
-
Activation utilization per node.
|
|
162
|
-
"""
|
|
163
|
-
if act_qcs:
|
|
164
|
-
target_criterion = TargetInclusionCriterion.QConfigurable
|
|
165
|
-
bitwidth_mode = BitwidthMode.QCustom
|
|
166
|
-
else:
|
|
167
|
-
target_criterion = TargetInclusionCriterion.QNonConfigurable
|
|
168
|
-
bitwidth_mode = BitwidthMode.QDefaultSP
|
|
169
|
-
|
|
170
|
-
_, nodes_util = self.ru_calculator.compute_activation_tensors_utilization(target_criterion=target_criterion,
|
|
171
|
-
bitwidth_mode=bitwidth_mode,
|
|
172
|
-
act_qcs=act_qcs)
|
|
173
|
-
return {n: u.bytes for n, u in nodes_util.items()}
|
|
174
|
-
|
|
175
|
-
def _bops_utilization(self, mp_cfg: List[int]):
|
|
140
|
+
def _bops_utilization(self, mp_cfg: List[int]) -> np.ndarray:
|
|
176
141
|
"""
|
|
177
142
|
Computes a resource utilization vector with the respective bit-operations (BOPS) count for each configurable node,
|
|
178
143
|
according to the given mixed-precision configuration of a virtual graph with composed nodes.
|
|
@@ -180,15 +145,15 @@ class MixedPrecisionRUHelper:
|
|
|
180
145
|
Args:
|
|
181
146
|
mp_cfg: A mixed-precision configuration (list of candidates index for each configurable node)
|
|
182
147
|
|
|
183
|
-
Returns:
|
|
184
|
-
|
|
185
|
-
|
|
148
|
+
Returns:
|
|
149
|
+
A vector of node's BOPS count.
|
|
186
150
|
"""
|
|
187
|
-
#
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
151
|
+
# bops is computed for all nodes, so non-configurable memory is already covered by the computation of
|
|
152
|
+
# configurable nodes
|
|
153
|
+
if not mp_cfg:
|
|
154
|
+
return np.array([])
|
|
191
155
|
|
|
156
|
+
# TODO keeping old implementation for now
|
|
192
157
|
virtual_bops_nodes = [n for n in self.graph.get_topo_sorted_nodes() if isinstance(n, VirtualActivationWeightsNode)]
|
|
193
158
|
|
|
194
159
|
mp_nodes = self.graph.get_configurable_sorted_nodes_names(self.fw_info)
|
|
@@ -26,8 +26,8 @@ from model_compression_toolkit.core.common.graph.virtual_activation_weights_node
|
|
|
26
26
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import \
|
|
27
27
|
RUTarget, ResourceUtilization
|
|
28
28
|
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization_calculator import \
|
|
29
|
-
|
|
30
|
-
from model_compression_toolkit.core.common.mixed_precision.
|
|
29
|
+
TargetInclusionCriterion, BitwidthMode
|
|
30
|
+
from model_compression_toolkit.core.common.mixed_precision.mixed_precision_ru_helper import \
|
|
31
31
|
MixedPrecisionRUHelper
|
|
32
32
|
from model_compression_toolkit.core.common.mixed_precision.sensitivity_evaluation import SensitivityEvaluation
|
|
33
33
|
from model_compression_toolkit.logger import Logger
|
|
@@ -67,13 +67,19 @@ class MixedPrecisionSearchManager:
|
|
|
67
67
|
self.compute_metric_fn = self.get_sensitivity_metric()
|
|
68
68
|
self._cuts = None
|
|
69
69
|
|
|
70
|
-
|
|
70
|
+
# To define RU Total constraints we need to compute weights and activations even if they have no constraints
|
|
71
|
+
# TODO currently this logic is duplicated in linear_programming.py
|
|
72
|
+
targets = target_resource_utilization.get_restricted_metrics()
|
|
73
|
+
if RUTarget.TOTAL in targets:
|
|
74
|
+
targets = targets.union({RUTarget.ACTIVATION, RUTarget.WEIGHTS}) - {RUTarget.TOTAL}
|
|
75
|
+
self.ru_targets_to_compute = targets
|
|
76
|
+
|
|
71
77
|
self.ru_helper = MixedPrecisionRUHelper(graph, fw_info, fw_impl)
|
|
72
78
|
self.target_resource_utilization = target_resource_utilization
|
|
73
79
|
self.min_ru_config = self.graph.get_min_candidates_config(fw_info)
|
|
74
80
|
self.max_ru_config = self.graph.get_max_candidates_config(fw_info)
|
|
75
|
-
self.min_ru = self.ru_helper.compute_utilization(self.
|
|
76
|
-
self.non_conf_ru_dict = self.
|
|
81
|
+
self.min_ru = self.ru_helper.compute_utilization(self.ru_targets_to_compute, self.min_ru_config)
|
|
82
|
+
self.non_conf_ru_dict = self.ru_helper.compute_utilization(self.ru_targets_to_compute, None)
|
|
77
83
|
|
|
78
84
|
self.config_reconstruction_helper = ConfigReconstructionHelper(virtual_graph=self.graph,
|
|
79
85
|
original_graph=self.original_graph)
|
|
@@ -111,18 +117,14 @@ class MixedPrecisionSearchManager:
|
|
|
111
117
|
def compute_resource_utilization_matrix(self, target: RUTarget) -> np.ndarray:
|
|
112
118
|
"""
|
|
113
119
|
Computes and builds a resource utilization matrix, to be used for the mixed-precision search problem formalization.
|
|
114
|
-
|
|
115
|
-
- Each row represents the set of resource utilization values for a specific resource utilization
|
|
116
|
-
measure (number of rows should be equal to the length of the output of the respective target compute_ru function).
|
|
117
|
-
- Each entry in a specific column represents the resource utilization value of a given configuration
|
|
118
|
-
(single layer is configured with specific candidate, all other layer are at the minimal resource
|
|
119
|
-
utilization configuration) for the resource utilization measure of the respective row.
|
|
120
|
+
Utilization is computed relative to the minimal configuration, i.e. utilization for it will be 0.
|
|
120
121
|
|
|
121
122
|
Args:
|
|
122
123
|
target: The resource target for which the resource utilization is calculated (a RUTarget value).
|
|
123
124
|
|
|
124
|
-
Returns:
|
|
125
|
-
|
|
125
|
+
Returns:
|
|
126
|
+
A resource utilization matrix of shape (num configurations, num memory elements). Num memory elements
|
|
127
|
+
depends on the target, e.g. num nodes or num cuts, for which utilization is computed.
|
|
126
128
|
"""
|
|
127
129
|
assert isinstance(target, RUTarget), f"{target} is not a valid resource target"
|
|
128
130
|
|
|
@@ -132,21 +134,14 @@ class MixedPrecisionSearchManager:
|
|
|
132
134
|
for c, c_n in enumerate(configurable_sorted_nodes):
|
|
133
135
|
for candidate_idx in range(len(c_n.candidates_quantization_cfg)):
|
|
134
136
|
if candidate_idx == self.min_ru_config[c]:
|
|
135
|
-
|
|
136
|
-
# always be 0 for all entries in the results vector.
|
|
137
|
-
candidate_rus = np.zeros(shape=self.min_ru[target].shape)
|
|
137
|
+
candidate_rus = self.min_ru[target]
|
|
138
138
|
else:
|
|
139
|
-
candidate_rus = self.compute_node_ru_for_candidate(c, candidate_idx, target)
|
|
139
|
+
candidate_rus = self.compute_node_ru_for_candidate(c, candidate_idx, target)
|
|
140
140
|
|
|
141
141
|
ru_matrix.append(np.asarray(candidate_rus))
|
|
142
142
|
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
# We only move the first axis (num of configurations) to be last,
|
|
146
|
-
# the remaining axes include the metric specific nodes (rows dimension of the new tensor)
|
|
147
|
-
# and the ru metric values (if they are non-scalars)
|
|
148
|
-
np_ru_matrix = np.array(ru_matrix)
|
|
149
|
-
return np.moveaxis(np_ru_matrix, source=0, destination=len(np_ru_matrix.shape) - 1)
|
|
143
|
+
np_ru_matrix = np.array(ru_matrix) - self.min_ru[target] # num configurations X num elements
|
|
144
|
+
return np_ru_matrix
|
|
150
145
|
|
|
151
146
|
def compute_node_ru_for_candidate(self, conf_node_idx: int, candidate_idx: int, target: RUTarget) -> np.ndarray:
|
|
152
147
|
"""
|
|
@@ -162,7 +157,6 @@ class MixedPrecisionSearchManager:
|
|
|
162
157
|
|
|
163
158
|
"""
|
|
164
159
|
cfg = self.replace_config_in_index(self.min_ru_config, conf_node_idx, candidate_idx)
|
|
165
|
-
# TODO compute for all targets at once. Currently the way up to add_set_of_ru_constraints is per target.
|
|
166
160
|
return self.ru_helper.compute_utilization({target}, cfg)[target]
|
|
167
161
|
|
|
168
162
|
@staticmethod
|
|
@@ -183,18 +177,6 @@ class MixedPrecisionSearchManager:
|
|
|
183
177
|
updated_cfg[idx] = value
|
|
184
178
|
return updated_cfg
|
|
185
179
|
|
|
186
|
-
def _non_configurable_nodes_ru(self) -> Dict[RUTarget, np.ndarray]:
|
|
187
|
-
"""
|
|
188
|
-
Computes a resource utilization vector of all non-configurable nodes in the given graph for each of the
|
|
189
|
-
resource utilization targets.
|
|
190
|
-
|
|
191
|
-
Returns: A mapping between a RUTarget and its non-configurable nodes' resource utilization vector.
|
|
192
|
-
"""
|
|
193
|
-
ru_metrics = self.ru_metrics - {RUTarget.BOPS}
|
|
194
|
-
ru = self.ru_helper.compute_utilization(ru_targets=ru_metrics, mp_cfg=None)
|
|
195
|
-
ru[RUTarget.BOPS] = None
|
|
196
|
-
return ru
|
|
197
|
-
|
|
198
180
|
def compute_resource_utilization_for_config(self, config: List[int]) -> ResourceUtilization:
|
|
199
181
|
"""
|
|
200
182
|
Computes the resource utilization values for a given mixed-precision configuration.
|
|
@@ -206,7 +188,7 @@ class MixedPrecisionSearchManager:
|
|
|
206
188
|
with the given config.
|
|
207
189
|
|
|
208
190
|
"""
|
|
209
|
-
act_qcs, w_qcs = self.ru_helper.
|
|
191
|
+
act_qcs, w_qcs = self.ru_helper.get_quantization_candidates(config)
|
|
210
192
|
ru = self.ru_helper.ru_calculator.compute_resource_utilization(
|
|
211
193
|
target_criterion=TargetInclusionCriterion.AnyQuantized, bitwidth_mode=BitwidthMode.QCustom, act_qcs=act_qcs,
|
|
212
194
|
w_qcs=w_qcs)
|
|
@@ -88,7 +88,7 @@ class Utilization(NamedTuple):
|
|
|
88
88
|
# Needed for sum (with default start_value=0).
|
|
89
89
|
if other == 0:
|
|
90
90
|
return self
|
|
91
|
-
return self + other
|
|
91
|
+
return self + other # pragma: no cover
|
|
92
92
|
|
|
93
93
|
def __gt__(self, other: 'Utilization'):
|
|
94
94
|
# Needed for max. Compare by bytes.
|
|
@@ -96,7 +96,7 @@ class Utilization(NamedTuple):
|
|
|
96
96
|
|
|
97
97
|
def __lt__(self, other: 'Utilization'):
|
|
98
98
|
# Needed for min. Compare by bytes.
|
|
99
|
-
return self.bytes < other.bytes
|
|
99
|
+
return self.bytes < other.bytes # pragma: no cover
|
|
100
100
|
|
|
101
101
|
|
|
102
102
|
class ResourceUtilizationCalculator:
|
|
@@ -119,7 +119,21 @@ class ResourceUtilizationCalculator:
|
|
|
119
119
|
for n in graph.nodes:
|
|
120
120
|
self._act_tensors_size[n] = n.get_total_output_params()
|
|
121
121
|
self._params_cnt[n] = {k: v.size for k, v in n.weights.items()}
|
|
122
|
-
self._cuts = None
|
|
122
|
+
self._cuts: Optional[Dict[Cut, List[BaseNode]]] = None
|
|
123
|
+
|
|
124
|
+
@property
|
|
125
|
+
def cuts(self) -> Dict[Cut, List[BaseNode]]:
|
|
126
|
+
""" Compute if needed and return graph cuts and their memory element nodes. """
|
|
127
|
+
if self._cuts is None:
|
|
128
|
+
memory_graph = MemoryGraph(deepcopy(self.graph))
|
|
129
|
+
_, _, cuts = compute_graph_max_cut(memory_graph)
|
|
130
|
+
if cuts is None: # pragma: no cover
|
|
131
|
+
raise RuntimeError("Failed to calculate activation memory cuts for graph.") # pragma: no cover
|
|
132
|
+
cuts = [cut for cut in cuts if cut.mem_elements.elements]
|
|
133
|
+
# cache cuts nodes for future use, so do not filter by target
|
|
134
|
+
self._cuts = {cut: [self.graph.find_node_by_name(m.node_name)[0] for m in cut.mem_elements.elements]
|
|
135
|
+
for cut in cuts}
|
|
136
|
+
return self._cuts
|
|
123
137
|
|
|
124
138
|
def compute_resource_utilization(self,
|
|
125
139
|
target_criterion: TargetInclusionCriterion,
|
|
@@ -152,10 +166,10 @@ class ResourceUtilizationCalculator:
|
|
|
152
166
|
elif w_qcs is not None: # pragma: no cover
|
|
153
167
|
raise ValueError('Weight configuration passed but no relevant metric requested.')
|
|
154
168
|
|
|
155
|
-
if
|
|
156
|
-
raise ValueError('Activation configuration passed but no relevant metric requested.')
|
|
157
|
-
if RUTarget.ACTIVATION in ru_targets:
|
|
169
|
+
if {RUTarget.ACTIVATION, RUTarget.TOTAL}.intersection(ru_targets):
|
|
158
170
|
a_total = self.compute_activations_utilization(target_criterion, bitwidth_mode, act_qcs)
|
|
171
|
+
elif act_qcs is not None: # pragma: no cover
|
|
172
|
+
raise ValueError('Activation configuration passed but no relevant metric requested.')
|
|
159
173
|
|
|
160
174
|
ru = ResourceUtilization()
|
|
161
175
|
if RUTarget.WEIGHTS in ru_targets:
|
|
@@ -163,9 +177,7 @@ class ResourceUtilizationCalculator:
|
|
|
163
177
|
if RUTarget.ACTIVATION in ru_targets:
|
|
164
178
|
ru.activation_memory = a_total
|
|
165
179
|
if RUTarget.TOTAL in ru_targets:
|
|
166
|
-
|
|
167
|
-
act_tensors_total, *_ = self.compute_activation_tensors_utilization(target_criterion, bitwidth_mode, act_qcs)
|
|
168
|
-
ru.total_memory = w_total + act_tensors_total
|
|
180
|
+
ru.total_memory = w_total + a_total
|
|
169
181
|
if RUTarget.BOPS in ru_targets:
|
|
170
182
|
ru.bops, _ = self.compute_bops(target_criterion=target_criterion,
|
|
171
183
|
bitwidth_mode=bitwidth_mode, act_qcs=act_qcs, w_qcs=w_qcs)
|
|
@@ -262,12 +274,12 @@ class ResourceUtilizationCalculator:
|
|
|
262
274
|
Returns:
|
|
263
275
|
Total activation utilization of the network.
|
|
264
276
|
"""
|
|
265
|
-
return self.
|
|
277
|
+
return self.compute_activation_utilization_by_cut(target_criterion, bitwidth_mode, act_qcs)[0]
|
|
266
278
|
|
|
267
|
-
def
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
279
|
+
def compute_activation_utilization_by_cut(self,
|
|
280
|
+
target_criterion: TargetInclusionCriterion,
|
|
281
|
+
bitwidth_mode: BitwidthMode,
|
|
282
|
+
act_qcs: Optional[Dict[BaseNode, NodeActivationQuantizationConfig]]) \
|
|
271
283
|
-> Tuple[float, Dict[Cut, Utilization], Dict[Cut, Dict[BaseNode, Utilization]]]:
|
|
272
284
|
"""
|
|
273
285
|
Compute graph activation cuts utilization.
|
|
@@ -292,20 +304,10 @@ class ResourceUtilizationCalculator:
|
|
|
292
304
|
if not graph_target_nodes:
|
|
293
305
|
return 0, {}, {}
|
|
294
306
|
|
|
295
|
-
if self._cuts is None:
|
|
296
|
-
memory_graph = MemoryGraph(deepcopy(self.graph))
|
|
297
|
-
_, _, cuts = compute_graph_max_cut(memory_graph)
|
|
298
|
-
if cuts is None: # pragma: no cover
|
|
299
|
-
raise RuntimeError("Failed to calculate activation memory cuts for graph.") # pragma: no cover
|
|
300
|
-
cuts = [cut for cut in cuts if cut.mem_elements.elements]
|
|
301
|
-
# cache cuts nodes for future use, so do not filter by target
|
|
302
|
-
self._cuts = {cut: [self.graph.find_node_by_name(m.node_name)[0] for m in cut.mem_elements.elements]
|
|
303
|
-
for cut in cuts}
|
|
304
|
-
|
|
305
307
|
util_per_cut: Dict[Cut, Utilization] = {} # type: ignore
|
|
306
308
|
util_per_cut_per_node = defaultdict(dict)
|
|
307
|
-
for cut in self.
|
|
308
|
-
cut_target_nodes =
|
|
309
|
+
for cut in self.cuts:
|
|
310
|
+
cut_target_nodes = self._get_cut_target_nodes(cut, target_criterion)
|
|
309
311
|
if not cut_target_nodes:
|
|
310
312
|
continue
|
|
311
313
|
for n in cut_target_nodes:
|
|
@@ -322,7 +324,7 @@ class ResourceUtilizationCalculator:
|
|
|
322
324
|
bitwidth_mode: BitwidthMode,
|
|
323
325
|
act_qcs: Optional[Dict[BaseNode, NodeActivationQuantizationConfig]] = None,
|
|
324
326
|
include_reused=False) \
|
|
325
|
-
-> Tuple[float, Dict[BaseNode, Utilization]]:
|
|
327
|
+
-> Tuple[float, Dict[BaseNode, Utilization]]: # pragma: no cover
|
|
326
328
|
"""
|
|
327
329
|
Compute resource utilization for graph's activations tensors.
|
|
328
330
|
|
|
@@ -462,7 +464,6 @@ class ResourceUtilizationCalculator:
|
|
|
462
464
|
node_bops = a_nbits * w_nbits * node_mac
|
|
463
465
|
return node_bops
|
|
464
466
|
|
|
465
|
-
@lru_cache
|
|
466
467
|
def _get_cut_target_nodes(self, cut: Cut, target_criterion: TargetInclusionCriterion) -> List[BaseNode]:
|
|
467
468
|
"""
|
|
468
469
|
Retrieve target nodes from a cut filtered by a criterion.
|
|
@@ -474,7 +475,7 @@ class ResourceUtilizationCalculator:
|
|
|
474
475
|
Returns:
|
|
475
476
|
A list of target nodes from a cut.
|
|
476
477
|
"""
|
|
477
|
-
cut_nodes =
|
|
478
|
+
cut_nodes = self.cuts[cut]
|
|
478
479
|
return self._get_target_activation_nodes(target_criterion, include_reused=True, nodes=cut_nodes)
|
|
479
480
|
|
|
480
481
|
def _get_target_weight_nodes(self,
|
|
@@ -500,7 +501,7 @@ class ResourceUtilizationCalculator:
|
|
|
500
501
|
quantized = [n for n in self.graph if n.has_any_weight_attr_to_quantize()]
|
|
501
502
|
configurable = self.graph.get_weights_configurable_nodes(self.fw_info, include_reused_nodes=include_reused)
|
|
502
503
|
nodes = [n for n in quantized if n not in configurable]
|
|
503
|
-
elif target_criterion == TargetInclusionCriterion.Any:
|
|
504
|
+
elif target_criterion == TargetInclusionCriterion.Any: # pragma: no cover
|
|
504
505
|
nodes = list(self.graph.nodes)
|
|
505
506
|
else: # pragma: no cover
|
|
506
507
|
raise ValueError(f'Unknown {target_criterion}.')
|
|
@@ -566,15 +567,15 @@ class ResourceUtilizationCalculator:
|
|
|
566
567
|
Selected nodes.
|
|
567
568
|
"""
|
|
568
569
|
nodes = nodes or self.graph.nodes
|
|
569
|
-
if target_criterion == TargetInclusionCriterion.QConfigurable:
|
|
570
|
+
if target_criterion == TargetInclusionCriterion.QConfigurable: # pragma: no cover
|
|
570
571
|
nodes = [n for n in nodes if n.has_configurable_activation()]
|
|
571
572
|
elif target_criterion == TargetInclusionCriterion.AnyQuantized:
|
|
572
573
|
nodes = [n for n in nodes if n.is_activation_quantization_enabled()]
|
|
573
|
-
elif target_criterion == TargetInclusionCriterion.QNonConfigurable:
|
|
574
|
+
elif target_criterion == TargetInclusionCriterion.QNonConfigurable: # pragma: no cover
|
|
574
575
|
nodes = [n for n in nodes if n.is_activation_quantization_enabled() and not n.has_configurable_activation()]
|
|
575
576
|
elif target_criterion != TargetInclusionCriterion.Any: # pragma: no cover
|
|
576
577
|
raise ValueError(f'Unknown {target_criterion}.')
|
|
577
|
-
if not include_reused:
|
|
578
|
+
if not include_reused: # pragma: no cover
|
|
578
579
|
nodes = [n for n in nodes if not n.reuse]
|
|
579
580
|
return nodes
|
|
580
581
|
|
|
@@ -664,4 +665,4 @@ class ResourceUtilizationCalculator:
|
|
|
664
665
|
f'as it {len(w_qcs)}!=1 unique candidates.')
|
|
665
666
|
return w_qcs[0].weights_n_bits
|
|
666
667
|
|
|
667
|
-
raise ValueError(f'Unknown mode {bitwidth_mode.name}')
|
|
668
|
+
raise ValueError(f'Unknown mode {bitwidth_mode.name}') # pragma: no cover
|