mct-nightly 2.2.0.20250113.527__py3-none-any.whl → 2.2.0.20250114.84821__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/METADATA +1 -1
- {mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/RECORD +103 -105
- model_compression_toolkit/__init__.py +2 -2
- model_compression_toolkit/core/common/framework_info.py +1 -3
- model_compression_toolkit/core/common/fusion/layer_fusing.py +6 -5
- model_compression_toolkit/core/common/graph/base_graph.py +20 -21
- model_compression_toolkit/core/common/graph/base_node.py +44 -17
- model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +7 -6
- model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -6
- model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +26 -135
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +36 -62
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +667 -0
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +25 -202
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +164 -470
- model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +30 -7
- model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +3 -5
- model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +2 -2
- model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +7 -6
- model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -1
- model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -1
- model_compression_toolkit/core/common/pruning/pruner.py +5 -3
- model_compression_toolkit/core/common/quantization/bit_width_config.py +6 -12
- model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +1 -2
- model_compression_toolkit/core/common/quantization/node_quantization_config.py +2 -2
- model_compression_toolkit/core/common/quantization/quantization_config.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +1 -1
- model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +1 -1
- model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +15 -14
- model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +1 -1
- model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +1 -1
- model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +5 -5
- model_compression_toolkit/core/graph_prep_runner.py +12 -11
- model_compression_toolkit/core/keras/data_util.py +24 -5
- model_compression_toolkit/core/keras/default_framework_info.py +1 -1
- model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +1 -2
- model_compression_toolkit/core/keras/resource_utilization_data_facade.py +5 -6
- model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +1 -1
- model_compression_toolkit/core/pytorch/default_framework_info.py +1 -1
- model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +1 -1
- model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +1 -1
- model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +4 -5
- model_compression_toolkit/core/runner.py +33 -60
- model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +1 -1
- model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +1 -1
- model_compression_toolkit/gptq/keras/quantization_facade.py +8 -9
- model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +1 -1
- model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +1 -1
- model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +1 -1
- model_compression_toolkit/gptq/pytorch/quantization_facade.py +8 -9
- model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +1 -1
- model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +1 -1
- model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +1 -1
- model_compression_toolkit/metadata.py +11 -10
- model_compression_toolkit/pruning/keras/pruning_facade.py +5 -6
- model_compression_toolkit/pruning/pytorch/pruning_facade.py +6 -7
- model_compression_toolkit/ptq/keras/quantization_facade.py +8 -9
- model_compression_toolkit/ptq/pytorch/quantization_facade.py +8 -9
- model_compression_toolkit/qat/keras/quantization_facade.py +5 -6
- model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +1 -1
- model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +1 -1
- model_compression_toolkit/qat/pytorch/quantization_facade.py +5 -9
- model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +1 -1
- model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +1 -1
- model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +1 -1
- model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +1 -1
- model_compression_toolkit/target_platform_capabilities/__init__.py +9 -0
- model_compression_toolkit/target_platform_capabilities/constants.py +1 -1
- model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +2 -2
- model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +18 -18
- model_compression_toolkit/target_platform_capabilities/schema/v1.py +13 -13
- model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/__init__.py +6 -6
- model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/attach2fw.py +10 -10
- model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/attach2keras.py +3 -3
- model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/attach2pytorch.py +3 -2
- model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/current_tpc.py +8 -8
- model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework/target_platform_capabilities.py → targetplatform2framework/framework_quantization_capabilities.py} +40 -40
- model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework/target_platform_capabilities_component.py → targetplatform2framework/framework_quantization_capabilities_component.py} +2 -2
- model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/layer_filter_params.py +0 -1
- model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/operations_to_layers.py +8 -8
- model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +24 -24
- model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +18 -18
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +3 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/{tp_model.py → tpc.py} +31 -32
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +3 -3
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/{tp_model.py → tpc.py} +27 -27
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +4 -4
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/{tp_model.py → tpc.py} +27 -27
- model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +1 -2
- model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +2 -1
- model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +1 -2
- model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +1 -1
- model_compression_toolkit/xquant/common/model_folding_utils.py +7 -6
- model_compression_toolkit/xquant/keras/keras_report_utils.py +4 -4
- model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +3 -3
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -105
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -33
- model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -23
- {mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/WHEEL +0 -0
- {mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/top_level.txt +0 -0
- /model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/attribute_filter.py +0 -0
@@ -23,7 +23,8 @@ from model_compression_toolkit.core.graph_prep_runner import graph_preparation_r
|
|
23
23
|
from typing import Any, Callable
|
24
24
|
|
25
25
|
from model_compression_toolkit.core.common import Graph
|
26
|
-
from model_compression_toolkit.target_platform_capabilities.
|
26
|
+
from model_compression_toolkit.target_platform_capabilities.targetplatform2framework import \
|
27
|
+
FrameworkQuantizationCapabilities
|
27
28
|
|
28
29
|
|
29
30
|
class ModelFoldingUtils:
|
@@ -35,19 +36,19 @@ class ModelFoldingUtils:
|
|
35
36
|
def __init__(self,
|
36
37
|
fw_info: FrameworkInfo,
|
37
38
|
fw_impl: FrameworkImplementation,
|
38
|
-
|
39
|
+
fw_default_fqc: FrameworkQuantizationCapabilities):
|
39
40
|
"""
|
40
41
|
Initialize the ModelFoldingUtils class with framework-specific information, implementation details,
|
41
|
-
and default
|
42
|
+
and default FQC.
|
42
43
|
|
43
44
|
Args:
|
44
45
|
fw_info: Framework-specific information.
|
45
46
|
fw_impl: Implementation functions for the framework.
|
46
|
-
|
47
|
+
fw_default_fqc: Default target platform capabilities for the handled framework.
|
47
48
|
"""
|
48
49
|
self.fw_info = fw_info
|
49
50
|
self.fw_impl = fw_impl
|
50
|
-
self.
|
51
|
+
self.fw_default_fqc = fw_default_fqc
|
51
52
|
|
52
53
|
def create_float_folded_model(self, float_model: Any, representative_dataset: Any = None) -> Any:
|
53
54
|
"""
|
@@ -101,5 +102,5 @@ class ModelFoldingUtils:
|
|
101
102
|
fw_impl=self.fw_impl,
|
102
103
|
fw_info=self.fw_info,
|
103
104
|
quantization_config=DEFAULTCONFIG,
|
104
|
-
|
105
|
+
fqc=self.fw_default_fqc)
|
105
106
|
return graph
|
@@ -17,6 +17,8 @@ from model_compression_toolkit import get_target_platform_capabilities
|
|
17
17
|
from model_compression_toolkit.constants import TENSORFLOW
|
18
18
|
from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
|
19
19
|
from model_compression_toolkit.core.keras.keras_implementation import KerasImplementation
|
20
|
+
from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.attach2keras import \
|
21
|
+
AttachTpcToKeras
|
20
22
|
from model_compression_toolkit.xquant.common.framework_report_utils import FrameworkReportUtils
|
21
23
|
from model_compression_toolkit.xquant.common.model_folding_utils import ModelFoldingUtils
|
22
24
|
from model_compression_toolkit.xquant.common.similarity_calculator import SimilarityCalculator
|
@@ -27,8 +29,6 @@ from model_compression_toolkit.xquant.keras.similarity_functions import KerasSim
|
|
27
29
|
from model_compression_toolkit.xquant.keras.tensorboard_utils import KerasTensorboardUtils
|
28
30
|
from mct_quantizers.keras.metadata import get_metadata
|
29
31
|
from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
|
30
|
-
from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework.attach2keras import \
|
31
|
-
AttachTpcToKeras
|
32
32
|
|
33
33
|
|
34
34
|
class KerasReportUtils(FrameworkReportUtils):
|
@@ -46,12 +46,12 @@ class KerasReportUtils(FrameworkReportUtils):
|
|
46
46
|
# Set the default Target Platform Capabilities (TPC) for Keras.
|
47
47
|
default_tpc = get_target_platform_capabilities(TENSORFLOW, DEFAULT_TP_MODEL)
|
48
48
|
attach2pytorch = AttachTpcToKeras()
|
49
|
-
|
49
|
+
framework_platform_capabilities = attach2pytorch.attach(default_tpc)
|
50
50
|
|
51
51
|
dataset_utils = KerasDatasetUtils()
|
52
52
|
model_folding = ModelFoldingUtils(fw_info=fw_info,
|
53
53
|
fw_impl=fw_impl,
|
54
|
-
|
54
|
+
fw_default_fqc=framework_platform_capabilities)
|
55
55
|
|
56
56
|
similarity_calculator = SimilarityCalculator(dataset_utils=dataset_utils,
|
57
57
|
model_folding=model_folding,
|
@@ -16,7 +16,7 @@ from model_compression_toolkit import get_target_platform_capabilities
|
|
16
16
|
from model_compression_toolkit.constants import PYTORCH
|
17
17
|
from model_compression_toolkit.core.pytorch.utils import get_working_device
|
18
18
|
from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
|
19
|
-
from model_compression_toolkit.target_platform_capabilities.
|
19
|
+
from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.attach2pytorch import \
|
20
20
|
AttachTpcToPytorch
|
21
21
|
|
22
22
|
from model_compression_toolkit.xquant.common.framework_report_utils import FrameworkReportUtils
|
@@ -44,12 +44,12 @@ class PytorchReportUtils(FrameworkReportUtils):
|
|
44
44
|
# Set the default Target Platform Capabilities (TPC) for PyTorch.
|
45
45
|
default_tpc = get_target_platform_capabilities(PYTORCH, DEFAULT_TP_MODEL)
|
46
46
|
attach2pytorch = AttachTpcToPytorch()
|
47
|
-
|
47
|
+
framework_quantization_capabilities = attach2pytorch.attach(default_tpc)
|
48
48
|
|
49
49
|
dataset_utils = PytorchDatasetUtils()
|
50
50
|
model_folding = ModelFoldingUtils(fw_info=fw_info,
|
51
51
|
fw_impl=fw_impl,
|
52
|
-
|
52
|
+
fw_default_fqc=framework_quantization_capabilities)
|
53
53
|
|
54
54
|
similarity_calculator = SimilarityCalculator(dataset_utils=dataset_utils,
|
55
55
|
model_folding=model_folding,
|
@@ -1,105 +0,0 @@
|
|
1
|
-
# Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
import copy
|
16
|
-
from enum import Enum
|
17
|
-
from functools import partial
|
18
|
-
from typing import List, Any
|
19
|
-
import numpy as np
|
20
|
-
|
21
|
-
from pulp import lpSum
|
22
|
-
|
23
|
-
|
24
|
-
def sum_ru_values(ru_vector: np.ndarray, set_constraints: bool = True) -> List[Any]:
|
25
|
-
"""
|
26
|
-
Aggregates resource utilization vector to a single resource utilization measure by summing all values.
|
27
|
-
|
28
|
-
Args:
|
29
|
-
ru_vector: A vector with nodes' resource utilization values.
|
30
|
-
set_constraints: A flag for utilizing the method for resource utilization computation of a
|
31
|
-
given config not for LP formalization purposes.
|
32
|
-
|
33
|
-
Returns: A list with an lpSum object for lp problem definition with the vector's sum.
|
34
|
-
|
35
|
-
"""
|
36
|
-
if set_constraints:
|
37
|
-
return [lpSum(ru_vector)]
|
38
|
-
return [0] if len(ru_vector) == 0 else [sum(ru_vector)]
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
def max_ru_values(ru_vector: np.ndarray, set_constraints: bool = True) -> List[float]:
|
43
|
-
"""
|
44
|
-
Aggregates resource utilization vector to allow max constraint in the linear programming problem formalization.
|
45
|
-
In order to do so, we need to define a separate constraint on each value in the resource utilization vector,
|
46
|
-
to be bounded by the target resource utilization.
|
47
|
-
|
48
|
-
Args:
|
49
|
-
ru_vector: A vector with nodes' resource utilization values.
|
50
|
-
set_constraints: A flag for utilizing the method for resource utilization computation of a
|
51
|
-
given config not for LP formalization purposes.
|
52
|
-
|
53
|
-
Returns: A list with the vector's values, to be used to define max constraint
|
54
|
-
in the linear programming problem formalization.
|
55
|
-
|
56
|
-
"""
|
57
|
-
if set_constraints:
|
58
|
-
return [ru for ru in ru_vector]
|
59
|
-
return [0] if len(ru_vector) == 0 else [max(ru_vector)]
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
def total_ru(ru_tensor: np.ndarray, set_constraints: bool = True) -> List[float]:
|
64
|
-
"""
|
65
|
-
Aggregates resource utilization vector to allow weights and activation total utilization constraint in the linear programming
|
66
|
-
problem formalization. In order to do so, we need to define a separate constraint on each activation memory utilization value in
|
67
|
-
the resource utilization vector, combined with the sum weights memory utilization.
|
68
|
-
Note that the given ru_tensor should contain weights and activation utilization values in each entry.
|
69
|
-
|
70
|
-
Args:
|
71
|
-
ru_tensor: A tensor with nodes' resource utilization values for weights and activation.
|
72
|
-
set_constraints: A flag for utilizing the method for resource utilization computation of a
|
73
|
-
given config not for LP formalization purposes.
|
74
|
-
|
75
|
-
Returns: A list with lpSum objects, to be used to define total constraint
|
76
|
-
in the linear programming problem formalization.
|
77
|
-
|
78
|
-
"""
|
79
|
-
if set_constraints:
|
80
|
-
weights_ru = lpSum([ru[0] for ru in ru_tensor])
|
81
|
-
return [weights_ru + activation_ru for _, activation_ru in ru_tensor]
|
82
|
-
else:
|
83
|
-
weights_ru = sum([ru[0] for ru in ru_tensor])
|
84
|
-
activation_ru = max([ru[1] for ru in ru_tensor])
|
85
|
-
return [weights_ru + activation_ru]
|
86
|
-
|
87
|
-
|
88
|
-
class MpRuAggregation(Enum):
|
89
|
-
"""
|
90
|
-
Defines resource utilization aggregation functions that can be used to compute final resource utilization metric.
|
91
|
-
The enum values can be used to call a function on a set of arguments.
|
92
|
-
|
93
|
-
SUM - applies the sum_ru_values function
|
94
|
-
|
95
|
-
MAX - applies the max_ru_values function
|
96
|
-
|
97
|
-
TOTAL - applies the total_ru function
|
98
|
-
|
99
|
-
"""
|
100
|
-
SUM = partial(sum_ru_values)
|
101
|
-
MAX = partial(max_ru_values)
|
102
|
-
TOTAL = partial(total_ru)
|
103
|
-
|
104
|
-
def __call__(self, *args):
|
105
|
-
return self.value(*args)
|
@@ -1,33 +0,0 @@
|
|
1
|
-
# Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
from typing import NamedTuple
|
16
|
-
|
17
|
-
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import RUTarget
|
18
|
-
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.ru_aggregation_methods import MpRuAggregation
|
19
|
-
from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.ru_methods import MpRuMetric
|
20
|
-
|
21
|
-
|
22
|
-
# When adding a RUTarget that we want to consider in our mp search,
|
23
|
-
# a matching pair of resource_utilization_tools computation function and a resource_utilization_tools
|
24
|
-
# aggregation function should be added to this dictionary
|
25
|
-
class RuFunctions(NamedTuple):
|
26
|
-
metric_fn: MpRuMetric
|
27
|
-
aggregate_fn: MpRuAggregation
|
28
|
-
|
29
|
-
|
30
|
-
ru_functions_mapping = {RUTarget.WEIGHTS: RuFunctions(MpRuMetric.WEIGHTS_SIZE, MpRuAggregation.SUM),
|
31
|
-
RUTarget.ACTIVATION: RuFunctions(MpRuMetric.ACTIVATION_MAXCUT_SIZE, MpRuAggregation.MAX),
|
32
|
-
RUTarget.TOTAL: RuFunctions(MpRuMetric.TOTAL_WEIGHTS_ACTIVATION_SIZE, MpRuAggregation.TOTAL),
|
33
|
-
RUTarget.BOPS: RuFunctions(MpRuMetric.BOPS_COUNT, MpRuAggregation.SUM)}
|
@@ -1,23 +0,0 @@
|
|
1
|
-
# Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework.attribute_filter import AttributeFilter
|
17
|
-
from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities, OperationsSetToLayers, Smaller, SmallerEq, NotEq, Eq, GreaterEq, Greater, LayerFilterParams, OperationsToLayers, get_current_tpc
|
18
|
-
from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformModel, OperatorsSet, \
|
19
|
-
OperatorSetConcat, Signedness, AttributeQuantizationConfig, OpQuantizationConfig, QuantizationConfigOptions, Fusing
|
20
|
-
|
21
|
-
from mct_quantizers import QuantizationMethod
|
22
|
-
|
23
|
-
|
{mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/LICENSE.md
RENAMED
File without changes
|
{mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|