mct-nightly 2.2.0.20250113.527__py3-none-any.whl → 2.2.0.20250114.84821__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (106) hide show
  1. {mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/METADATA +1 -1
  2. {mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/RECORD +103 -105
  3. model_compression_toolkit/__init__.py +2 -2
  4. model_compression_toolkit/core/common/framework_info.py +1 -3
  5. model_compression_toolkit/core/common/fusion/layer_fusing.py +6 -5
  6. model_compression_toolkit/core/common/graph/base_graph.py +20 -21
  7. model_compression_toolkit/core/common/graph/base_node.py +44 -17
  8. model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +7 -6
  9. model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -6
  10. model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +26 -135
  11. model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +36 -62
  12. model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +667 -0
  13. model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +25 -202
  14. model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +164 -470
  15. model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +30 -7
  16. model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +3 -5
  17. model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +2 -2
  18. model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +7 -6
  19. model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -1
  20. model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -1
  21. model_compression_toolkit/core/common/pruning/pruner.py +5 -3
  22. model_compression_toolkit/core/common/quantization/bit_width_config.py +6 -12
  23. model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +1 -2
  24. model_compression_toolkit/core/common/quantization/node_quantization_config.py +2 -2
  25. model_compression_toolkit/core/common/quantization/quantization_config.py +1 -1
  26. model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +1 -1
  27. model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +1 -1
  28. model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +1 -1
  29. model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +1 -1
  30. model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +1 -1
  31. model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +1 -1
  32. model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +1 -1
  33. model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +15 -14
  34. model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +1 -1
  35. model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +1 -1
  36. model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +5 -5
  37. model_compression_toolkit/core/graph_prep_runner.py +12 -11
  38. model_compression_toolkit/core/keras/data_util.py +24 -5
  39. model_compression_toolkit/core/keras/default_framework_info.py +1 -1
  40. model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +1 -2
  41. model_compression_toolkit/core/keras/resource_utilization_data_facade.py +5 -6
  42. model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +1 -1
  43. model_compression_toolkit/core/pytorch/default_framework_info.py +1 -1
  44. model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +1 -1
  45. model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +1 -1
  46. model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +4 -5
  47. model_compression_toolkit/core/runner.py +33 -60
  48. model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +1 -1
  49. model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +1 -1
  50. model_compression_toolkit/gptq/keras/quantization_facade.py +8 -9
  51. model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +1 -1
  52. model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +1 -1
  53. model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +1 -1
  54. model_compression_toolkit/gptq/pytorch/quantization_facade.py +8 -9
  55. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +1 -1
  56. model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +1 -1
  57. model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +1 -1
  58. model_compression_toolkit/metadata.py +11 -10
  59. model_compression_toolkit/pruning/keras/pruning_facade.py +5 -6
  60. model_compression_toolkit/pruning/pytorch/pruning_facade.py +6 -7
  61. model_compression_toolkit/ptq/keras/quantization_facade.py +8 -9
  62. model_compression_toolkit/ptq/pytorch/quantization_facade.py +8 -9
  63. model_compression_toolkit/qat/keras/quantization_facade.py +5 -6
  64. model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +1 -1
  65. model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +1 -1
  66. model_compression_toolkit/qat/pytorch/quantization_facade.py +5 -9
  67. model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +1 -1
  68. model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +1 -1
  69. model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +1 -1
  70. model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +1 -1
  71. model_compression_toolkit/target_platform_capabilities/__init__.py +9 -0
  72. model_compression_toolkit/target_platform_capabilities/constants.py +1 -1
  73. model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +2 -2
  74. model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +18 -18
  75. model_compression_toolkit/target_platform_capabilities/schema/v1.py +13 -13
  76. model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/__init__.py +6 -6
  77. model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/attach2fw.py +10 -10
  78. model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/attach2keras.py +3 -3
  79. model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/attach2pytorch.py +3 -2
  80. model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/current_tpc.py +8 -8
  81. model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework/target_platform_capabilities.py → targetplatform2framework/framework_quantization_capabilities.py} +40 -40
  82. model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework/target_platform_capabilities_component.py → targetplatform2framework/framework_quantization_capabilities_component.py} +2 -2
  83. model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/layer_filter_params.py +0 -1
  84. model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/operations_to_layers.py +8 -8
  85. model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +24 -24
  86. model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +18 -18
  87. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +3 -3
  88. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/{tp_model.py → tpc.py} +31 -32
  89. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +3 -3
  90. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/{tp_model.py → tpc.py} +27 -27
  91. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +4 -4
  92. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/{tp_model.py → tpc.py} +27 -27
  93. model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +1 -2
  94. model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +2 -1
  95. model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +1 -2
  96. model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +1 -1
  97. model_compression_toolkit/xquant/common/model_folding_utils.py +7 -6
  98. model_compression_toolkit/xquant/keras/keras_report_utils.py +4 -4
  99. model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +3 -3
  100. model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -105
  101. model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -33
  102. model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -23
  103. {mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/LICENSE.md +0 -0
  104. {mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/WHEEL +0 -0
  105. {mct_nightly-2.2.0.20250113.527.dist-info → mct_nightly-2.2.0.20250114.84821.dist-info}/top_level.txt +0 -0
  106. /model_compression_toolkit/target_platform_capabilities/{target_platform/targetplatform2framework → targetplatform2framework}/attribute_filter.py +0 -0
@@ -23,7 +23,8 @@ from model_compression_toolkit.core.graph_prep_runner import graph_preparation_r
23
23
  from typing import Any, Callable
24
24
 
25
25
  from model_compression_toolkit.core.common import Graph
26
- from model_compression_toolkit.target_platform_capabilities.target_platform import TargetPlatformCapabilities
26
+ from model_compression_toolkit.target_platform_capabilities.targetplatform2framework import \
27
+ FrameworkQuantizationCapabilities
27
28
 
28
29
 
29
30
  class ModelFoldingUtils:
@@ -35,19 +36,19 @@ class ModelFoldingUtils:
35
36
  def __init__(self,
36
37
  fw_info: FrameworkInfo,
37
38
  fw_impl: FrameworkImplementation,
38
- fw_default_tpc: TargetPlatformCapabilities):
39
+ fw_default_fqc: FrameworkQuantizationCapabilities):
39
40
  """
40
41
  Initialize the ModelFoldingUtils class with framework-specific information, implementation details,
41
- and default TPC.
42
+ and default FQC.
42
43
 
43
44
  Args:
44
45
  fw_info: Framework-specific information.
45
46
  fw_impl: Implementation functions for the framework.
46
- fw_default_tpc: Default target platform capabilities for the handled framework.
47
+ fw_default_fqc: Default target platform capabilities for the handled framework.
47
48
  """
48
49
  self.fw_info = fw_info
49
50
  self.fw_impl = fw_impl
50
- self.fw_default_tpc = fw_default_tpc
51
+ self.fw_default_fqc = fw_default_fqc
51
52
 
52
53
  def create_float_folded_model(self, float_model: Any, representative_dataset: Any = None) -> Any:
53
54
  """
@@ -101,5 +102,5 @@ class ModelFoldingUtils:
101
102
  fw_impl=self.fw_impl,
102
103
  fw_info=self.fw_info,
103
104
  quantization_config=DEFAULTCONFIG,
104
- tpc=self.fw_default_tpc)
105
+ fqc=self.fw_default_fqc)
105
106
  return graph
@@ -17,6 +17,8 @@ from model_compression_toolkit import get_target_platform_capabilities
17
17
  from model_compression_toolkit.constants import TENSORFLOW
18
18
  from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
19
19
  from model_compression_toolkit.core.keras.keras_implementation import KerasImplementation
20
+ from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.attach2keras import \
21
+ AttachTpcToKeras
20
22
  from model_compression_toolkit.xquant.common.framework_report_utils import FrameworkReportUtils
21
23
  from model_compression_toolkit.xquant.common.model_folding_utils import ModelFoldingUtils
22
24
  from model_compression_toolkit.xquant.common.similarity_calculator import SimilarityCalculator
@@ -27,8 +29,6 @@ from model_compression_toolkit.xquant.keras.similarity_functions import KerasSim
27
29
  from model_compression_toolkit.xquant.keras.tensorboard_utils import KerasTensorboardUtils
28
30
  from mct_quantizers.keras.metadata import get_metadata
29
31
  from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
30
- from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework.attach2keras import \
31
- AttachTpcToKeras
32
32
 
33
33
 
34
34
  class KerasReportUtils(FrameworkReportUtils):
@@ -46,12 +46,12 @@ class KerasReportUtils(FrameworkReportUtils):
46
46
  # Set the default Target Platform Capabilities (TPC) for Keras.
47
47
  default_tpc = get_target_platform_capabilities(TENSORFLOW, DEFAULT_TP_MODEL)
48
48
  attach2pytorch = AttachTpcToKeras()
49
- target_platform_capabilities = attach2pytorch.attach(default_tpc)
49
+ framework_platform_capabilities = attach2pytorch.attach(default_tpc)
50
50
 
51
51
  dataset_utils = KerasDatasetUtils()
52
52
  model_folding = ModelFoldingUtils(fw_info=fw_info,
53
53
  fw_impl=fw_impl,
54
- fw_default_tpc=target_platform_capabilities)
54
+ fw_default_fqc=framework_platform_capabilities)
55
55
 
56
56
  similarity_calculator = SimilarityCalculator(dataset_utils=dataset_utils,
57
57
  model_folding=model_folding,
@@ -16,7 +16,7 @@ from model_compression_toolkit import get_target_platform_capabilities
16
16
  from model_compression_toolkit.constants import PYTORCH
17
17
  from model_compression_toolkit.core.pytorch.utils import get_working_device
18
18
  from model_compression_toolkit.target_platform_capabilities.constants import DEFAULT_TP_MODEL
19
- from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework.attach2pytorch import \
19
+ from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.attach2pytorch import \
20
20
  AttachTpcToPytorch
21
21
 
22
22
  from model_compression_toolkit.xquant.common.framework_report_utils import FrameworkReportUtils
@@ -44,12 +44,12 @@ class PytorchReportUtils(FrameworkReportUtils):
44
44
  # Set the default Target Platform Capabilities (TPC) for PyTorch.
45
45
  default_tpc = get_target_platform_capabilities(PYTORCH, DEFAULT_TP_MODEL)
46
46
  attach2pytorch = AttachTpcToPytorch()
47
- target_platform_capabilities = attach2pytorch.attach(default_tpc)
47
+ framework_quantization_capabilities = attach2pytorch.attach(default_tpc)
48
48
 
49
49
  dataset_utils = PytorchDatasetUtils()
50
50
  model_folding = ModelFoldingUtils(fw_info=fw_info,
51
51
  fw_impl=fw_impl,
52
- fw_default_tpc=target_platform_capabilities)
52
+ fw_default_fqc=framework_quantization_capabilities)
53
53
 
54
54
  similarity_calculator = SimilarityCalculator(dataset_utils=dataset_utils,
55
55
  model_folding=model_folding,
@@ -1,105 +0,0 @@
1
- # Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- import copy
16
- from enum import Enum
17
- from functools import partial
18
- from typing import List, Any
19
- import numpy as np
20
-
21
- from pulp import lpSum
22
-
23
-
24
- def sum_ru_values(ru_vector: np.ndarray, set_constraints: bool = True) -> List[Any]:
25
- """
26
- Aggregates resource utilization vector to a single resource utilization measure by summing all values.
27
-
28
- Args:
29
- ru_vector: A vector with nodes' resource utilization values.
30
- set_constraints: A flag for utilizing the method for resource utilization computation of a
31
- given config not for LP formalization purposes.
32
-
33
- Returns: A list with an lpSum object for lp problem definition with the vector's sum.
34
-
35
- """
36
- if set_constraints:
37
- return [lpSum(ru_vector)]
38
- return [0] if len(ru_vector) == 0 else [sum(ru_vector)]
39
-
40
-
41
-
42
- def max_ru_values(ru_vector: np.ndarray, set_constraints: bool = True) -> List[float]:
43
- """
44
- Aggregates resource utilization vector to allow max constraint in the linear programming problem formalization.
45
- In order to do so, we need to define a separate constraint on each value in the resource utilization vector,
46
- to be bounded by the target resource utilization.
47
-
48
- Args:
49
- ru_vector: A vector with nodes' resource utilization values.
50
- set_constraints: A flag for utilizing the method for resource utilization computation of a
51
- given config not for LP formalization purposes.
52
-
53
- Returns: A list with the vector's values, to be used to define max constraint
54
- in the linear programming problem formalization.
55
-
56
- """
57
- if set_constraints:
58
- return [ru for ru in ru_vector]
59
- return [0] if len(ru_vector) == 0 else [max(ru_vector)]
60
-
61
-
62
-
63
- def total_ru(ru_tensor: np.ndarray, set_constraints: bool = True) -> List[float]:
64
- """
65
- Aggregates resource utilization vector to allow weights and activation total utilization constraint in the linear programming
66
- problem formalization. In order to do so, we need to define a separate constraint on each activation memory utilization value in
67
- the resource utilization vector, combined with the sum weights memory utilization.
68
- Note that the given ru_tensor should contain weights and activation utilization values in each entry.
69
-
70
- Args:
71
- ru_tensor: A tensor with nodes' resource utilization values for weights and activation.
72
- set_constraints: A flag for utilizing the method for resource utilization computation of a
73
- given config not for LP formalization purposes.
74
-
75
- Returns: A list with lpSum objects, to be used to define total constraint
76
- in the linear programming problem formalization.
77
-
78
- """
79
- if set_constraints:
80
- weights_ru = lpSum([ru[0] for ru in ru_tensor])
81
- return [weights_ru + activation_ru for _, activation_ru in ru_tensor]
82
- else:
83
- weights_ru = sum([ru[0] for ru in ru_tensor])
84
- activation_ru = max([ru[1] for ru in ru_tensor])
85
- return [weights_ru + activation_ru]
86
-
87
-
88
- class MpRuAggregation(Enum):
89
- """
90
- Defines resource utilization aggregation functions that can be used to compute final resource utilization metric.
91
- The enum values can be used to call a function on a set of arguments.
92
-
93
- SUM - applies the sum_ru_values function
94
-
95
- MAX - applies the max_ru_values function
96
-
97
- TOTAL - applies the total_ru function
98
-
99
- """
100
- SUM = partial(sum_ru_values)
101
- MAX = partial(max_ru_values)
102
- TOTAL = partial(total_ru)
103
-
104
- def __call__(self, *args):
105
- return self.value(*args)
@@ -1,33 +0,0 @@
1
- # Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
- from typing import NamedTuple
16
-
17
- from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import RUTarget
18
- from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.ru_aggregation_methods import MpRuAggregation
19
- from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.ru_methods import MpRuMetric
20
-
21
-
22
- # When adding a RUTarget that we want to consider in our mp search,
23
- # a matching pair of resource_utilization_tools computation function and a resource_utilization_tools
24
- # aggregation function should be added to this dictionary
25
- class RuFunctions(NamedTuple):
26
- metric_fn: MpRuMetric
27
- aggregate_fn: MpRuAggregation
28
-
29
-
30
- ru_functions_mapping = {RUTarget.WEIGHTS: RuFunctions(MpRuMetric.WEIGHTS_SIZE, MpRuAggregation.SUM),
31
- RUTarget.ACTIVATION: RuFunctions(MpRuMetric.ACTIVATION_MAXCUT_SIZE, MpRuAggregation.MAX),
32
- RUTarget.TOTAL: RuFunctions(MpRuMetric.TOTAL_WEIGHTS_ACTIVATION_SIZE, MpRuAggregation.TOTAL),
33
- RUTarget.BOPS: RuFunctions(MpRuMetric.BOPS_COUNT, MpRuAggregation.SUM)}
@@ -1,23 +0,0 @@
1
- # Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework.attribute_filter import AttributeFilter
17
- from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities, OperationsSetToLayers, Smaller, SmallerEq, NotEq, Eq, GreaterEq, Greater, LayerFilterParams, OperationsToLayers, get_current_tpc
18
- from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import TargetPlatformModel, OperatorsSet, \
19
- OperatorSetConcat, Signedness, AttributeQuantizationConfig, OpQuantizationConfig, QuantizationConfigOptions, Fusing
20
-
21
- from mct_quantizers import QuantizationMethod
22
-
23
-