mct-nightly 2.2.0.20250113.134913__tar.gz → 2.2.0.20250114.134534__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (542) hide show
  1. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/PKG-INFO +1 -1
  2. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/SOURCES.txt +15 -17
  4. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/__init__.py +2 -2
  5. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/framework_info.py +1 -3
  6. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/fusion/layer_fusing.py +6 -5
  7. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/base_graph.py +20 -21
  8. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/base_node.py +44 -17
  9. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +7 -6
  10. mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py +187 -0
  11. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -6
  12. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +35 -162
  13. mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +100 -0
  14. mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py +668 -0
  15. mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +140 -0
  16. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +74 -51
  17. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +3 -5
  18. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +2 -2
  19. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +7 -6
  20. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -1
  21. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -1
  22. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/pruner.py +5 -3
  23. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/bit_width_config.py +6 -12
  24. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +1 -2
  25. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +2 -2
  26. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_config.py +1 -1
  27. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +1 -1
  28. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +1 -1
  29. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +1 -1
  30. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +1 -1
  31. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +1 -1
  32. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +1 -1
  33. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +1 -1
  34. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +15 -14
  35. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +1 -1
  36. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +1 -1
  37. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +5 -5
  38. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/graph_prep_runner.py +12 -11
  39. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/default_framework_info.py +1 -1
  40. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +1 -2
  41. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +5 -6
  42. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +1 -1
  43. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/default_framework_info.py +1 -1
  44. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +1 -1
  45. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +1 -1
  46. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +4 -5
  47. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/runner.py +33 -60
  48. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +1 -1
  49. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +1 -1
  50. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantization_facade.py +8 -9
  51. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +1 -1
  52. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +1 -1
  53. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +1 -1
  54. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +8 -9
  55. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +1 -1
  56. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +1 -1
  57. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +1 -1
  58. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/metadata.py +11 -10
  59. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/pruning/keras/pruning_facade.py +5 -6
  60. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +6 -7
  61. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/keras/quantization_facade.py +8 -9
  62. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +8 -9
  63. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantization_facade.py +5 -6
  64. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +1 -1
  65. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +1 -1
  66. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantization_facade.py +5 -9
  67. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +1 -1
  68. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +1 -1
  69. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +1 -1
  70. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +1 -1
  71. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities}/__init__.py +7 -7
  72. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/constants.py +1 -1
  73. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +2 -2
  74. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +18 -18
  75. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/schema/v1.py +13 -13
  76. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities}/targetplatform2framework/__init__.py +6 -6
  77. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities}/targetplatform2framework/attach2fw.py +10 -10
  78. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities}/targetplatform2framework/attach2keras.py +3 -3
  79. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities}/targetplatform2framework/attach2pytorch.py +3 -2
  80. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities}/targetplatform2framework/current_tpc.py +8 -8
  81. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py +40 -40
  82. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py +2 -2
  83. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities}/targetplatform2framework/layer_filter_params.py +0 -1
  84. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities}/targetplatform2framework/operations_to_layers.py +8 -8
  85. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_io_handler.py +24 -24
  86. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +18 -18
  87. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +3 -3
  88. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py +31 -32
  89. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +3 -3
  90. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py +27 -27
  91. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +4 -4
  92. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py +27 -27
  93. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +1 -2
  94. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +2 -1
  95. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +1 -2
  96. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +1 -1
  97. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/model_folding_utils.py +7 -6
  98. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/keras_report_utils.py +4 -4
  99. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +3 -3
  100. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/tests/test_suite.py +3 -3
  101. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -126
  102. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -317
  103. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -105
  104. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -33
  105. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -528
  106. mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -14
  107. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/LICENSE.md +0 -0
  108. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/README.md +0 -0
  109. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/dependency_links.txt +0 -0
  110. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/requires.txt +0 -0
  111. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/mct_nightly.egg-info/top_level.txt +0 -0
  112. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/constants.py +0 -0
  113. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/__init__.py +0 -0
  114. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/analyzer.py +0 -0
  115. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/__init__.py +0 -0
  116. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  117. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  118. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  119. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  120. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  121. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  122. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  123. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  124. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  125. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  126. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  127. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  128. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  129. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  130. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  131. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  132. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  133. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  134. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  135. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  136. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  137. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  138. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  139. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  140. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  141. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  142. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  143. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  144. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  145. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  146. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  147. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  148. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  149. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  150. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  151. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  152. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  153. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  154. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  155. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  156. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  157. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  158. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  159. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  160. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  161. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  162. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  163. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  164. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/model_collector.py +0 -0
  165. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/model_validation.py +0 -0
  166. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  167. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  168. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  169. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  170. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  171. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  172. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  173. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  174. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  175. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  176. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  177. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  178. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  179. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  180. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  181. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  182. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  183. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  184. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  185. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  186. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  187. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  188. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  189. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  190. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  191. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  192. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  193. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  194. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  195. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  196. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  197. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  198. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  199. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  200. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  201. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  202. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
  203. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  204. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  205. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
  206. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  207. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  208. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  209. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  210. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  211. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  212. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  213. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  214. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  215. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  216. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  217. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  218. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  219. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/user_info.py +0 -0
  220. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  221. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  222. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  223. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  224. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/__init__.py +0 -0
  225. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  226. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  227. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  228. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  229. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  230. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  231. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  232. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/constants.py +0 -0
  233. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  234. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/data_util.py +0 -0
  235. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  236. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  237. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  238. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  239. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  240. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  241. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  242. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  243. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  244. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  245. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  246. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  247. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  248. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  249. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  250. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  251. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  252. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  253. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  254. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  255. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  256. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  257. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  258. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  259. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  260. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  261. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  262. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  263. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  264. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  265. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  266. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  267. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  268. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  269. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  270. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  271. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  272. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  273. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  274. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  275. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  276. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  277. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  278. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  279. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  280. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  281. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  282. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  283. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  284. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
  285. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  286. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  287. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  288. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  289. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  290. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  291. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  292. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  293. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  294. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  295. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  296. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  297. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  298. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
  299. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  300. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  301. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  302. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  303. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  304. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  305. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  306. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  307. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  308. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
  309. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  310. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py +0 -0
  311. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  312. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  313. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  314. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  315. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  316. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  317. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  318. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  319. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  320. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  321. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  322. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  323. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  324. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  325. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  326. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  327. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  328. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  329. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  330. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  331. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  332. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  333. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  334. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  335. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  336. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  337. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  338. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  339. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  340. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  341. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  342. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
  343. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  344. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  345. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/__init__.py +0 -0
  346. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  347. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  348. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  349. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  350. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  351. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  352. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  353. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  354. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  355. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  356. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  357. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  358. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  359. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  360. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  361. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  362. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  363. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  364. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  365. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  366. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  367. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  368. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  369. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  370. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  371. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  372. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  373. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  374. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  375. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  376. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  377. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  378. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  379. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  380. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  381. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  382. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/defaultdict.py +0 -0
  383. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/__init__.py +0 -0
  384. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  385. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  386. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  387. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  388. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  389. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  390. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  391. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  392. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  393. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  394. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  395. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  396. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  397. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  398. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  399. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  400. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  401. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  402. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  403. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  404. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  405. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  406. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  407. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  408. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  409. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  410. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  411. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  412. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  413. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/__init__.py +0 -0
  414. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  415. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  416. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  417. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  418. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  419. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  420. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
  421. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
  422. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  423. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  424. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  425. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  426. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  427. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  428. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  429. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  430. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  431. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  432. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  433. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  434. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  435. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  436. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  437. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  438. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  439. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  440. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  441. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  442. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  443. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  444. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  445. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  446. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/gptq/runner.py +0 -0
  447. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/logger.py +0 -0
  448. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/pruning/__init__.py +0 -0
  449. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  450. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  451. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/__init__.py +0 -0
  452. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  453. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  454. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/ptq/runner.py +0 -0
  455. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/__init__.py +0 -0
  456. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/common/__init__.py +0 -0
  457. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  458. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  459. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  460. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
  461. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  462. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  463. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  464. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  465. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  466. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  467. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  468. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  469. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  470. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  471. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  472. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  473. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  474. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -0
  475. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/target_platform → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities}/targetplatform2framework/attribute_filter.py +0 -0
  476. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  477. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  478. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  479. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc}/__init__.py +0 -0
  480. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  481. {mct_nightly-2.2.0.20250113.134913/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc → mct_nightly-2.2.0.20250114.134534/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc}/__init__.py +0 -0
  482. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  483. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  484. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  485. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
  486. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  487. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  488. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  489. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  490. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  491. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
  492. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  493. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
  494. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
  495. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
  496. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
  497. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
  498. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
  499. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
  500. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
  501. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  502. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  503. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  504. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  505. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  506. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  507. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  508. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  509. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  510. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  511. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  512. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  513. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  514. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  515. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  516. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  517. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/verify_packages.py +0 -0
  518. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/__init__.py +0 -0
  519. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  520. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/constants.py +0 -0
  521. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  522. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  523. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  524. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  525. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  526. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  527. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  528. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  529. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  530. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  531. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  532. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  533. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  534. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  535. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  536. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  537. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  538. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  539. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  540. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  541. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/setup.cfg +0 -0
  542. {mct_nightly-2.2.0.20250113.134913 → mct_nightly-2.2.0.20250114.134534}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20250113.134913
3
+ Version: 2.2.0.20250114.134534
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20250113.134913
3
+ Version: 2.2.0.20250114.134534
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Classifier: Programming Language :: Python :: 3
6
6
  Classifier: License :: OSI Approved :: Apache Software License
@@ -74,6 +74,7 @@ model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_uti
74
74
  model_compression_toolkit/core/common/mixed_precision/distance_weighting.py
75
75
  model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py
76
76
  model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py
77
+ model_compression_toolkit/core/common/mixed_precision/mixed_precision_ru_helper.py
77
78
  model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py
78
79
  model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py
79
80
  model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py
@@ -81,10 +82,8 @@ model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py
81
82
  model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py
82
83
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py
83
84
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py
85
+ model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_calculator.py
84
86
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py
85
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py
86
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py
87
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py
88
87
  model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py
89
88
  model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py
90
89
  model_compression_toolkit/core/common/network_editors/__init__.py
@@ -445,31 +444,30 @@ model_compression_toolkit/target_platform_capabilities/schema/__init__.py
445
444
  model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py
446
445
  model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py
447
446
  model_compression_toolkit/target_platform_capabilities/schema/v1.py
448
- model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py
449
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py
450
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2fw.py
451
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2keras.py
452
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2pytorch.py
453
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py
454
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py
455
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py
456
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py
457
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py
458
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py
447
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/__init__.py
448
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2fw.py
449
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2keras.py
450
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attach2pytorch.py
451
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/attribute_filter.py
452
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/current_tpc.py
453
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities.py
454
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/framework_quantization_capabilities_component.py
455
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/layer_filter_params.py
456
+ model_compression_toolkit/target_platform_capabilities/targetplatform2framework/operations_to_layers.py
459
457
  model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py
460
458
  model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py
461
459
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py
462
460
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py
463
461
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py
464
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py
462
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc.py
465
463
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py
466
464
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py
467
465
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py
468
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py
466
+ model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc.py
469
467
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py
470
468
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py
471
469
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py
472
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py
470
+ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc.py
473
471
  model_compression_toolkit/trainable_infrastructure/__init__.py
474
472
  model_compression_toolkit/trainable_infrastructure/common/__init__.py
475
473
  model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py
@@ -14,7 +14,7 @@
14
14
  # ==============================================================================
15
15
 
16
16
  from model_compression_toolkit.defaultdict import DefaultDict
17
- from model_compression_toolkit.target_platform_capabilities import target_platform
17
+ from model_compression_toolkit import target_platform_capabilities
18
18
  from model_compression_toolkit.target_platform_capabilities.tpc_models.get_target_platform_capabilities import get_target_platform_capabilities
19
19
  from model_compression_toolkit import core
20
20
  from model_compression_toolkit.logger import set_log_folder
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20250113.134913"
30
+ __version__ = "2.2.0.20250114.134534"
@@ -18,10 +18,8 @@ from collections.abc import Callable
18
18
  from enum import Enum
19
19
  from typing import Dict, Any, List
20
20
 
21
-
22
-
21
+ from mct_quantizers import QuantizationMethod
23
22
  from model_compression_toolkit.defaultdict import DefaultDict
24
- from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
25
23
 
26
24
 
27
25
  class ChannelAxis(Enum):
@@ -16,8 +16,9 @@ import copy
16
16
  from typing import Any, List
17
17
  from model_compression_toolkit.core.common.graph.base_graph import Graph
18
18
  from model_compression_toolkit.core.common.graph.base_node import BaseNode
19
- from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities
20
- from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework.layer_filter_params import LayerFilterParams
19
+ from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.framework_quantization_capabilities import \
20
+ FrameworkQuantizationCapabilities
21
+ from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.layer_filter_params import LayerFilterParams
21
22
 
22
23
 
23
24
  def filter_fusing_patterns(fusing_patterns: List[List[Any]], node: BaseNode, idx: int = 0) -> List[List[Any]]:
@@ -77,18 +78,18 @@ def disable_nodes_activation_quantization(nodes: List[BaseNode]):
77
78
  qc.activation_quantization_cfg.enable_activation_quantization = False
78
79
 
79
80
 
80
- def fusion(graph: Graph, tpc: TargetPlatformCapabilities) -> Graph:
81
+ def fusion(graph: Graph, fqc: FrameworkQuantizationCapabilities) -> Graph:
81
82
  """
82
83
  Fusing defines a list of operators that should be combined and treated as a single operator,
83
84
  hence no quantization is applied between them when they appear in the graph.
84
85
  This function search and disable quantization for such patterns.
85
86
  Args:
86
87
  graph: Graph we apply the fusion on.
87
- tpc: TargetPlatformCapabilities object that describes the desired inference target platform (includes fusing patterns MCT should handle).
88
+ fqc: FrameworkQuantizationCapabilities object that describes the desired inference target platform (includes fusing patterns MCT should handle).
88
89
  Returns:
89
90
  Graph after applying fusion activation marking.
90
91
  """
91
- fusing_patterns = tpc.get_fusing_patterns()
92
+ fusing_patterns = fqc.get_fusing_patterns()
92
93
  if len(fusing_patterns) == 0:
93
94
  return graph
94
95
 
@@ -32,8 +32,9 @@ from model_compression_toolkit.core.common.collectors.statistics_collector impor
32
32
  from model_compression_toolkit.core.common.pruning.pruning_section import PruningSection
33
33
  from model_compression_toolkit.core.common.user_info import UserInformation
34
34
  from model_compression_toolkit.logger import Logger
35
- from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import \
36
- TargetPlatformCapabilities, LayerFilterParams
35
+ from model_compression_toolkit.target_platform_capabilities.targetplatform2framework import LayerFilterParams
36
+ from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.framework_quantization_capabilities import \
37
+ FrameworkQuantizationCapabilities
37
38
 
38
39
  OutTensor = namedtuple('OutTensor', 'node node_out_index')
39
40
 
@@ -86,29 +87,29 @@ class Graph(nx.MultiDiGraph, GraphSearches):
86
87
 
87
88
  self.fw_info = fw_info
88
89
 
89
- def set_tpc(self,
90
- tpc: TargetPlatformCapabilities):
90
+ def set_fqc(self,
91
+ fqc: FrameworkQuantizationCapabilities):
91
92
  """
92
- Set the graph's TPC.
93
+ Set the graph's FQC.
93
94
  Args:
94
- tpc: TargetPlatformCapabilities object.
95
+ fqc: FrameworkQuantizationCapabilities object.
95
96
  """
96
- # validate graph nodes are either from the framework or a custom layer defined in the TPC
97
- # Validate graph nodes are either built-in layers from the framework or custom layers defined in the TPC
98
- tpc_layers = tpc.op_sets_to_layers.get_layers()
99
- tpc_filtered_layers = [layer for layer in tpc_layers if isinstance(layer, LayerFilterParams)]
97
+ # validate graph nodes are either from the framework or a custom layer defined in the FQC
98
+ # Validate graph nodes are either built-in layers from the framework or custom layers defined in the FQC
99
+ fqc_layers = fqc.op_sets_to_layers.get_layers()
100
+ fqc_filtered_layers = [layer for layer in fqc_layers if isinstance(layer, LayerFilterParams)]
100
101
  for n in self.nodes:
101
- is_node_in_tpc = any([n.is_match_type(_type) for _type in tpc_layers]) or \
102
- any([n.is_match_filter_params(filtered_layer) for filtered_layer in tpc_filtered_layers])
102
+ is_node_in_fqc = any([n.is_match_type(_type) for _type in fqc_layers]) or \
103
+ any([n.is_match_filter_params(filtered_layer) for filtered_layer in fqc_filtered_layers])
103
104
  if n.is_custom:
104
- if not is_node_in_tpc:
105
+ if not is_node_in_fqc:
105
106
  Logger.critical(f'MCT does not support optimizing Keras custom layers. Found a layer of type {n.type}. '
106
- ' Please add the custom layer to Target Platform Capabilities (TPC), or file a feature '
107
+ ' Please add the custom layer to Framework Quantization Capabilities (FQC), or file a feature '
107
108
  'request or an issue if you believe this should be supported.') # pragma: no cover
108
- if any([qc.default_weight_attr_config.enable_weights_quantization for qc in n.get_qco(tpc).quantization_configurations]):
109
+ if any([qc.default_weight_attr_config.enable_weights_quantization for qc in n.get_qco(fqc).quantization_configurations]):
109
110
  Logger.critical(f'Layer identified: {n.type}. MCT does not support weight quantization for Keras custom layers.') # pragma: no cover
110
111
 
111
- self.tpc = tpc
112
+ self.fqc = fqc
112
113
 
113
114
  def get_topo_sorted_nodes(self):
114
115
  """
@@ -544,10 +545,8 @@ class Graph(nx.MultiDiGraph, GraphSearches):
544
545
  potential_conf_nodes = [n for n in list(self) if fw_info.is_kernel_op(n.type)]
545
546
 
546
547
  def is_configurable(n):
547
- kernel_attr = fw_info.get_kernel_op_attributes(n.type)[0]
548
- return (n.is_weights_quantization_enabled(kernel_attr) and
549
- not n.is_all_weights_candidates_equal(kernel_attr) and
550
- (not n.reuse or include_reused_nodes))
548
+ kernel_attrs = fw_info.get_kernel_op_attributes(n.type)
549
+ return any(n.is_configurable_weight(attr) for attr in kernel_attrs) and (not n.reuse or include_reused_nodes)
551
550
 
552
551
  return [n for n in potential_conf_nodes if is_configurable(n)]
553
552
 
@@ -576,7 +575,7 @@ class Graph(nx.MultiDiGraph, GraphSearches):
576
575
  Returns:
577
576
  A list of nodes that their activation can be configured (namely, has one or more activation qc candidate).
578
577
  """
579
- return [n for n in list(self) if n.is_activation_quantization_enabled() and not n.is_all_activation_candidates_equal()]
578
+ return [n for n in list(self) if n.has_configurable_activation()]
580
579
 
581
580
  def get_sorted_activation_configurable_nodes(self) -> List[BaseNode]:
582
581
  """
@@ -25,7 +25,9 @@ from model_compression_toolkit.logger import Logger
25
25
  from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import QuantizationConfigOptions, \
26
26
  OpQuantizationConfig
27
27
  from model_compression_toolkit.target_platform_capabilities.schema.schema_functions import max_input_activation_n_bits
28
- from model_compression_toolkit.target_platform_capabilities.target_platform import TargetPlatformCapabilities, LayerFilterParams
28
+ from model_compression_toolkit.target_platform_capabilities.targetplatform2framework import LayerFilterParams
29
+ from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.framework_quantization_capabilities import \
30
+ FrameworkQuantizationCapabilities
29
31
 
30
32
 
31
33
  class BaseNode:
@@ -150,6 +152,27 @@ class BaseNode:
150
152
 
151
153
  return False
152
154
 
155
+ def is_configurable_weight(self, attr_name: str) -> bool:
156
+ """
157
+ Checks whether the specific weight attribute has a configurable quantization.
158
+
159
+ Args:
160
+ attr_name: weight attribute name.
161
+
162
+ Returns:
163
+ Whether the weight attribute is configurable.
164
+ """
165
+ return self.is_weights_quantization_enabled(attr_name) and not self.is_all_weights_candidates_equal(attr_name)
166
+
167
+ def has_configurable_activation(self) -> bool:
168
+ """
169
+ Checks whether the activation has a configurable quantization.
170
+
171
+ Returns:
172
+ Whether the activation has a configurable quantization.
173
+ """
174
+ return self.is_activation_quantization_enabled() and not self.is_all_activation_candidates_equal()
175
+
153
176
  def __repr__(self):
154
177
  """
155
178
 
@@ -420,11 +443,15 @@ class BaseNode:
420
443
 
421
444
  Returns: Output size.
422
445
  """
423
- output_shapes = self.output_shape if isinstance(self.output_shape, List) else [self.output_shape]
446
+ # shape can be tuple or list, and multiple shapes can be packed in list or tuple
447
+ if self.output_shape and isinstance(self.output_shape[0], (tuple, list)):
448
+ output_shapes = self.output_shape
449
+ else:
450
+ output_shapes = [self.output_shape]
424
451
 
425
452
  # remove batch size (first element) from output shape
426
453
  output_shapes = [s[1:] for s in output_shapes]
427
-
454
+ # for scalar shape (None,) prod returns 1
428
455
  return sum([np.prod([x for x in output_shape if x is not None]) for output_shape in output_shapes])
429
456
 
430
457
  def find_min_candidates_indices(self) -> List[int]:
@@ -536,34 +563,34 @@ class BaseNode:
536
563
  # the inner method would log an exception.
537
564
  return [c.weights_quantization_cfg.get_attr_config(attr) for c in self.candidates_quantization_cfg]
538
565
 
539
- def get_qco(self, tpc: TargetPlatformCapabilities) -> QuantizationConfigOptions:
566
+ def get_qco(self, fqc: FrameworkQuantizationCapabilities) -> QuantizationConfigOptions:
540
567
  """
541
568
  Get the QuantizationConfigOptions of the node according
542
- to the mappings from layers/LayerFilterParams to the OperatorsSet in the TargetPlatformModel.
569
+ to the mappings from layers/LayerFilterParams to the OperatorsSet in the TargetPlatformCapabilities.
543
570
 
544
571
  Args:
545
- tpc: TPC to extract the QuantizationConfigOptions for the node.
572
+ fqc: FQC to extract the QuantizationConfigOptions for the node.
546
573
 
547
574
  Returns:
548
575
  QuantizationConfigOptions of the node.
549
576
  """
550
577
 
551
- if tpc is None:
552
- Logger.critical(f'Can not retrieve QC options for None TPC') # pragma: no cover
578
+ if fqc is None:
579
+ Logger.critical(f'Can not retrieve QC options for None FQC') # pragma: no cover
553
580
 
554
- for fl, qco in tpc.filterlayer2qco.items():
581
+ for fl, qco in fqc.filterlayer2qco.items():
555
582
  if self.is_match_filter_params(fl):
556
583
  return qco
557
584
  # Extract qco with is_match_type to overcome mismatch of function types in TF 2.15
558
- matching_qcos = [_qco for _type, _qco in tpc.layer2qco.items() if self.is_match_type(_type)]
585
+ matching_qcos = [_qco for _type, _qco in fqc.layer2qco.items() if self.is_match_type(_type)]
559
586
  if matching_qcos:
560
587
  if all([_qco == matching_qcos[0] for _qco in matching_qcos]):
561
588
  return matching_qcos[0]
562
589
  else:
563
590
  Logger.critical(f"Found duplicate qco types for node '{self.name}' of type '{self.type}'!") # pragma: no cover
564
- return tpc.tp_model.default_qco
591
+ return fqc.tpc.default_qco
565
592
 
566
- def filter_node_qco_by_graph(self, tpc: TargetPlatformCapabilities,
593
+ def filter_node_qco_by_graph(self, fqc: FrameworkQuantizationCapabilities,
567
594
  next_nodes: List, node_qc_options: QuantizationConfigOptions
568
595
  ) -> Tuple[OpQuantizationConfig, List[OpQuantizationConfig]]:
569
596
  """
@@ -573,7 +600,7 @@ class BaseNode:
573
600
  filters out quantization config that don't comply to these attributes.
574
601
 
575
602
  Args:
576
- tpc: TPC to extract the QuantizationConfigOptions for the next nodes.
603
+ fqc: FQC to extract the QuantizationConfigOptions for the next nodes.
577
604
  next_nodes: Output nodes of current node.
578
605
  node_qc_options: Node's QuantizationConfigOptions.
579
606
 
@@ -584,7 +611,7 @@ class BaseNode:
584
611
  _base_config = node_qc_options.base_config
585
612
  _node_qc_options = node_qc_options.quantization_configurations
586
613
  if len(next_nodes):
587
- next_nodes_qc_options = [_node.get_qco(tpc) for _node in next_nodes]
614
+ next_nodes_qc_options = [_node.get_qco(fqc) for _node in next_nodes]
588
615
  next_nodes_supported_input_bitwidth = min([max_input_activation_n_bits(op_cfg)
589
616
  for qc_opts in next_nodes_qc_options
590
617
  for op_cfg in qc_opts.quantization_configurations])
@@ -593,7 +620,7 @@ class BaseNode:
593
620
  _node_qc_options = [_option for _option in _node_qc_options
594
621
  if _option.activation_n_bits <= next_nodes_supported_input_bitwidth]
595
622
  if len(_node_qc_options) == 0:
596
- Logger.critical(f"Graph doesn't match TPC bit configurations: {self} -> {next_nodes}.") # pragma: no cover
623
+ Logger.critical(f"Graph doesn't match FQC bit configurations: {self} -> {next_nodes}.") # pragma: no cover
597
624
 
598
625
  # Verify base config match
599
626
  if any([node_qc_options.base_config.activation_n_bits > max_input_activation_n_bits(qc_opt.base_config)
@@ -603,9 +630,9 @@ class BaseNode:
603
630
  if len(_node_qc_options) > 0:
604
631
  output_act_bitwidth = {qco.activation_n_bits: i for i, qco in enumerate(_node_qc_options)}
605
632
  _base_config = _node_qc_options[output_act_bitwidth[max(output_act_bitwidth)]]
606
- Logger.warning(f"Node {self} base quantization config changed to match Graph and TPC configuration.\nCause: {self} -> {next_nodes}.")
633
+ Logger.warning(f"Node {self} base quantization config changed to match Graph and FQC configuration.\nCause: {self} -> {next_nodes}.")
607
634
  else:
608
- Logger.critical(f"Graph doesn't match TPC bit configurations: {self} -> {next_nodes}.") # pragma: no cover
635
+ Logger.critical(f"Graph doesn't match FQC bit configurations: {self} -> {next_nodes}.") # pragma: no cover
609
636
 
610
637
  return _base_config, _node_qc_options
611
638
 
@@ -17,18 +17,19 @@ import numpy as np
17
17
  from model_compression_toolkit.core import ResourceUtilization, FrameworkInfo
18
18
  from model_compression_toolkit.core.common import Graph
19
19
  from model_compression_toolkit.logger import Logger
20
- from model_compression_toolkit.target_platform_capabilities.target_platform import TargetPlatformCapabilities
20
+ from model_compression_toolkit.target_platform_capabilities.targetplatform2framework.framework_quantization_capabilities import \
21
+ FrameworkQuantizationCapabilities
21
22
 
22
23
 
23
24
  def filter_candidates_for_mixed_precision(graph: Graph,
24
25
  target_resource_utilization: ResourceUtilization,
25
26
  fw_info: FrameworkInfo,
26
- tpc: TargetPlatformCapabilities):
27
+ fqc: FrameworkQuantizationCapabilities):
27
28
  """
28
29
  Filters out candidates in case of mixed precision search for only weights or activation compression.
29
30
  For instance, if running only weights compression - filters out candidates of activation configurable nodes
30
31
  such that only a single candidate would remain, with the bitwidth equal to the one defined in the matching layer's
31
- base config in the TPC.
32
+ base config in the FQC.
32
33
 
33
34
  Note: This function modifies the graph inplace!
34
35
 
@@ -36,7 +37,7 @@ def filter_candidates_for_mixed_precision(graph: Graph,
36
37
  graph: A graph representation of the model to be quantized.
37
38
  target_resource_utilization: The resource utilization of the target device.
38
39
  fw_info: fw_info: Information needed for quantization about the specific framework.
39
- tpc: TargetPlatformCapabilities object that describes the desired inference target platform.
40
+ fqc: FrameworkQuantizationCapabilities object that describes the desired inference target platform.
40
41
 
41
42
  """
42
43
 
@@ -50,7 +51,7 @@ def filter_candidates_for_mixed_precision(graph: Graph,
50
51
  weights_conf = graph.get_weights_configurable_nodes(fw_info)
51
52
  activation_configurable_nodes = [n for n in graph.get_activation_configurable_nodes() if n not in weights_conf]
52
53
  for n in activation_configurable_nodes:
53
- base_cfg_nbits = n.get_qco(tpc).base_config.activation_n_bits
54
+ base_cfg_nbits = n.get_qco(fqc).base_config.activation_n_bits
54
55
  filtered_conf = [c for c in n.candidates_quantization_cfg if
55
56
  c.activation_quantization_cfg.enable_activation_quantization and
56
57
  c.activation_quantization_cfg.activation_n_bits == base_cfg_nbits]
@@ -67,7 +68,7 @@ def filter_candidates_for_mixed_precision(graph: Graph,
67
68
  weight_configurable_nodes = [n for n in graph.get_weights_configurable_nodes(fw_info) if n not in activation_conf]
68
69
  for n in weight_configurable_nodes:
69
70
  kernel_attr = graph.fw_info.get_kernel_op_attributes(n.type)[0]
70
- base_cfg_nbits = n.get_qco(tpc).base_config.attr_weights_configs_mapping[kernel_attr].weights_n_bits
71
+ base_cfg_nbits = n.get_qco(fqc).base_config.attr_weights_configs_mapping[kernel_attr].weights_n_bits
71
72
  filtered_conf = [c for c in n.candidates_quantization_cfg if
72
73
  c.weights_quantization_cfg.get_attr_config(kernel_attr).enable_weights_quantization and
73
74
  c.weights_quantization_cfg.get_attr_config(kernel_attr).weights_n_bits == base_cfg_nbits]
@@ -0,0 +1,187 @@
1
+ # Copyright 2022 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from typing import List, Set, Dict, Optional, Tuple, Any
16
+
17
+ import numpy as np
18
+
19
+ from model_compression_toolkit.core import FrameworkInfo
20
+ from model_compression_toolkit.core.common import Graph, BaseNode
21
+ from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
22
+ from model_compression_toolkit.core.common.graph.virtual_activation_weights_node import VirtualActivationWeightsNode
23
+ from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import \
24
+ RUTarget
25
+ from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization_calculator import \
26
+ ResourceUtilizationCalculator, BitwidthMode, TargetInclusionCriterion
27
+ from model_compression_toolkit.core.common.quantization.node_quantization_config import NodeWeightsQuantizationConfig, \
28
+ NodeActivationQuantizationConfig
29
+
30
+
31
+ # TODO take into account Virtual nodes. Are candidates defined with respect to virtual or original nodes?
32
+ # Can we use the virtual graph only for bops and the original graph for everything else?
33
+
34
+ class MixedPrecisionRUHelper:
35
+ """ Helper class for resource utilization computations for mixed precision optimization. """
36
+
37
+ def __init__(self, graph: Graph, fw_info: FrameworkInfo, fw_impl: FrameworkImplementation):
38
+ self.graph = graph
39
+ self.fw_info = fw_info
40
+ self.fw_impl = fw_impl
41
+ self.ru_calculator = ResourceUtilizationCalculator(graph, fw_impl, fw_info)
42
+
43
+ def compute_utilization(self, ru_targets: Set[RUTarget], mp_cfg: Optional[List[int]]) -> Dict[RUTarget, np.ndarray]:
44
+ """
45
+ Compute utilization of requested targets for a specific configuration in the format expected by LP problem
46
+ formulation namely a vector of ru values for relevant memory elements (nodes or cuts) in a constant order
47
+ (between calls).
48
+
49
+ Args:
50
+ ru_targets: resource utilization targets to compute.
51
+ mp_cfg: a list of candidates indices for configurable layers.
52
+
53
+ Returns:
54
+ Dict of the computed utilization per target.
55
+ """
56
+
57
+ ru = {}
58
+ act_qcs, w_qcs = self.get_quantization_candidates(mp_cfg) if mp_cfg else (None, None)
59
+ if RUTarget.WEIGHTS in ru_targets:
60
+ wu = self._weights_utilization(w_qcs)
61
+ ru[RUTarget.WEIGHTS] = np.array(list(wu.values()))
62
+
63
+ if RUTarget.ACTIVATION in ru_targets:
64
+ au = self._activation_utilization(act_qcs)
65
+ ru[RUTarget.ACTIVATION] = np.array(list(au.values()))
66
+
67
+ if RUTarget.BOPS in ru_targets:
68
+ ru[RUTarget.BOPS] = self._bops_utilization(mp_cfg)
69
+
70
+ if RUTarget.TOTAL in ru_targets:
71
+ raise ValueError('Total target should be computed based on weights and activations targets.')
72
+
73
+ assert len(ru) == len(ru_targets), (f'Mismatch between the number of computed and requested metrics.'
74
+ f'Requested {ru_targets}')
75
+ return ru
76
+
77
+ def get_quantization_candidates(self, mp_cfg) \
78
+ -> Tuple[Dict[BaseNode, NodeActivationQuantizationConfig], Dict[BaseNode, NodeWeightsQuantizationConfig]]:
79
+ """
80
+ Retrieve quantization candidates objects for weights and activations from the configuration list.
81
+
82
+ Args:
83
+ mp_cfg: a list of candidates indices for configurable layers.
84
+
85
+ Returns:
86
+ A mapping between nodes to weights quantization config, and a mapping between nodes and activation
87
+ quantization config.
88
+ """
89
+ mp_nodes = self.graph.get_configurable_sorted_nodes(self.fw_info)
90
+ node_qcs = {n: n.candidates_quantization_cfg[mp_cfg[i]] for i, n in enumerate(mp_nodes)}
91
+ act_qcs = {n: cfg.activation_quantization_cfg for n, cfg in node_qcs.items()}
92
+ w_qcs = {n: cfg.weights_quantization_cfg for n, cfg in node_qcs.items()}
93
+ return act_qcs, w_qcs
94
+
95
+ def _weights_utilization(self, w_qcs: Optional[Dict[BaseNode, NodeWeightsQuantizationConfig]]) -> Dict[BaseNode, float]:
96
+ """
97
+ Compute weights utilization for configurable weights if configuration is passed,
98
+ or for non-configurable nodes otherwise.
99
+
100
+ Args:
101
+ w_qcs: nodes quantization configuration to compute, or None.
102
+
103
+ Returns:
104
+ Weight utilization per node.
105
+ """
106
+ if w_qcs:
107
+ target_criterion = TargetInclusionCriterion.QConfigurable
108
+ bitwidth_mode = BitwidthMode.QCustom
109
+ else:
110
+ target_criterion = TargetInclusionCriterion.QNonConfigurable
111
+ bitwidth_mode = BitwidthMode.QDefaultSP
112
+
113
+ _, nodes_util, _ = self.ru_calculator.compute_weights_utilization(target_criterion=target_criterion,
114
+ bitwidth_mode=bitwidth_mode,
115
+ w_qcs=w_qcs)
116
+ nodes_util = {n: u.bytes for n, u in nodes_util.items()}
117
+ return nodes_util
118
+
119
+ def _activation_utilization(self, act_qcs: Optional[Dict[BaseNode, NodeActivationQuantizationConfig]]) \
120
+ -> Optional[Dict[Any, float]]:
121
+ """
122
+ Compute activation utilization using MaxCut for all quantized nodes if configuration is passed.
123
+
124
+ Args:
125
+ act_qcs: nodes activation configuration or None.
126
+
127
+ Returns:
128
+ Activation utilization per cut, or empty dict if no configuration was passed.
129
+ """
130
+ # Maxcut activation utilization is computed for all quantized nodes, so non-configurable memory is already
131
+ # covered by the computation of configurable activations.
132
+ if not act_qcs:
133
+ return {}
134
+
135
+ _, cuts_util, *_ = self.ru_calculator.compute_activation_utilization_by_cut(
136
+ TargetInclusionCriterion.AnyQuantized, bitwidth_mode=BitwidthMode.QCustom, act_qcs=act_qcs)
137
+ cuts_util = {c: u.bytes for c, u in cuts_util.items()}
138
+ return cuts_util
139
+
140
+ def _bops_utilization(self, mp_cfg: List[int]) -> np.ndarray:
141
+ """
142
+ Computes a resource utilization vector with the respective bit-operations (BOPS) count for each configurable node,
143
+ according to the given mixed-precision configuration of a virtual graph with composed nodes.
144
+
145
+ Args:
146
+ mp_cfg: A mixed-precision configuration (list of candidates index for each configurable node)
147
+
148
+ Returns:
149
+ A vector of node's BOPS count.
150
+ """
151
+ # bops is computed for all nodes, so non-configurable memory is already covered by the computation of
152
+ # configurable nodes
153
+ if not mp_cfg:
154
+ return np.array([])
155
+
156
+ # TODO keeping old implementation for now
157
+ virtual_bops_nodes = [n for n in self.graph.get_topo_sorted_nodes() if isinstance(n, VirtualActivationWeightsNode)]
158
+
159
+ mp_nodes = self.graph.get_configurable_sorted_nodes_names(self.fw_info)
160
+
161
+ bops = [n.get_bops_count(self.fw_impl, self.fw_info, candidate_idx=_get_node_cfg_idx(n, mp_cfg, mp_nodes))
162
+ for n in virtual_bops_nodes]
163
+
164
+ return np.array(bops)
165
+
166
+
167
+ def _get_node_cfg_idx(node: BaseNode, mp_cfg: List[int], sorted_configurable_nodes_names: List[str]) -> int:
168
+ """
169
+ Returns the index of a node's quantization configuration candidate according to the given
170
+ mixed-precision configuration. If the node is not configurable, then it must have a single configuration,
171
+ therefore, the index 0 is returned.
172
+
173
+ Args:
174
+ node: A node to get its candidate configuration index.
175
+ mp_cfg: A mixed-precision configuration (list of candidates index for each configurable node)
176
+ sorted_configurable_nodes_names: A list of configurable nodes names.
177
+
178
+ Returns: An index (integer) of a node's quantization configuration candidate.
179
+ """
180
+
181
+ if node.name in sorted_configurable_nodes_names:
182
+ node_idx = sorted_configurable_nodes_names.index(node.name)
183
+ return mp_cfg[node_idx]
184
+ else: # pragma: no cover
185
+ assert len(node.candidates_quantization_cfg) > 0, \
186
+ "Any node should have at least one candidate configuration."
187
+ return 0
@@ -22,7 +22,6 @@ from model_compression_toolkit.core import MixedPrecisionQuantizationConfig
22
22
  from model_compression_toolkit.core.common import Graph
23
23
  from model_compression_toolkit.core.common.hessian import HessianInfoService
24
24
  from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.resource_utilization import ResourceUtilization, RUTarget
25
- from model_compression_toolkit.core.common.mixed_precision.resource_utilization_tools.ru_functions_mapping import ru_functions_mapping
26
25
  from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
27
26
  from model_compression_toolkit.core.common.mixed_precision.mixed_precision_search_manager import MixedPrecisionSearchManager
28
27
  from model_compression_toolkit.core.common.mixed_precision.search_methods.linear_programming import \
@@ -105,16 +104,11 @@ def search_bit_width(graph_to_search_cfg: Graph,
105
104
  disable_activation_for_metric=disable_activation_for_metric,
106
105
  hessian_info_service=hessian_info_service)
107
106
 
108
- # Each pair of (resource utilization method, resource utilization aggregation) should match to a specific
109
- # provided target resource utilization
110
- ru_functions = ru_functions_mapping
111
-
112
107
  # Instantiate a manager object
113
108
  search_manager = MixedPrecisionSearchManager(graph,
114
109
  fw_info,
115
110
  fw_impl,
116
111
  se,
117
- ru_functions,
118
112
  target_resource_utilization,
119
113
  original_graph=graph_to_search_cfg)
120
114