mct-nightly 2.2.0.20250107.164940__py3-none-any.whl → 2.2.0.20250108.523__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct_nightly-2.2.0.20250107.164940.dist-info → mct_nightly-2.2.0.20250108.523.dist-info}/METADATA +1 -1
- {mct_nightly-2.2.0.20250107.164940.dist-info → mct_nightly-2.2.0.20250108.523.dist-info}/RECORD +9 -9
- model_compression_toolkit/__init__.py +1 -1
- model_compression_toolkit/gptq/keras/gptq_loss.py +3 -4
- model_compression_toolkit/gptq/keras/quantization_facade.py +2 -4
- model_compression_toolkit/gptq/pytorch/quantization_facade.py +1 -3
- {mct_nightly-2.2.0.20250107.164940.dist-info → mct_nightly-2.2.0.20250108.523.dist-info}/LICENSE.md +0 -0
- {mct_nightly-2.2.0.20250107.164940.dist-info → mct_nightly-2.2.0.20250108.523.dist-info}/WHEEL +0 -0
- {mct_nightly-2.2.0.20250107.164940.dist-info → mct_nightly-2.2.0.20250108.523.dist-info}/top_level.txt +0 -0
{mct_nightly-2.2.0.20250107.164940.dist-info → mct_nightly-2.2.0.20250108.523.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.2.0.
|
3
|
+
Version: 2.2.0.20250108.523
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Classifier: Programming Language :: Python :: 3
|
6
6
|
Classifier: License :: OSI Approved :: Apache Software License
|
{mct_nightly-2.2.0.20250107.164940.dist-info → mct_nightly-2.2.0.20250108.523.dist-info}/RECORD
RENAMED
@@ -1,4 +1,4 @@
|
|
1
|
-
model_compression_toolkit/__init__.py,sha256=
|
1
|
+
model_compression_toolkit/__init__.py,sha256=T9vJvHgnVfRm0QlXM_rI0gN4vrj4U14twllXd5p0Irs,1573
|
2
2
|
model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
|
3
3
|
model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
|
4
4
|
model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
|
@@ -361,10 +361,10 @@ model_compression_toolkit/gptq/common/gradual_activation_quantization.py,sha256=
|
|
361
361
|
model_compression_toolkit/gptq/common/regularization_factory.py,sha256=hyunpXepVeHyoAFJw6zNLK-3ZHBmiut3lmNisJN_L3E,2514
|
362
362
|
model_compression_toolkit/gptq/keras/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
|
363
363
|
model_compression_toolkit/gptq/keras/gptq_keras_implementation.py,sha256=axBwnCSjq5xk-xGymOwSOqjp39It-CVtGcCTRTf0E_4,1248
|
364
|
-
model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=
|
364
|
+
model_compression_toolkit/gptq/keras/gptq_loss.py,sha256=2hzWzsbuVd5XcL85NM57YeOyHxRY0qMArKn8NvQ1UWw,7643
|
365
365
|
model_compression_toolkit/gptq/keras/gptq_training.py,sha256=0WGiP7Gs4xX3FBs1PNaZ7w3hWRigwQXqYjBrs_-x32o,23241
|
366
366
|
model_compression_toolkit/gptq/keras/graph_info.py,sha256=zwoeHX67nJJ5-zYLjzvMXS9TLsy9BsizARbZiDVjVSA,4473
|
367
|
-
model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=
|
367
|
+
model_compression_toolkit/gptq/keras/quantization_facade.py,sha256=meRKqpzZe2Irf21L_rN_mkr5dqPTJHzfSFBeqv4Csp4,18536
|
368
368
|
model_compression_toolkit/gptq/keras/quantizer/__init__.py,sha256=-DK1CDXvlsnEbki4lukZLpl6Xrbo91_jcqxXlG5Eg6Q,963
|
369
369
|
model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py,sha256=Rbl9urzkmACvVxICSEyJ02qFOBxWK0UQWtysFJzBVZw,4899
|
370
370
|
model_compression_toolkit/gptq/keras/quantizer/quant_utils.py,sha256=Vt7Qb8i4JsE4sFtcjpfM4FTXTtfV1t6SwfoNH8a_Iaw,5055
|
@@ -380,7 +380,7 @@ model_compression_toolkit/gptq/pytorch/gptq_loss.py,sha256=_07Zx_43bnNokwR5S8phI
|
|
380
380
|
model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py,sha256=tECPTavxn8EEwgLaP2zvxdJH6Vg9jC0YOIMJ7857Sdc,1268
|
381
381
|
model_compression_toolkit/gptq/pytorch/gptq_training.py,sha256=WtehnyiYXdUXf8-uNpV0mdsalF7YF7eKnL7tcFrzZoE,19549
|
382
382
|
model_compression_toolkit/gptq/pytorch/graph_info.py,sha256=4mVM-VvnBaA64ACVdOe6wTGHdMSa2UTLIUe7nACLcdo,4008
|
383
|
-
model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=
|
383
|
+
model_compression_toolkit/gptq/pytorch/quantization_facade.py,sha256=kMSq9mrpcgMBRgrEKfMBHaJG6HhGRYnuiDzF4ofckwo,16581
|
384
384
|
model_compression_toolkit/gptq/pytorch/quantizer/__init__.py,sha256=ZHNHo1yzye44m9_ht4UUZfTpK01RiVR3Tr74-vtnOGI,968
|
385
385
|
model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py,sha256=fKg-PNOhGBiL-4eySS9Fyw0GkA76Pq8jT_HbJuJ8iZU,4143
|
386
386
|
model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py,sha256=OocYYRqvl7rZ37QT0hTzfJnWGiNCPskg7cziTlR7TRk,3893
|
@@ -525,8 +525,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
|
|
525
525
|
model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=3jNiV5Z4BVw9cEWuLKNOlLuLdr0EMuKg6eYnSiAq3LU,3952
|
526
526
|
model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
|
527
527
|
model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
|
528
|
-
mct_nightly-2.2.0.
|
529
|
-
mct_nightly-2.2.0.
|
530
|
-
mct_nightly-2.2.0.
|
531
|
-
mct_nightly-2.2.0.
|
532
|
-
mct_nightly-2.2.0.
|
528
|
+
mct_nightly-2.2.0.20250108.523.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
|
529
|
+
mct_nightly-2.2.0.20250108.523.dist-info/METADATA,sha256=riYLks2VpIMjq7W0UIbOGVmX68cYfNGXjl04SFFNSnE,26461
|
530
|
+
mct_nightly-2.2.0.20250108.523.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
|
531
|
+
mct_nightly-2.2.0.20250108.523.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
|
532
|
+
mct_nightly-2.2.0.20250108.523.dist-info/RECORD,,
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.
|
30
|
+
__version__ = "2.2.0.20250108.000523"
|
@@ -144,9 +144,8 @@ def activation_mse(flp_act_list,
|
|
144
144
|
loss_values_list.append(point_loss)
|
145
145
|
bias_loss_list.append(bias_loss)
|
146
146
|
if weights_for_average_loss is not None:
|
147
|
-
|
148
|
-
|
149
|
-
return tf.reduce_sum(weights_for_average_loss * tf.stack(loss_values_list)), tf.reduce_mean(tf.stack(bias_loss_list))
|
147
|
+
return tf.reduce_sum(weights_for_average_loss * tf.stack(loss_values_list)), \
|
148
|
+
tf.reduce_mean(tf.stack(bias_loss_list))
|
150
149
|
else:
|
151
150
|
return tf.reduce_mean(tf.stack(loss_values_list)), tf.reduce_mean(tf.stack(bias_loss_list))
|
152
151
|
|
@@ -188,4 +187,4 @@ class GPTQMultipleTensorsLoss:
|
|
188
187
|
weights_for_average_loss=weights_for_average_loss,
|
189
188
|
norm_loss=self.norm_loss)
|
190
189
|
|
191
|
-
return loss_act
|
190
|
+
return loss_act
|
@@ -115,6 +115,7 @@ if FOUND_TF:
|
|
115
115
|
if regularization_factor is None:
|
116
116
|
regularization_factor = REG_DEFAULT_SLA if use_hessian_sample_attention else REG_DEFAULT
|
117
117
|
|
118
|
+
loss = loss or GPTQMultipleTensorsLoss()
|
118
119
|
hessian_weights_config = None
|
119
120
|
if use_hessian_sample_attention:
|
120
121
|
if not use_hessian_based_weights: # pragma: no cover
|
@@ -128,10 +129,7 @@ if FOUND_TF:
|
|
128
129
|
hessian_weights_config = GPTQHessianScoresConfig(per_sample=False,
|
129
130
|
hessians_num_samples=GPTQ_HESSIAN_NUM_SAMPLES,
|
130
131
|
hessian_batch_size=hessian_batch_size)
|
131
|
-
|
132
|
-
# If a loss was not passed (and was not initialized due to use_hessian_sample_attention), use the default loss
|
133
|
-
loss = loss or GPTQMultipleTensorsLoss()
|
134
|
-
|
132
|
+
|
135
133
|
if isinstance(gradual_activation_quantization, bool):
|
136
134
|
gradual_quant_config = GradualActivationQuantizationConfig() if gradual_activation_quantization else None
|
137
135
|
elif isinstance(gradual_activation_quantization, GradualActivationQuantizationConfig):
|
@@ -104,6 +104,7 @@ if FOUND_TORCH:
|
|
104
104
|
if regularization_factor is None:
|
105
105
|
regularization_factor = REG_DEFAULT_SLA if use_hessian_sample_attention else REG_DEFAULT
|
106
106
|
|
107
|
+
loss = loss or multiple_tensors_mse_loss
|
107
108
|
hessian_weights_config = None
|
108
109
|
if use_hessian_sample_attention:
|
109
110
|
if not use_hessian_based_weights: # pragma: no cover
|
@@ -117,9 +118,6 @@ if FOUND_TORCH:
|
|
117
118
|
hessian_weights_config = GPTQHessianScoresConfig(per_sample=False,
|
118
119
|
hessians_num_samples=GPTQ_HESSIAN_NUM_SAMPLES,
|
119
120
|
hessian_batch_size=hessian_batch_size)
|
120
|
-
|
121
|
-
# If a loss was not passed (and was not initialized due to use_hessian_sample_attention), use the default loss
|
122
|
-
loss = loss or multiple_tensors_mse_loss
|
123
121
|
|
124
122
|
if isinstance(gradual_activation_quantization, bool):
|
125
123
|
gradual_quant_config = GradualActivationQuantizationConfig() if gradual_activation_quantization else None
|
{mct_nightly-2.2.0.20250107.164940.dist-info → mct_nightly-2.2.0.20250108.523.dist-info}/LICENSE.md
RENAMED
File without changes
|
{mct_nightly-2.2.0.20250107.164940.dist-info → mct_nightly-2.2.0.20250108.523.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|