mct-nightly 2.2.0.20241231.516__tar.gz → 2.2.0.20250103.535__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (575) hide show
  1. mct_nightly-2.2.0.20250103.535/PKG-INFO +232 -0
  2. mct_nightly-2.2.0.20250103.535/mct_nightly.egg-info/PKG-INFO +232 -0
  3. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/mct_nightly.egg-info/SOURCES.txt +2 -1
  4. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/mct_nightly.egg-info/requires.txt +1 -0
  5. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/__init__.py +1 -1
  6. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +6 -4
  7. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/schema/v1.py +308 -173
  8. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +22 -22
  9. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +22 -22
  10. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +22 -22
  11. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +21 -21
  12. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +22 -22
  13. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +25 -25
  14. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +23 -23
  15. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +46 -42
  16. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +10 -10
  17. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +49 -46
  18. mct_nightly-2.2.0.20250103.535/tests/test_suite.py +202 -0
  19. mct-nightly-2.2.0.20241231.516/PKG-INFO +0 -220
  20. mct-nightly-2.2.0.20241231.516/mct_nightly.egg-info/PKG-INFO +0 -220
  21. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/LICENSE.md +0 -0
  22. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/README.md +0 -0
  23. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/mct_nightly.egg-info/dependency_links.txt +0 -0
  24. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/mct_nightly.egg-info/top_level.txt +0 -0
  25. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/constants.py +0 -0
  26. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/__init__.py +0 -0
  27. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/analyzer.py +0 -0
  28. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/__init__.py +0 -0
  29. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  30. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  31. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  32. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  33. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  34. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  35. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  36. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  37. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  38. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  39. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/framework_info.py +0 -0
  40. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  41. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  42. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  43. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  44. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  45. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  46. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  47. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  48. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  49. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  50. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  51. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  52. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  53. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  54. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  55. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  56. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  57. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  58. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  59. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  60. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  61. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  62. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  63. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  64. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  65. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  66. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  67. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  68. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  69. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  70. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  71. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  72. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  73. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  74. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  75. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  76. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  77. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  78. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  79. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  80. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  81. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  82. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  83. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  84. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  85. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  86. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  87. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  88. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  89. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  90. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  91. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  92. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/model_collector.py +0 -0
  93. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/model_validation.py +0 -0
  94. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  95. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  96. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  97. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  98. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  99. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  100. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  101. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  102. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  103. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  104. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  105. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  106. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  107. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  108. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  109. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  110. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  111. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  112. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  113. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  114. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  115. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  116. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  117. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  118. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  119. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  120. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  121. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  122. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  123. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  124. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  125. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  126. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  127. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  128. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  129. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  130. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  131. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  132. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  133. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  134. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  135. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  136. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  137. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  138. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  139. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  140. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  141. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  142. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  143. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  144. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  145. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  146. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
  147. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  148. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  149. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
  150. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  151. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  152. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  153. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  154. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  155. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  156. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  157. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  158. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  159. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  160. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  161. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  162. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  163. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  164. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  165. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  166. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/user_info.py +0 -0
  167. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  168. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  169. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  170. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  171. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  172. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/__init__.py +0 -0
  173. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  174. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  175. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  176. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  177. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  178. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  179. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  180. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/constants.py +0 -0
  181. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  182. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/data_util.py +0 -0
  183. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  184. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  185. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  186. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  187. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  188. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  189. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  190. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  191. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  192. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  193. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  194. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  195. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  196. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  197. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  198. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  199. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  200. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  201. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  202. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  203. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  204. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  205. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  206. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  207. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  208. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  209. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  210. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  211. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  212. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  213. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  214. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  215. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  216. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  217. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  218. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  219. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  220. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  221. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  222. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  223. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  224. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  225. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  226. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  227. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  228. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  229. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  230. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  231. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  232. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  233. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  234. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  235. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
  236. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  237. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  238. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  239. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  240. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  241. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  242. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  243. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  244. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  245. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  246. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  247. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  248. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  249. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
  250. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  251. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  252. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  253. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  254. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  255. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  256. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  257. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  258. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  259. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  260. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
  261. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  262. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  263. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  264. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  265. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  266. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  267. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  268. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  269. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  270. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  271. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  272. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  273. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  274. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  275. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  276. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  277. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  278. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  279. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  280. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  281. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  282. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  283. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  284. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  285. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  286. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  287. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  288. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  289. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  290. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  291. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  292. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  293. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  294. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  295. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  296. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
  297. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  298. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  299. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/core/runner.py +0 -0
  300. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/__init__.py +0 -0
  301. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  302. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  303. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  304. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  305. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  306. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  307. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  308. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  309. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  310. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  311. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  312. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  313. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  314. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  315. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  316. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  317. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  318. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  319. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  320. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  321. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  322. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  323. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  324. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  325. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  326. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  327. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  328. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  329. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  330. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  331. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  332. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  333. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  334. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  335. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  336. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  337. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/defaultdict.py +0 -0
  338. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/__init__.py +0 -0
  339. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  340. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  341. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  342. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  343. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  344. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  345. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  346. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  347. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  348. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  349. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  350. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  351. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  352. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  353. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  354. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  355. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  356. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  357. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  358. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  359. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  360. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  361. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  362. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  363. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  364. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  365. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  366. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  367. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  368. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  369. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  370. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/__init__.py +0 -0
  371. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  372. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  373. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  374. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  375. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  376. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  377. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
  378. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
  379. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  380. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  381. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  382. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  383. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  384. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  385. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  386. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  387. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  388. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  389. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  390. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  391. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  392. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  393. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  394. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  395. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  396. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  397. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  398. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  399. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  400. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  401. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  402. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  403. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  404. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  405. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  406. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  407. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  408. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  409. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  410. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  411. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/gptq/runner.py +0 -0
  412. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/logger.py +0 -0
  413. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/metadata.py +0 -0
  414. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/pruning/__init__.py +0 -0
  415. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  416. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  417. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  418. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  419. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/ptq/__init__.py +0 -0
  420. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  421. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  422. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  423. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  424. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/ptq/runner.py +0 -0
  425. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/__init__.py +0 -0
  426. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/common/__init__.py +0 -0
  427. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  428. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  429. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  430. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  431. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
  432. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  433. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  434. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  435. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  436. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  437. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  438. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  439. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  440. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  441. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  442. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  443. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  444. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  445. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  446. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  447. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  448. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  449. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  450. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  451. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  452. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  453. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  454. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/schema/__init__.py +0 -0
  455. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +0 -0
  456. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +0 -0
  457. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  458. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  459. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2fw.py +0 -0
  460. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2keras.py +0 -0
  461. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2pytorch.py +0 -0
  462. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  463. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  464. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  465. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  466. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  467. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  468. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  469. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  470. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  471. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  472. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  473. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  474. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  475. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  476. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  477. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  478. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  479. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  480. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  481. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  482. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  483. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  484. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  485. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  486. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  487. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  488. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  489. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  490. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  491. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  492. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  493. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  494. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
  495. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
  496. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -0
  497. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  498. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  499. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  500. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  501. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  502. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  503. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  504. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  505. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  506. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  507. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  508. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  509. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  510. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  511. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
  512. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  513. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  514. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  515. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  516. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  517. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  518. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  519. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
  520. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  521. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
  522. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
  523. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
  524. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  525. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
  526. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
  527. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
  528. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
  529. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
  530. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  531. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  532. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  533. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  534. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  535. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  536. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  537. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  538. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  539. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  540. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  541. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  542. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  543. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  544. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  545. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  546. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  547. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/verify_packages.py +0 -0
  548. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/__init__.py +0 -0
  549. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  550. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/constants.py +0 -0
  551. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  552. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  553. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  554. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  555. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  556. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  557. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  558. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  559. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  560. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  561. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  562. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  563. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  564. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  565. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  566. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  567. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  568. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  569. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  570. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  571. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  572. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  573. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  574. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/setup.cfg +0 -0
  575. {mct-nightly-2.2.0.20241231.516 → mct_nightly-2.2.0.20250103.535}/setup.py +0 -0
@@ -0,0 +1,232 @@
1
+ Metadata-Version: 2.1
2
+ Name: mct-nightly
3
+ Version: 2.2.0.20250103.535
4
+ Summary: A Model Compression Toolkit for neural networks
5
+ Classifier: Programming Language :: Python :: 3
6
+ Classifier: License :: OSI Approved :: Apache Software License
7
+ Classifier: Operating System :: OS Independent
8
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
9
+ Requires-Python: >=3.6
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE.md
12
+ Requires-Dist: networkx!=2.8.1
13
+ Requires-Dist: tqdm
14
+ Requires-Dist: Pillow
15
+ Requires-Dist: numpy<2.0
16
+ Requires-Dist: opencv-python
17
+ Requires-Dist: scikit-image
18
+ Requires-Dist: scikit-learn
19
+ Requires-Dist: tensorboard
20
+ Requires-Dist: PuLP
21
+ Requires-Dist: matplotlib<3.10.0
22
+ Requires-Dist: scipy
23
+ Requires-Dist: protobuf
24
+ Requires-Dist: mct-quantizers==1.5.2
25
+ Requires-Dist: pydantic<2.0
26
+
27
+ <div align="center" markdown="1">
28
+ <p>
29
+ <a href="https://sony.github.io/model_optimization/" target="_blank">
30
+ <img src="/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
31
+ </p>
32
+
33
+ ______________________________________________________________________
34
+
35
+ </div>
36
+ <div align="center">
37
+ <p align="center">
38
+ <a href="#getting-started">Getting Started</a> •
39
+ <a href="#tutorials-and-examples">Tutorials</a> •
40
+ <a href="#high-level-features-and-techniques">High level features and techniques</a> •
41
+ <a href="#resources">Resources</a> •
42
+ <a href="#contributions">Community</a> •
43
+ <a href="#license">License</a>
44
+ </p>
45
+ <p align="center">
46
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.1%20%7C%202.2%20%7C%202.3-blue" /></a>
47
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/TensorFlow-2.12%20%7C%202.13%20%7C%202.14%20%7C%202.15-blue" /></a>
48
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C3.10%20%7C3.11-blue" /></a>
49
+ <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
50
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
51
+
52
+ </p>
53
+ </div>
54
+
55
+ __________________________________________________________________________________________________________
56
+
57
+ ## <div align="center">Getting Started</div>
58
+ ### Quick Installation
59
+ Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
60
+ ```
61
+ pip install model-compression-toolkit
62
+ ```
63
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
64
+
65
+ **Important note**: In order to use MCT, you’ll need to provide a floating point .pt or .keras model as an input.
66
+
67
+ ### Tutorials and Examples
68
+
69
+ Our [tutorials](https://github.com/sony/model_optimization/blob/main/tutorials/README.md) section will walk you through the basics of the MCT tool, covering various compression techniques for both Keras and PyTorch models.
70
+ Access interactive notebooks for hands-on learning with popular models/tasks or move on to [Resources](#resources) section.
71
+
72
+ ### Supported Quantization Methods</div>
73
+ MCT supports various quantization methods as appears below.
74
+ <div align="center">
75
+ <p align="center">
76
+
77
+ Quantization Method | Complexity | Computational Cost | API | Tutorial
78
+ -------------------- | -----------|--------------------|---------|--------
79
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
80
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
81
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
82
+
83
+ </p>
84
+ </div>
85
+
86
+ For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
87
+ For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
88
+
89
+ **Required input**: Floating point model - 32bit model in either .pt or .keras format
90
+
91
+ **Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
92
+
93
+ <div align="center">
94
+ <p align="center">
95
+
96
+ <img src="/docsrc/images/mctDiagram_clean.svg" width="800">
97
+ </p>
98
+ </div>
99
+
100
+ ## <div align="center">High level features and techniques</div>
101
+
102
+ MCT offers a range of powerful features to optimize models for efficient edge deployment. These supported features include:
103
+
104
+ ### Quantization Core Features
105
+
106
+ 🏆 **Mixed-precision search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mixed_precision_ptq.ipynb). Assigning optimal quantization bit-width per layer (for weights/activations)
107
+
108
+ 📈 **Graph optimizations**.
109
+ Transforming the model to be best fitted for quantization process.
110
+
111
+ 🔎 **Quantization parameter search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_threshold_search.ipynb). Minimizing expected quantization-noise during thresholds search using methods such as MSE, No-Clipping and MAE.
112
+
113
+ 🧮 **Advanced quantization algorithms** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_z_score_threshold.ipynb). Enhancing quantization performance for advanced cases is available with some algorithms that can be applied, such as Shift negative correction, Outliers filtering and clustering.
114
+ __________________________________________________________________________________________________________
115
+ ### Hardware-aware optimization
116
+
117
+ 🎯 **TPC (Target Platform Capabilities)**. Describes the target hardware’s constrains, for which the model optimization is targeted. See [TPC Readme](./model_compression_toolkit/target_platform_capabilities/README.md) for more information.
118
+ __________________________________________________________________________________________________________
119
+ ### Data-free quantization (Data Generation) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
120
+ Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
121
+ The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
122
+ __________________________________________________________________________________________________________
123
+ ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
124
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
125
+ __________________________________________________________________________________________________________
126
+ ### **Debugging and Visualization**
127
+ **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
128
+ Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
129
+
130
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
131
+
132
+ **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
133
+ __________________________________________________________________________________________________________
134
+ ### Enhanced Post-Training Quantization (EPTQ)
135
+ As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
136
+ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization**"_ [4].
137
+ More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
138
+
139
+ ## <div align="center">Resources</div>
140
+ * [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
141
+
142
+ * MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
143
+
144
+ * [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
145
+ * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
146
+ * [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
147
+
148
+ * [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
149
+
150
+ * [Release notes](https://github.com/sony/model_optimization/releases)
151
+
152
+
153
+ ## <div align="center">Supported Versions</div>
154
+
155
+ Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
156
+ <details id="supported-versions">
157
+ <summary>Supported Versions Table</summary>
158
+
159
+ | | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
160
+ |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
161
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
162
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
163
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
164
+ | Python 3.12 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
165
+
166
+ | | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
167
+ |-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
168
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras215.yml) |
169
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml) |
170
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml) |
171
+
172
+ </details>
173
+
174
+ ## <div align="center">Results</div>
175
+
176
+ <p align="center">
177
+ <img src="/docsrc/images/Classification.png" width="200">
178
+ <img src="/docsrc/images/SemSeg.png" width="200">
179
+ <img src="/docsrc/images/PoseEst.png" width="200">
180
+ <img src="/docsrc/images/ObjDet.png" width="200">
181
+
182
+ MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
183
+ Below is a graph of [MobileNetV2](https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html) accuracy on ImageNet vs average bit-width of weights (X-axis), using **single-precision** quantization, **mixed-precision** quantization, and mixed-precision quantization with GPTQ.
184
+
185
+ <p align="center">
186
+ <img src="/docsrc/images/torch_mobilenetv2.png" width="800">
187
+
188
+ For more results, please see [1]
189
+
190
+
191
+ ### Pruning Results
192
+
193
+ Results for applying pruning to reduce the parameters of the following models by 50%:
194
+
195
+ | Model | Dense Model Accuracy | Pruned Model Accuracy |
196
+ |-----------------|----------------------|-----------------------|
197
+ | ResNet50 [2] | 75.1 | 72.4 |
198
+ | DenseNet121 [3] | 74.44 | 71.71 |
199
+
200
+ ## <div align="center">Troubleshooting and Community</div>
201
+
202
+ If you encountered a large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
203
+ for common pitfalls and some tools to improve the quantized model's accuracy.
204
+
205
+ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
206
+
207
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under the [discussions section](https://github.com/sony/model_optimization/discussions).
208
+
209
+
210
+ ## <div align="center">Contributions</div>
211
+ We'd love your input! MCT would not be possible without help from our community, and welcomes contributions from anyone!
212
+
213
+ *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
214
+
215
+ Thank you 🙏 to all our contributors!
216
+
217
+ ## <div align="center">License</div>
218
+ MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
219
+
220
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
221
+
222
+ ## <div align="center">References</div>
223
+
224
+ [1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).
225
+
226
+ [2] [Keras Applications](https://keras.io/api/applications/)
227
+
228
+ [3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
229
+
230
+ [4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization, European Conference on Computer Vision Workshop 2024, Computational Aspects of Deep Learning (CADL)](https://arxiv.org/abs/2309.11531)
231
+
232
+ [5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://arxiv.org/abs/2410.22110)
@@ -0,0 +1,232 @@
1
+ Metadata-Version: 2.1
2
+ Name: mct-nightly
3
+ Version: 2.2.0.20250103.535
4
+ Summary: A Model Compression Toolkit for neural networks
5
+ Classifier: Programming Language :: Python :: 3
6
+ Classifier: License :: OSI Approved :: Apache Software License
7
+ Classifier: Operating System :: OS Independent
8
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
9
+ Requires-Python: >=3.6
10
+ Description-Content-Type: text/markdown
11
+ License-File: LICENSE.md
12
+ Requires-Dist: networkx!=2.8.1
13
+ Requires-Dist: tqdm
14
+ Requires-Dist: Pillow
15
+ Requires-Dist: numpy<2.0
16
+ Requires-Dist: opencv-python
17
+ Requires-Dist: scikit-image
18
+ Requires-Dist: scikit-learn
19
+ Requires-Dist: tensorboard
20
+ Requires-Dist: PuLP
21
+ Requires-Dist: matplotlib<3.10.0
22
+ Requires-Dist: scipy
23
+ Requires-Dist: protobuf
24
+ Requires-Dist: mct-quantizers==1.5.2
25
+ Requires-Dist: pydantic<2.0
26
+
27
+ <div align="center" markdown="1">
28
+ <p>
29
+ <a href="https://sony.github.io/model_optimization/" target="_blank">
30
+ <img src="/docsrc/images/mctHeader1-cropped.svg" width="1000"></a>
31
+ </p>
32
+
33
+ ______________________________________________________________________
34
+
35
+ </div>
36
+ <div align="center">
37
+ <p align="center">
38
+ <a href="#getting-started">Getting Started</a> •
39
+ <a href="#tutorials-and-examples">Tutorials</a> •
40
+ <a href="#high-level-features-and-techniques">High level features and techniques</a> •
41
+ <a href="#resources">Resources</a> •
42
+ <a href="#contributions">Community</a> •
43
+ <a href="#license">License</a>
44
+ </p>
45
+ <p align="center">
46
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.1%20%7C%202.2%20%7C%202.3-blue" /></a>
47
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/TensorFlow-2.12%20%7C%202.13%20%7C%202.14%20%7C%202.15-blue" /></a>
48
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C3.10%20%7C3.11-blue" /></a>
49
+ <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
50
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
51
+
52
+ </p>
53
+ </div>
54
+
55
+ __________________________________________________________________________________________________________
56
+
57
+ ## <div align="center">Getting Started</div>
58
+ ### Quick Installation
59
+ Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
60
+ ```
61
+ pip install model-compression-toolkit
62
+ ```
63
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
64
+
65
+ **Important note**: In order to use MCT, you’ll need to provide a floating point .pt or .keras model as an input.
66
+
67
+ ### Tutorials and Examples
68
+
69
+ Our [tutorials](https://github.com/sony/model_optimization/blob/main/tutorials/README.md) section will walk you through the basics of the MCT tool, covering various compression techniques for both Keras and PyTorch models.
70
+ Access interactive notebooks for hands-on learning with popular models/tasks or move on to [Resources](#resources) section.
71
+
72
+ ### Supported Quantization Methods</div>
73
+ MCT supports various quantization methods as appears below.
74
+ <div align="center">
75
+ <p align="center">
76
+
77
+ Quantization Method | Complexity | Computational Cost | API | Tutorial
78
+ -------------------- | -----------|--------------------|---------|--------
79
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
80
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
81
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
82
+
83
+ </p>
84
+ </div>
85
+
86
+ For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
87
+ For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
88
+
89
+ **Required input**: Floating point model - 32bit model in either .pt or .keras format
90
+
91
+ **Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
92
+
93
+ <div align="center">
94
+ <p align="center">
95
+
96
+ <img src="/docsrc/images/mctDiagram_clean.svg" width="800">
97
+ </p>
98
+ </div>
99
+
100
+ ## <div align="center">High level features and techniques</div>
101
+
102
+ MCT offers a range of powerful features to optimize models for efficient edge deployment. These supported features include:
103
+
104
+ ### Quantization Core Features
105
+
106
+ 🏆 **Mixed-precision search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mixed_precision_ptq.ipynb). Assigning optimal quantization bit-width per layer (for weights/activations)
107
+
108
+ 📈 **Graph optimizations**.
109
+ Transforming the model to be best fitted for quantization process.
110
+
111
+ 🔎 **Quantization parameter search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_threshold_search.ipynb). Minimizing expected quantization-noise during thresholds search using methods such as MSE, No-Clipping and MAE.
112
+
113
+ 🧮 **Advanced quantization algorithms** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_z_score_threshold.ipynb). Enhancing quantization performance for advanced cases is available with some algorithms that can be applied, such as Shift negative correction, Outliers filtering and clustering.
114
+ __________________________________________________________________________________________________________
115
+ ### Hardware-aware optimization
116
+
117
+ 🎯 **TPC (Target Platform Capabilities)**. Describes the target hardware’s constrains, for which the model optimization is targeted. See [TPC Readme](./model_compression_toolkit/target_platform_capabilities/README.md) for more information.
118
+ __________________________________________________________________________________________________________
119
+ ### Data-free quantization (Data Generation) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
120
+ Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
121
+ The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
122
+ __________________________________________________________________________________________________________
123
+ ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
124
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
125
+ __________________________________________________________________________________________________________
126
+ ### **Debugging and Visualization**
127
+ **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
128
+ Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
129
+
130
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
131
+
132
+ **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
133
+ __________________________________________________________________________________________________________
134
+ ### Enhanced Post-Training Quantization (EPTQ)
135
+ As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
136
+ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization**"_ [4].
137
+ More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
138
+
139
+ ## <div align="center">Resources</div>
140
+ * [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
141
+
142
+ * MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
143
+
144
+ * [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
145
+ * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
146
+ * [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
147
+
148
+ * [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
149
+
150
+ * [Release notes](https://github.com/sony/model_optimization/releases)
151
+
152
+
153
+ ## <div align="center">Supported Versions</div>
154
+
155
+ Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
156
+ <details id="supported-versions">
157
+ <summary>Supported Versions Table</summary>
158
+
159
+ | | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
160
+ |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
161
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
162
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
163
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
164
+ | Python 3.12 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
165
+
166
+ | | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
167
+ |-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
168
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_keras215.yml) |
169
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml) |
170
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml) |
171
+
172
+ </details>
173
+
174
+ ## <div align="center">Results</div>
175
+
176
+ <p align="center">
177
+ <img src="/docsrc/images/Classification.png" width="200">
178
+ <img src="/docsrc/images/SemSeg.png" width="200">
179
+ <img src="/docsrc/images/PoseEst.png" width="200">
180
+ <img src="/docsrc/images/ObjDet.png" width="200">
181
+
182
+ MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
183
+ Below is a graph of [MobileNetV2](https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html) accuracy on ImageNet vs average bit-width of weights (X-axis), using **single-precision** quantization, **mixed-precision** quantization, and mixed-precision quantization with GPTQ.
184
+
185
+ <p align="center">
186
+ <img src="/docsrc/images/torch_mobilenetv2.png" width="800">
187
+
188
+ For more results, please see [1]
189
+
190
+
191
+ ### Pruning Results
192
+
193
+ Results for applying pruning to reduce the parameters of the following models by 50%:
194
+
195
+ | Model | Dense Model Accuracy | Pruned Model Accuracy |
196
+ |-----------------|----------------------|-----------------------|
197
+ | ResNet50 [2] | 75.1 | 72.4 |
198
+ | DenseNet121 [3] | 74.44 | 71.71 |
199
+
200
+ ## <div align="center">Troubleshooting and Community</div>
201
+
202
+ If you encountered a large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
203
+ for common pitfalls and some tools to improve the quantized model's accuracy.
204
+
205
+ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
206
+
207
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under the [discussions section](https://github.com/sony/model_optimization/discussions).
208
+
209
+
210
+ ## <div align="center">Contributions</div>
211
+ We'd love your input! MCT would not be possible without help from our community, and welcomes contributions from anyone!
212
+
213
+ *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
214
+
215
+ Thank you 🙏 to all our contributors!
216
+
217
+ ## <div align="center">License</div>
218
+ MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
219
+
220
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
221
+
222
+ ## <div align="center">References</div>
223
+
224
+ [1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).
225
+
226
+ [2] [Keras Applications](https://keras.io/api/applications/)
227
+
228
+ [3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
229
+
230
+ [4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization, European Conference on Computer Vision Workshop 2024, Computational Aspects of Deep Learning (CADL)](https://arxiv.org/abs/2309.11531)
231
+
232
+ [5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://arxiv.org/abs/2410.22110)
@@ -568,4 +568,5 @@ model_compression_toolkit/xquant/pytorch/facade_xquant_report.py
568
568
  model_compression_toolkit/xquant/pytorch/model_analyzer.py
569
569
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py
570
570
  model_compression_toolkit/xquant/pytorch/similarity_functions.py
571
- model_compression_toolkit/xquant/pytorch/tensorboard_utils.py
571
+ model_compression_toolkit/xquant/pytorch/tensorboard_utils.py
572
+ tests/test_suite.py
@@ -11,3 +11,4 @@ matplotlib<3.10.0
11
11
  scipy
12
12
  protobuf
13
13
  mct-quantizers==1.5.2
14
+ pydantic<2.0
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20241231.000516"
30
+ __version__ = "2.2.0.20250103.000535"
@@ -12,9 +12,10 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ import copy
15
16
  from abc import abstractmethod
16
17
  from functools import partial
17
- from typing import Tuple, Any, Dict, List, Union, Callable
18
+ from typing import Tuple, Any, Dict, List, Callable
18
19
 
19
20
  import torch
20
21
  import numpy as np
@@ -30,7 +31,6 @@ from model_compression_toolkit.core.common.graph.functional_node import Function
30
31
  from model_compression_toolkit.core.common.user_info import UserInformation
31
32
  from model_compression_toolkit.core.pytorch.back2framework.instance_builder import node_builder
32
33
  from model_compression_toolkit.core.pytorch.default_framework_info import DEFAULT_PYTORCH_INFO
33
- from model_compression_toolkit.core.pytorch.pytorch_device_config import get_working_device
34
34
  from model_compression_toolkit.core.pytorch.reader.node_holders import DummyPlaceHolder
35
35
  from model_compression_toolkit.core.pytorch.utils import to_torch_tensor
36
36
  from mct_quantizers.common.constants import ACTIVATION_HOLDER_QUANTIZER
@@ -224,8 +224,10 @@ class PytorchModel(torch.nn.Module):
224
224
 
225
225
  """
226
226
  super(PytorchModel, self).__init__()
227
- self.graph = graph
228
- self.node_sort = list(topological_sort(graph))
227
+ self.graph = copy.deepcopy(graph)
228
+ delattr(self.graph, 'tpc')
229
+
230
+ self.node_sort = list(topological_sort(self.graph))
229
231
  self.node_to_activation_quantization_holder = {}
230
232
  self.append2output = append2output
231
233
  self.return_float_outputs = return_float_outputs