mct-nightly 2.2.0.20241222.533__py3-none-any.whl → 2.2.0.20241224.532__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. {mct_nightly-2.2.0.20241222.533.dist-info → mct_nightly-2.2.0.20241224.532.dist-info}/METADATA +1 -1
  2. {mct_nightly-2.2.0.20241222.533.dist-info → mct_nightly-2.2.0.20241224.532.dist-info}/RECORD +29 -28
  3. model_compression_toolkit/__init__.py +1 -1
  4. model_compression_toolkit/core/common/graph/base_graph.py +1 -1
  5. model_compression_toolkit/core/common/graph/base_node.py +3 -3
  6. model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +4 -4
  7. model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +2 -2
  8. model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +1 -0
  9. model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +4 -5
  10. model_compression_toolkit/target_platform_capabilities/schema/v1.py +66 -172
  11. model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -1
  12. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2fw.py +56 -0
  13. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2keras.py +107 -0
  14. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2pytorch.py +91 -0
  15. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +1 -1
  16. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +7 -4
  17. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +50 -51
  18. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +54 -52
  19. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +57 -53
  20. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +52 -51
  21. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +53 -51
  22. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +59 -57
  23. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +54 -52
  24. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +90 -83
  25. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +26 -24
  26. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +57 -55
  27. model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -67
  28. model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -30
  29. {mct_nightly-2.2.0.20241222.533.dist-info → mct_nightly-2.2.0.20241224.532.dist-info}/LICENSE.md +0 -0
  30. {mct_nightly-2.2.0.20241222.533.dist-info → mct_nightly-2.2.0.20241224.532.dist-info}/WHEEL +0 -0
  31. {mct_nightly-2.2.0.20241222.533.dist-info → mct_nightly-2.2.0.20241224.532.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241222.533
3
+ Version: 2.2.0.20241224.532
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,4 +1,4 @@
1
- model_compression_toolkit/__init__.py,sha256=jABMKR_HAdl9dzUBbLzsNkhudC3H3DbwbmMwxMkokpk,1573
1
+ model_compression_toolkit/__init__.py,sha256=9suCm_ya-q7binwaiEyGExSDb8bJgOWwJ3wBnV_el2Y,1573
2
2
  model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
@@ -32,8 +32,8 @@ model_compression_toolkit/core/common/fusion/__init__.py,sha256=Rf1RcYmelmdZmBV5
32
32
  model_compression_toolkit/core/common/fusion/graph_fuser.py,sha256=5VkHB2fW0ohfPQmISz6o4fCMV8QyFdj5_kU51lN0JS8,6214
33
33
  model_compression_toolkit/core/common/fusion/layer_fusing.py,sha256=lOubqpc18TslhXZijWUJQAa1c3jIB2S-M-5HK78wJPQ,5548
34
34
  model_compression_toolkit/core/common/graph/__init__.py,sha256=Xr-Lt_qXMdrCnnOaUS_OJP_3iTTGfPCLf8_vSrQgCs0,773
35
- model_compression_toolkit/core/common/graph/base_graph.py,sha256=GG13PAtndsMjIqINfrCN6llVkFrg5CBfij4z99ntieU,37815
36
- model_compression_toolkit/core/common/graph/base_node.py,sha256=QPV2PWpYGtS2qB-uioYeGEgEEnPuOy-UFOLVyjWWIvg,31877
35
+ model_compression_toolkit/core/common/graph/base_graph.py,sha256=6jlwj4WDT3XJKf1QQ4Aougswhl-Xx51QzV58CePbjVg,37818
36
+ model_compression_toolkit/core/common/graph/base_node.py,sha256=kENyhUfHuU0LiYJ1EiCPmtfOA5UANYteeS7JIbpLiHI,31886
37
37
  model_compression_toolkit/core/common/graph/edge.py,sha256=buoSEUZwilWBK3WeBKpJ-GeDaUA1SDdOHxDpxU_bGpk,3784
38
38
  model_compression_toolkit/core/common/graph/functional_node.py,sha256=GH5wStmw8SoAj5IdT_-ItN1Meo_P5NUTt_5bgJC4fak,3935
39
39
  model_compression_toolkit/core/common/graph/graph_matchers.py,sha256=CrDoHYq4iPaflgJWmoJ1K4ziLrRogJvFTVWg8P0UcDU,4744
@@ -111,7 +111,7 @@ model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,
111
111
  model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py,sha256=MwIOBZ4BlZSTIOG75PDvlI3JmZ6t8YjPc1VP9Adei60,3847
112
112
  model_compression_toolkit/core/common/quantization/quantize_graph_weights.py,sha256=N005MSvx8UypVpa7XrxNrB2G732n2wHj3RmLyjTgd3I,2728
113
113
  model_compression_toolkit/core/common/quantization/quantize_node.py,sha256=cdzGNWfT4MRogIU8ehs0tr3lVjnzAI-jeoS9b4TwVBo,2854
114
- model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=ChhXckn8E3Kot6g5R27KD2WSVMzPfqVwkeTJ0UeBdyg,21257
114
+ model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=94CQga1cg9zCHju8zBbuZYaXUR1wbbOjXHzzAwFxgUU,21269
115
115
  model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py,sha256=eCDGwsWYLU6z7qbEVb4TozMW_nd5VEP_iCJ6PcvyEPw,1486
116
116
  model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py,sha256=fzUvqmXVgzp_IV5ER-20kKzl4m8U_shZsAKs-ehhjFo,23887
117
117
  model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=RL-PklAjGyC-26anSt8fU07a6pB_LBQFQy9o4e9giN0,8739
@@ -144,7 +144,7 @@ model_compression_toolkit/core/common/substitutions/linear_collapsing_substituti
144
144
  model_compression_toolkit/core/common/substitutions/remove_identity.py,sha256=TKU1TIU52UIkVnl0EZvWnDhLV9nIVZ4hqi-w1i4NXMk,2637
145
145
  model_compression_toolkit/core/common/substitutions/residual_collapsing.py,sha256=N82mso5j3EJQlKt9EMHjjEJ67FmdGQeCfN8U5grOFXo,4830
146
146
  model_compression_toolkit/core/common/substitutions/scale_equalization.py,sha256=p57u25qdW2pimxzGwgMXEBV4S-LzXuTVAlIM7830WfU,10966
147
- model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=gFJ4Fs3358FLp0ZlZM9k6s56cD8EOcfLTxxXpuQSLqU,30063
147
+ model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=H-8gvU7em4gVUp_EYAi6Fa-fgOQ_ICJTA3Z68or2qpI,30069
148
148
  model_compression_toolkit/core/common/substitutions/softmax_shift.py,sha256=R-0ZqhYAuZLEFWHvB2UTPm52L6gWHGdRdEnwGxKSeGI,2625
149
149
  model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py,sha256=aXzUOJfgKPfQpEGfiIun26fgfCqazBG1mBpzoc4Ezxs,3477
150
150
  model_compression_toolkit/core/common/substitutions/weights_activation_split.py,sha256=h85L2VlDOqbLd-N98wA3SdYWiblBgSsPceNuLanJd70,4737
@@ -431,18 +431,19 @@ model_compression_toolkit/target_platform_capabilities/__init__.py,sha256=cco4Tm
431
431
  model_compression_toolkit/target_platform_capabilities/constants.py,sha256=iJXGy5um7vhC84Me4ld6EHMhy7jPks0T9ItZX23si6s,1519
432
432
  model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROBiXEIB3TU-bAFrnL3qbAsb1yuWPBAQ_CLOJbYUU,1827
433
433
  model_compression_toolkit/target_platform_capabilities/schema/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
434
- model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py,sha256=MxEMpEYHpcgGqHMn371jJU6SMCMvV9qXn1NvjQ4XFik,485
435
- model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py,sha256=8Ek7nigw_RYLc5eRjbKr70aqysu_GD_hE1AtcKGi6yg,4610
436
- model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=R_CjTWFiVja11WzOxRNqlOaj36zRJyaAE5s8FaP-Yx4,29147
437
- model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=0l1Y2EqivDkWRRRhirSRI3vwUzhUcSTrYgrwKIqO0IM,1548
438
- model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py,sha256=1Glr4qKDJfdk5TwM5fzZ12XzgbpQFioDOxb475905gk,2013
439
- model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py,sha256=TDJ65oCoMCVf2vqOlyioAZeOaPAILhNHcxLVMfszoII,1346
434
+ model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py,sha256=E6Zz8boibgfq8EVpZWyl0TOdFrv9qrwiVHUzYPIKVrQ,528
435
+ model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py,sha256=ZDFN2N4dRRP6qs0HxsHXEJbZCwYByo3JL9sBCJolDBs,4656
436
+ model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=GsToWecNswbQCnLPBNsFBK5uX8B69jN9N-tXEmmU6WI,25223
437
+ model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=1FXmDVSqm-dr3xzH4vRo4NmAgyzBZjqHo5l63MUq4r0,1403
440
438
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py,sha256=WCP1wfFZgM4eFm-pPeUinr5R_aSx5qwfSQqLZCXUNBA,1513
439
+ model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2fw.py,sha256=GK_eI9Oq-kgBdfXm0AwgXkYgGKL0FEthqrTd0X_XWg0,2872
440
+ model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2keras.py,sha256=mkTjg9JZEKMT_QHtlQPGUZvcuF0lofZUs1DU1h43JjM,6671
441
+ model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attach2pytorch.py,sha256=cn2sP9fnHJ8qfR1AMTwW58mXLOcdT6M7xyE3TLRjnY0,5443
441
442
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py,sha256=jfhszvuD2Fyy6W2KjlLzXBQKFzTqGAaDZeFVr4-ONQw,8776
442
443
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py,sha256=fIheShGOnxWYKqT8saHpBJqOU5RG_1Hp9qHry7IviIw,2115
443
444
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py,sha256=Cl6-mACpje2jM8RJkibbqE3hvTkFR3r26-lW021mIiA,4019
444
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py,sha256=YcHsObQ0RFT-ETwRSqhQil3xPwik0euh_Y5V9bpWD8E,6865
445
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py,sha256=jQ7t1wCOa-h_OCYOCmNVhEwftkbU1O4d7bnd4PgbuLI,9865
445
+ model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py,sha256=Yg3sUzn4lpZn7bvNeDU4pO7_Jgr9cuqB66SqNMTh5_U,6867
446
+ model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py,sha256=eRRCUqy0yXd3_xrufd7jjaU6hIIXphzcT8yWqvRr8l8,9994
446
447
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py,sha256=FvrYI0Qy7DCmDp2gyUYyCZq5pY84JgLtJqSIiVTJ8Ss,1030
447
448
  model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
448
449
  model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py,sha256=CWind2Kd91lzBTRAh1A9sHuNw17xXhMb3gV436RpK8c,3033
@@ -450,49 +451,49 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__i
450
451
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=yIWwvfTpiT0wRf7GwPgK9elKbGh46jxCrkcLVEjvesU,6081
451
452
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=eVIRpx5O0JQI7TSdw5JAWtwrG3MQ8-7hYThQvB9da5c,1528
452
453
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
453
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=W-DxFuYuD6cclQHmHmVdUpILHqTL7VfOKFFosoUtcJw,11317
454
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=S2KHNfxzj6X_xFprLIYqYC3dcozHYTlsiW1LqVBnQkc,11198
454
455
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=DiEVKde6bZiRDcoeTKzbrfjFIDVEeES0Q_Ms50NbW7Y,6568
455
456
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py,sha256=rQY-ApvLKo9LbN2uKO2NsdOgX49TKcED3o8mBxWAFKw,5594
456
457
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py,sha256=vFDyiMymNZSRCdTgAyWn4A-tZD3vzze_PTLBSF2OYe8,721
457
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=ArqqPg3cxCuRFQzz5lGMrZcLxpx_8n8_6cdFzKNTtDU,11072
458
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=gW_Yw7w2eQAb70Nqghv1btc9CTubMVpzjt7b2kxj-Hs,11101
458
459
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=I3NnmCBSB6KB8ECXJsfXw6FD-ONj39RXL-yB2-nE1xI,6577
459
460
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py,sha256=R6ZDXT2bwAmdZfmXxIoCo7-_h7oGfyr6cZoZmBJdPa0,5713
460
461
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py,sha256=NUuczImqUxzdfflqSdqkeAN8aCU6Tuiu6U0Fnj9Tzmw,721
461
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=fwbZoIOrQhPXbcC8kAo3Gl_hmLTbr7a2BxiRvB1DxV8,10827
462
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=7fplCIkjNlPXgJQiYJlWeHBBOxDcjKjDMD23h0g_nt0,10887
462
463
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=ovHI4lvlcP_haolXmL8TvIpPi9tglhdUxRxNxuf6QPk,6581
463
464
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=PgNAmXZx7hg46KwR16laU7jr2U35rnHiTcR25RaLxd0,5732
464
465
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py,sha256=vKWAoQ2KkhuptS5HZB50zHG6KY8wHpHTxPugw_nGCRo,717
465
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=3qQ-RQPFjTcE8WM3rzMYe89SFoMtkbJ1f6IjkWUam3Q,11372
466
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=et3hrgpF2hm5zqfvhSc2B4peIYmBddGbKVF2eQb7Q4U,11273
466
467
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=i6oEt_3FAeccU9QkVCVxWZf2aX17IExAljR8y13k9P4,6663
467
468
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=Iwi-D_0iC19Lo3yWduuaItezXFrRxRhowUY4jGOtwXk,5700
468
469
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py,sha256=wUk4Xsg7jpxOWYjq2K3WUwLcI185p_sVPK-ttG0ydhA,721
469
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=yANACBcyagUsJ3D8oustmUCVNrKcwFlBMAMTCrQtac4,11124
470
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=DCuslGtM4NT-NvPK8dpINa0t9gIjyP4325YaqtNukSk,11153
470
471
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=e3su6KmNsc2ziP3eEICp-tcnY9YmGPiLoMJ3TreqVx4,6671
471
472
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=9W-pjOhONqgym1t2vDRTo7x-JQiVlxQsAKAG6HdAww4,5707
472
473
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py,sha256=gAeebYCKyIXH9-Qwze7FwvTihudzAHk_Qsg94fQbkjQ,717
473
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=acSYyoS6R6DVHtyExcj93zHz5g3YKiZ71dF6f7N3ygQ,13184
474
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=ngIP70u-_tA-XKXu4pTbXu2GDaWjnYwz08BCRdOeVlQ,13228
474
475
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py,sha256=vbBgQfEd5mLnJKGX2CO-KA0x87_qTmDH7HbbtLgCIfg,6881
475
476
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py,sha256=oDG_Ln0mPmt8p5eKrjGQlHLHCApErLHazny9bIfu3iI,5968
476
477
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py,sha256=C2kwyDE1-rtukkbNSoKRv9q8Nt2GOCaBbl0BdOr3goA,721
477
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=QdicH7CpS7-wUdp4XnYLL9yGmly_RKPifB4sNf1pUNc,12014
478
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=pPEXKAzLKp7AWhN2ysIJElAcY7FID1dVTLxDvz5xAOo,12050
478
479
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=hHK7MY6xfSCRnXQ6Qz0hbN_hM18f-gf3uZmxdl44khU,6679
479
480
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py,sha256=GmS3CuSQPwLSgPdruXCSHN49_fRiRBn9PKA9CPmtqM8,5789
480
481
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py,sha256=tHTUvsaerSfbe22pU0kIDauPpFD7Pq5EmZytVIDkHz4,717
481
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=4Gjb_6pSgnCi7xqUYKdUsBBZeRNcrBbQ7wvuprHHIms,17498
482
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=Ya0IZVDO6TAe_fBGV6Rg1BvENkzeCsbULaEjKDtzjck,17779
482
483
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=9LToJzBBCXEZ5AOj2zzJMRr6S0uwlKKEg3stLK2u1fw,8341
483
484
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=v1Fyp9YKWfdxF9tLfD0fAV41mqEH0S9z-jqr4QFH5CQ,7221
484
485
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
485
486
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=is00rNrDmmirYsyMtMkWz0DwOA92-x7hAJwpd6z1n2E,2806
486
487
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=CXC-HQolSDu7j8V-Xm-SWGCd74gXB3XnAkEhI_TVbIQ,1516
487
488
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
488
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=IsvJrhen1cj5ErBiHnbpHMbBqDJA2oSlYQ53bJ6mUJw,8485
489
+ model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=yNwypIat2hVgwDKitw7enfPJYzvOThB2E76dOT0jglY,8531
489
490
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py,sha256=JKJy4k7TBCRZQ_cSWNhEdvyg5ylvIcpjU_6GALBOaFI,4461
490
491
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py,sha256=x5ooqCuKtW6ULenncjwSs_HTps8yUylOBKOzpgJ4yYI,3788
491
492
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
492
493
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py,sha256=_tf41m40fbax27y5A5JoGHw4p5NY-Kb3c8oxSTnRD_E,2802
493
494
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py,sha256=LIUUQn42YU7oD2YfnEgP0gfqm7Hq9e0fD_8418aKzKI,1511
494
495
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
495
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=D1aMSpT4E-WJ4V3rPfjbl_FNZTuFI3-AGsQiL4-6ujc,10389
496
+ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=U-I3eFBeRhc_BC16RyP_i_8e6ZP-X0klCa10k8QvddE,10383
496
497
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py,sha256=4vQG9uaV5bAte1VP8oMT5dwiDisW84F1B-de0BdBusY,6808
497
498
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py,sha256=uG27HAOrD-JMSDXaEycDJeFGqhF8J3ZqKI4CJCW6zA4,5934
498
499
  model_compression_toolkit/trainable_infrastructure/__init__.py,sha256=uewpvlPkH9mBFt8IxoAgIfz6iEcvWbOImm_fb6_BxD8,1543
@@ -559,8 +560,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
559
560
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
560
561
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
561
562
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
562
- mct_nightly-2.2.0.20241222.533.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
563
- mct_nightly-2.2.0.20241222.533.dist-info/METADATA,sha256=c4zTn_I6l8SBlsOORCbquQqCEGDul2XcIKiT-DWBV8k,26453
564
- mct_nightly-2.2.0.20241222.533.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
565
- mct_nightly-2.2.0.20241222.533.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
566
- mct_nightly-2.2.0.20241222.533.dist-info/RECORD,,
563
+ mct_nightly-2.2.0.20241224.532.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
564
+ mct_nightly-2.2.0.20241224.532.dist-info/METADATA,sha256=TevkRWHqm2UgHf34bwK7NWHCKt4tIUfdOvpVaA4-CIU,26453
565
+ mct_nightly-2.2.0.20241224.532.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
566
+ mct_nightly-2.2.0.20241224.532.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
567
+ mct_nightly-2.2.0.20241224.532.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20241222.000533"
30
+ __version__ = "2.2.0.20241224.000532"
@@ -105,7 +105,7 @@ class Graph(nx.MultiDiGraph, GraphSearches):
105
105
  Logger.critical(f'MCT does not support optimizing Keras custom layers. Found a layer of type {n.type}. '
106
106
  ' Please add the custom layer to Target Platform Capabilities (TPC), or file a feature '
107
107
  'request or an issue if you believe this should be supported.') # pragma: no cover
108
- if any([qc.default_weight_attr_config.enable_weights_quantization for qc in n.get_qco(tpc).quantization_config_list]):
108
+ if any([qc.default_weight_attr_config.enable_weights_quantization for qc in n.get_qco(tpc).quantization_configurations]):
109
109
  Logger.critical(f'Layer identified: {n.type}. MCT does not support weight quantization for Keras custom layers.') # pragma: no cover
110
110
 
111
111
  self.tpc = tpc
@@ -582,12 +582,12 @@ class BaseNode:
582
582
  """
583
583
  # Filter quantization config options that don't match the graph.
584
584
  _base_config = node_qc_options.base_config
585
- _node_qc_options = node_qc_options.quantization_config_list
585
+ _node_qc_options = node_qc_options.quantization_configurations
586
586
  if len(next_nodes):
587
587
  next_nodes_qc_options = [_node.get_qco(tpc) for _node in next_nodes]
588
588
  next_nodes_supported_input_bitwidth = min([max_input_activation_n_bits(op_cfg)
589
589
  for qc_opts in next_nodes_qc_options
590
- for op_cfg in qc_opts.quantization_config_list])
590
+ for op_cfg in qc_opts.quantization_configurations])
591
591
 
592
592
  # Filter node's QC options that match next nodes input bit-width.
593
593
  _node_qc_options = [_option for _option in _node_qc_options
@@ -599,7 +599,7 @@ class BaseNode:
599
599
  if any([node_qc_options.base_config.activation_n_bits > max_input_activation_n_bits(qc_opt.base_config)
600
600
  for qc_opt in next_nodes_qc_options]):
601
601
  # base_config activation bits doesn't match next node supported input bit-width -> replace with
602
- # a qco from quantization_config_list with maximum activation bit-width.
602
+ # a qco from quantization_configurations with maximum activation bit-width.
603
603
  if len(_node_qc_options) > 0:
604
604
  output_act_bitwidth = {qco.activation_n_bits: i for i, qco in enumerate(_node_qc_options)}
605
605
  _base_config = _node_qc_options[output_act_bitwidth[max(output_act_bitwidth)]]
@@ -101,7 +101,7 @@ def filter_node_qco_by_graph(node: BaseNode,
101
101
  """
102
102
  # Filter quantization config options that don't match the graph.
103
103
  _base_config = node_qc_options.base_config
104
- _node_qc_options = node_qc_options.quantization_config_list
104
+ _node_qc_options = node_qc_options.quantization_configurations
105
105
 
106
106
  # Build next_nodes list by appending to the node's next nodes list all nodes that are quantization preserving.
107
107
  _next_nodes = graph.get_next_nodes(node)
@@ -109,7 +109,7 @@ def filter_node_qco_by_graph(node: BaseNode,
109
109
  while len(_next_nodes):
110
110
  n = _next_nodes.pop(0)
111
111
  qco = n.get_qco(tpc)
112
- qp = [qc.quantization_preserving for qc in qco.quantization_config_list]
112
+ qp = [qc.quantization_preserving for qc in qco.quantization_configurations]
113
113
  if not all(qp) and any(qp):
114
114
  Logger.error(f'Attribute "quantization_preserving" should be the same for all QuantizaionConfigOptions in {n}.')
115
115
  if qp[0]:
@@ -120,7 +120,7 @@ def filter_node_qco_by_graph(node: BaseNode,
120
120
  next_nodes_qc_options = [_node.get_qco(tpc) for _node in next_nodes]
121
121
  next_nodes_supported_input_bitwidth = min([max_input_activation_n_bits(op_cfg)
122
122
  for qc_opts in next_nodes_qc_options
123
- for op_cfg in qc_opts.quantization_config_list])
123
+ for op_cfg in qc_opts.quantization_configurations])
124
124
 
125
125
  # Filter node's QC options that match next nodes input bit-width.
126
126
  _node_qc_options = [_option for _option in _node_qc_options
@@ -132,7 +132,7 @@ def filter_node_qco_by_graph(node: BaseNode,
132
132
  if any([node_qc_options.base_config.activation_n_bits > max_input_activation_n_bits(qc_opt.base_config)
133
133
  for qc_opt in next_nodes_qc_options]):
134
134
  # base_config activation bits doesn't match next node supported input bit-width -> replace with
135
- # a qco from quantization_config_list with maximum activation bit-width.
135
+ # a qco from quantization_configurations with maximum activation bit-width.
136
136
  if len(_node_qc_options) > 0:
137
137
  output_act_bitwidth = {qco.activation_n_bits: i for i, qco in enumerate(_node_qc_options)}
138
138
  _base_config = _node_qc_options[output_act_bitwidth[max(output_act_bitwidth)]]
@@ -392,7 +392,7 @@ def shift_negative_function(graph: Graph,
392
392
  bypass_candidate_qc.activation_quantization_cfg.activation_quantization_params[SIGNED] = False
393
393
  graph.shift_stats_collector(bypass_node, np.array(shift_value))
394
394
 
395
- add_node_qco = add_node.get_qco(graph.tpc).quantization_config_list
395
+ add_node_qco = add_node.get_qco(graph.tpc).quantization_configurations
396
396
  for op_qc_idx, candidate_qc in enumerate(add_node.candidates_quantization_cfg):
397
397
  for attr in add_node.get_node_weights_attributes():
398
398
  candidate_qc.weights_quantization_cfg.get_attr_config(attr).enable_weights_quantization = False
@@ -535,7 +535,7 @@ def apply_shift_negative_correction(graph: Graph,
535
535
  # Skip substitution if QuantizationMethod is uniform.
536
536
  node_qco = n.get_qco(graph.tpc)
537
537
  if any([op_qc.activation_quantization_method is QuantizationMethod.UNIFORM
538
- for op_qc in node_qco.quantization_config_list]):
538
+ for op_qc in node_qco.quantization_configurations]):
539
539
  continue
540
540
 
541
541
  if snc_node_types.apply(n):
@@ -1,5 +1,6 @@
1
1
  import model_compression_toolkit.target_platform_capabilities.schema.v1 as schema
2
2
 
3
+ OperatorSetNames = schema.OperatorSetNames
3
4
  Signedness = schema.Signedness
4
5
  AttributeQuantizationConfig = schema.AttributeQuantizationConfig
5
6
  OpQuantizationConfig = schema.OpQuantizationConfig
@@ -64,10 +64,10 @@ def get_default_op_quantization_config(tp_model: TargetPlatformModel) -> OpQuant
64
64
  Raises:
65
65
  AssertionError: If the default quantization configuration list contains more than one configuration option.
66
66
  """
67
- assert len(tp_model.default_qco.quantization_config_list) == 1, \
67
+ assert len(tp_model.default_qco.quantization_configurations) == 1, \
68
68
  f"Default quantization configuration options must contain only one option, " \
69
- f"but found {len(tp_model.default_qco.quantization_config_list)} configurations." # pragma: no cover
70
- return tp_model.default_qco.quantization_config_list[0]
69
+ f"but found {len(tp_model.default_qco.quantization_configurations)} configurations." # pragma: no cover
70
+ return tp_model.default_qco.quantization_configurations[0]
71
71
 
72
72
 
73
73
  def is_opset_in_model(tp_model: TargetPlatformModel, opset_name: str) -> bool:
@@ -82,8 +82,7 @@ def is_opset_in_model(tp_model: TargetPlatformModel, opset_name: str) -> bool:
82
82
  bool: True if an OperatorsSet with the given name exists in the target platform model,
83
83
  otherwise False.
84
84
  """
85
- return opset_name in [x.name for x in tp_model.operator_set]
86
-
85
+ return tp_model.operator_set is not None and opset_name in [x.name for x in tp_model.operator_set]
87
86
 
88
87
  def get_opset_by_name(tp_model: TargetPlatformModel, opset_name: str) -> Optional[OperatorsSetBase]:
89
88
  """