mct-nightly 2.2.0.20241201.617__py3-none-any.whl → 2.2.0.20241202.131715__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. {mct_nightly-2.2.0.20241201.617.dist-info → mct_nightly-2.2.0.20241202.131715.dist-info}/METADATA +1 -1
  2. {mct_nightly-2.2.0.20241201.617.dist-info → mct_nightly-2.2.0.20241202.131715.dist-info}/RECORD +58 -58
  3. model_compression_toolkit/__init__.py +1 -1
  4. model_compression_toolkit/constants.py +0 -3
  5. model_compression_toolkit/core/common/graph/base_node.py +7 -5
  6. model_compression_toolkit/core/common/graph/functional_node.py +1 -1
  7. model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +2 -2
  8. model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +2 -2
  9. model_compression_toolkit/core/common/quantization/node_quantization_config.py +2 -2
  10. model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +2 -1
  11. model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +1 -1
  12. model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +1 -1
  13. model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +1 -1
  14. model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +2 -2
  15. model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +2 -2
  16. model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +5 -1
  17. model_compression_toolkit/metadata.py +14 -5
  18. model_compression_toolkit/target_platform_capabilities/schema/__init__.py +14 -0
  19. model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py +11 -0
  20. model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py +37 -0
  21. model_compression_toolkit/target_platform_capabilities/{target_platform/op_quantization_config.py → schema/v1.py} +377 -24
  22. model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +3 -5
  23. model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +2 -214
  24. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +1 -2
  25. model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +6 -10
  26. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +39 -32
  27. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +3 -2
  28. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +3 -5
  29. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +36 -31
  30. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +3 -2
  31. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +3 -4
  32. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +37 -32
  33. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +3 -2
  34. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +3 -4
  35. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +39 -32
  36. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +3 -2
  37. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +3 -4
  38. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +36 -31
  39. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +3 -2
  40. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +3 -4
  41. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +45 -38
  42. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +3 -2
  43. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +3 -4
  44. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +37 -32
  45. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +3 -2
  46. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +3 -4
  47. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +70 -62
  48. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +3 -2
  49. model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +3 -4
  50. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +22 -17
  51. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +3 -4
  52. model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +3 -4
  53. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +56 -51
  54. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +3 -4
  55. model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +3 -4
  56. model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -85
  57. model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -87
  58. model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -40
  59. {mct_nightly-2.2.0.20241201.617.dist-info → mct_nightly-2.2.0.20241202.131715.dist-info}/LICENSE.md +0 -0
  60. {mct_nightly-2.2.0.20241201.617.dist-info → mct_nightly-2.2.0.20241202.131715.dist-info}/WHEEL +0 -0
  61. {mct_nightly-2.2.0.20241201.617.dist-info → mct_nightly-2.2.0.20241202.131715.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241201.617
3
+ Version: 2.2.0.20241202.131715
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,8 +1,8 @@
1
- model_compression_toolkit/__init__.py,sha256=HPLr2IF7FBsmICoUbFL5xQEHtocmfALXQpoRhf9uS_Q,1573
2
- model_compression_toolkit/constants.py,sha256=i4wYheBkIdQmsQA-axIpcT3YiSO1USNc-jaNiNE8w6E,3920
1
+ model_compression_toolkit/__init__.py,sha256=Y0S0cGZR8YyEXFmrpzm6m5TafU10MMyI_bHB3477yZE,1573
2
+ model_compression_toolkit/constants.py,sha256=i_R6uXBfO1ph_X6DNJych2x59SUojfJbn7dNjs_mZnc,3846
3
3
  model_compression_toolkit/defaultdict.py,sha256=LSc-sbZYXENMCw3U9F4GiXuv67IKpdn0Qm7Fr11jy-4,2277
4
4
  model_compression_toolkit/logger.py,sha256=3DByV41XHRR3kLTJNbpaMmikL8icd9e1N-nkQAY9oDk,4567
5
- model_compression_toolkit/metadata.py,sha256=UtXS5ClK-qPoxGRuytlDGZSzgLo911dMni2EFRcg6io,3623
5
+ model_compression_toolkit/metadata.py,sha256=CsW86SsLEKUK4Unn0JImTJ1sHGGTPfl25cUkYNMSML0,3916
6
6
  model_compression_toolkit/verify_packages.py,sha256=TlS-K1EP-QsghqWUW7SDPkAJiUf7ryw4tvhFDe6rCUk,1405
7
7
  model_compression_toolkit/core/__init__.py,sha256=tnDtL9KmT0vsOU27SsJ19TKDEbIH-tXYeGxTo5YnNUM,2077
8
8
  model_compression_toolkit/core/analyzer.py,sha256=X-2ZpkH1xdXnISnw1yJvXnvV-ssoUh-9LkLISSWNqiY,3691
@@ -33,9 +33,9 @@ model_compression_toolkit/core/common/fusion/graph_fuser.py,sha256=8seu9jBpC7Har
33
33
  model_compression_toolkit/core/common/fusion/layer_fusing.py,sha256=lOubqpc18TslhXZijWUJQAa1c3jIB2S-M-5HK78wJPQ,5548
34
34
  model_compression_toolkit/core/common/graph/__init__.py,sha256=Xr-Lt_qXMdrCnnOaUS_OJP_3iTTGfPCLf8_vSrQgCs0,773
35
35
  model_compression_toolkit/core/common/graph/base_graph.py,sha256=lg5QaBkRbmvM3tGZ0Q34S3m0CbFql3LUv5BaXLe5TG8,37824
36
- model_compression_toolkit/core/common/graph/base_node.py,sha256=W6xXj3U0vPlSAoEBuw1fZ1E5I1YNaeTcrNum4JDKdj8,31619
36
+ model_compression_toolkit/core/common/graph/base_node.py,sha256=UygLaWvpd_-rXVn-QdPORHRaHCywaemokgbhy9MK52E,31837
37
37
  model_compression_toolkit/core/common/graph/edge.py,sha256=buoSEUZwilWBK3WeBKpJ-GeDaUA1SDdOHxDpxU_bGpk,3784
38
- model_compression_toolkit/core/common/graph/functional_node.py,sha256=QpO9wjiYWuLzzy84Z6qRhVP6wlMrLnOTYCuNzNvJbNo,3958
38
+ model_compression_toolkit/core/common/graph/functional_node.py,sha256=GH5wStmw8SoAj5IdT_-ItN1Meo_P5NUTt_5bgJC4fak,3935
39
39
  model_compression_toolkit/core/common/graph/graph_matchers.py,sha256=CrDoHYq4iPaflgJWmoJ1K4ziLrRogJvFTVWg8P0UcDU,4744
40
40
  model_compression_toolkit/core/common/graph/graph_searches.py,sha256=2oKuW6L8hP-oL0lFO9PhQFt9fEFgVJwpc1u4fHExAtE,5128
41
41
  model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py,sha256=3el-A7j1oyoo1_9zq3faQp7IeRsFXFCvnrb3zZFXpU0,9803
@@ -72,7 +72,7 @@ model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py,s
72
72
  model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py,sha256=KifDMbm7qkSfvSl6pcZzQ82naIXzeKL6aT-VsvWZYyc,7901
73
73
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py,sha256=Rf1RcYmelmdZmBV5qOKvKWF575ofc06JFQSq83Jz99A,696
74
74
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py,sha256=HILF7CIn-GYPvPmTFyvjWLhuLDwSGwdBcAaKFgVYrwk,4745
75
- model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py,sha256=1y-Uy60FKbH0B3MDX0sTD4NGqoOU3jyYUQdiF3o-cFw,14893
75
+ model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py,sha256=sFuUgWwC0aEBpf9zWmCTIcAbykBj3t5vmWAoB_BjYWA,14979
76
76
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py,sha256=ttc8wPa_9LZansutQ2f1ss-RTzgTv739wy3qsdLzyyk,4217
77
77
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py,sha256=QhuqaECEGLnYC08iD6-2XXcU7NXbPzYf1sQcjYlGak8,1682
78
78
  model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py,sha256=WC1EHoNuo_lrzy4NRhGJ1cgmJ2IsFsbmP86mrVO3AVA,21506
@@ -101,23 +101,23 @@ model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py,sha256=AP
101
101
  model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py,sha256=4ohJrJHNzZk5uMnZEYkwLx2TDGzkh5kRhLGNVYNC6dc,5978
102
102
  model_compression_toolkit/core/common/quantization/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
103
103
  model_compression_toolkit/core/common/quantization/bit_width_config.py,sha256=IXHkpI9bH3AbrpC5T5bNYHcojHzeWQrrCpV-xZj5pks,5021
104
- model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py,sha256=yU-Cr6S4wOSkDk57iH2NVe-WII0whOhLryejkomCOt4,4940
104
+ model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py,sha256=u7uueixA5wi3eYPrZKtLVxogkmgcgFL1w2pzMfd_ToU,4950
105
105
  model_compression_toolkit/core/common/quantization/core_config.py,sha256=yxCzWqldcHoe8GGxrH0tp99bhrc5jDT7SgZftnMUUBE,2374
106
106
  model_compression_toolkit/core/common/quantization/debug_config.py,sha256=zJP2W9apUPX9RstpPWWK71wr9xJsg7j-s7lGV4_bQdc,1510
107
107
  model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py,sha256=fwF4VILaX-u3ZaFd81xjbJuhg8Ef-JX_KfMXW0TPV-I,7136
108
- model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=HmtyIQCQqhay-8oqU3rUHOeK6VhTtH9nuW24HigCUo0,26517
108
+ model_compression_toolkit/core/common/quantization/node_quantization_config.py,sha256=PjMZ-otuenng393NS5ZWwdxmpIhDncukHhbYBK3QGVk,26527
109
109
  model_compression_toolkit/core/common/quantization/quantization_config.py,sha256=nBqwNhbDbWQGYbfazLPHrP_ZCCnjbL-k5q58T8yIAcc,3917
110
110
  model_compression_toolkit/core/common/quantization/quantization_fn_selection.py,sha256=eyosbVdnCwed7oMQ19tqnh0VoyGZ_UAuD_UnNoXyBpo,2210
111
111
  model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py,sha256=MwIOBZ4BlZSTIOG75PDvlI3JmZ6t8YjPc1VP9Adei60,3847
112
112
  model_compression_toolkit/core/common/quantization/quantize_graph_weights.py,sha256=N005MSvx8UypVpa7XrxNrB2G732n2wHj3RmLyjTgd3I,2728
113
113
  model_compression_toolkit/core/common/quantization/quantize_node.py,sha256=cdzGNWfT4MRogIU8ehs0tr3lVjnzAI-jeoS9b4TwVBo,2854
114
- model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=cclpyw9uDe0rXmM6AReH0Q-7SAvft9ksumRXoB5kQUc,21149
114
+ model_compression_toolkit/core/common/quantization/set_node_quantization_config.py,sha256=h8SwVIwM36nBkqd1i-y1Sn_CrIRRp1JP7B6q0L3AQgc,21136
115
115
  model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py,sha256=eCDGwsWYLU6z7qbEVb4TozMW_nd5VEP_iCJ6PcvyEPw,1486
116
116
  model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py,sha256=fzUvqmXVgzp_IV5ER-20kKzl4m8U_shZsAKs-ehhjFo,23887
117
117
  model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py,sha256=RL-PklAjGyC-26anSt8fU07a6pB_LBQFQy9o4e9giN0,8739
118
118
  model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py,sha256=9gnfJV89jpGwAx8ImJ5E9NjCv3lDtbyulP4OtgWb62M,1772
119
119
  model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py,sha256=y-mEST-0fVbyLiprQu7elOQawSc70TkVdpPsL7o1BmM,11197
120
- model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=pKmaeu7jrxqSI-SHmY8SFwPCRV6FrqiqJS9EAYQLbK4,4606
120
+ model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py,sha256=AXDu6S3cqXPrll9pocP5LgAicciu3BkOOsc_ceb5OC0,4698
121
121
  model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py,sha256=wV5RMqKkhedzRFBFwLYgc9BvCKlIKDKmJC0lmkpOvTM,8784
122
122
  model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py,sha256=Nv_b3DECVjQnlrUet2kbuSvSKVnxcc-gf2zhFb2jSZk,43482
123
123
  model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py,sha256=UI-NW9K-yA6qxtk3Uin1wKmo59FNy0LUnySpxodgeEs,3796
@@ -128,8 +128,8 @@ model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantiz
128
128
  model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py,sha256=iEoWUPFQMcvZXHtLMe2_7L7IK25XcKiY6-d1_gArZs0,11880
129
129
  model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py,sha256=wXExWHf5-0He7L4bpvFpKlx7FG4u3DAfNZiXPpOs_SQ,5521
130
130
  model_compression_toolkit/core/common/statistics_correction/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
131
- model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py,sha256=Aw2N7FSO7p1Kmh-tUjajV9pqrjMJQtgF5etG0WV9Le8,4440
132
- model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py,sha256=xSWVDOODgbN0k4mjJWWtpawilOsqdm4O7Uw2hbA75EA,4669
131
+ model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py,sha256=b05ZwQ2CwG0Q-yqs9A1uHfP8o17aGEZFCeJNP1p4IWk,4450
132
+ model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py,sha256=b5clhUWGoDaQLn2pDCeYkV0FomVebcKS8pMXtQTTzIg,4679
133
133
  model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py,sha256=C_nwhhitTd1pCto0nHZPn3fjIMOeDD7VIciumTR3s6k,5641
134
134
  model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py,sha256=ov9-WYktWKqRquibwyARR81QVT9TfPWAoTTfnKOQSd0,9273
135
135
  model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py,sha256=LaGhYES7HgIDf9Bi2KAG_mBzAWuum0J6AGmAFPC8wwo,10478
@@ -137,14 +137,14 @@ model_compression_toolkit/core/common/statistics_correction/statistics_correctio
137
137
  model_compression_toolkit/core/common/substitutions/__init__.py,sha256=sw7LOPN1bM82o3SkMaklyH0jw-TLGK0-fl2Wq73rffI,697
138
138
  model_compression_toolkit/core/common/substitutions/apply_substitutions.py,sha256=k-bifmakHIYZeZS-4T1QpZ1Et6AwAijMRgAKs7hmMKc,1390
139
139
  model_compression_toolkit/core/common/substitutions/batchnorm_folding.py,sha256=wLlTT7sqUffKHwOrMG2VV5SktQkkP54l8taW1Fq0mh0,13392
140
- model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py,sha256=eD50D4ZwIBFWbkAvlh7552enyngZj9DGK843kB9NScY,7604
140
+ model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py,sha256=lANpukpWHvzWlsghz3J5racybsGAcKtMlshQp6YWTOQ,7690
141
141
  model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py,sha256=YqLKiO5gFBEvI6noAWeMME1JHaYUaGFMglVFg8AqGjc,10028
142
142
  model_compression_toolkit/core/common/substitutions/linear_collapsing.py,sha256=iEtzbWCDXP6EDkTZCtREQ0rpMxhQ2kM9zlcP_0KLq9I,12367
143
143
  model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py,sha256=uoauhmncQqUBNvD-qCLIXsIbl_IzrbxSKdxiMig-5W4,2406
144
144
  model_compression_toolkit/core/common/substitutions/remove_identity.py,sha256=TKU1TIU52UIkVnl0EZvWnDhLV9nIVZ4hqi-w1i4NXMk,2637
145
145
  model_compression_toolkit/core/common/substitutions/residual_collapsing.py,sha256=N82mso5j3EJQlKt9EMHjjEJ67FmdGQeCfN8U5grOFXo,4830
146
146
  model_compression_toolkit/core/common/substitutions/scale_equalization.py,sha256=p57u25qdW2pimxzGwgMXEBV4S-LzXuTVAlIM7830WfU,10966
147
- model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=9Wq-nZahcmKkZmoo9Pqgb_v_6Rd0z_8HlVjbEbKvl8M,29977
147
+ model_compression_toolkit/core/common/substitutions/shift_negative_activation.py,sha256=gFJ4Fs3358FLp0ZlZM9k6s56cD8EOcfLTxxXpuQSLqU,30063
148
148
  model_compression_toolkit/core/common/substitutions/softmax_shift.py,sha256=R-0ZqhYAuZLEFWHvB2UTPm52L6gWHGdRdEnwGxKSeGI,2625
149
149
  model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py,sha256=aXzUOJfgKPfQpEGfiIun26fgfCqazBG1mBpzoc4Ezxs,3477
150
150
  model_compression_toolkit/core/common/substitutions/weights_activation_split.py,sha256=h85L2VlDOqbLd-N98wA3SdYWiblBgSsPceNuLanJd70,4737
@@ -166,7 +166,7 @@ model_compression_toolkit/core/keras/back2framework/__init__.py,sha256=rhIiXg_nB
166
166
  model_compression_toolkit/core/keras/back2framework/factory_model_builder.py,sha256=UIQgOOdexycrSKombTMJVvTthR7MlrCihoqM8Kg-rnE,2293
167
167
  model_compression_toolkit/core/keras/back2framework/float_model_builder.py,sha256=9SFHhX-JnkB8PvYIIHRYlReBDI_RkZY9LditzW_ElLk,2444
168
168
  model_compression_toolkit/core/keras/back2framework/instance_builder.py,sha256=fBj13c6zkVoWX4JJG18_uXPptiEJqXClE_zFbaFB6Q8,4517
169
- model_compression_toolkit/core/keras/back2framework/keras_model_builder.py,sha256=EyMWjObq8DVG929dY5OquyYGx3kXhgob8XnzmGxmizc,18162
169
+ model_compression_toolkit/core/keras/back2framework/keras_model_builder.py,sha256=ns3zFjngea7yZHrxqcV5FQCAfGcstho37D2S2KQZpwE,18444
170
170
  model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py,sha256=ygIS1WIiftF1VC3oGhc8N6j7MryKtWgEg8nr50p7f4U,15587
171
171
  model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py,sha256=5wFb4nx_F0Wu4c8pLf6n6OzxOHtpOJ6_3mQsNSXIudU,2481
172
172
  model_compression_toolkit/core/keras/graph_substitutions/__init__.py,sha256=mjbqLD-KcG3eNeCYpu1GBS7VclGVOQ63x2p6mAAuba4,698
@@ -430,19 +430,19 @@ model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py,sha2
430
430
  model_compression_toolkit/target_platform_capabilities/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
431
431
  model_compression_toolkit/target_platform_capabilities/constants.py,sha256=iJXGy5um7vhC84Me4ld6EHMhy7jPks0T9ItZX23si6s,1519
432
432
  model_compression_toolkit/target_platform_capabilities/immutable.py,sha256=YhROBiXEIB3TU-bAFrnL3qbAsb1yuWPBAQ_CLOJbYUU,1827
433
- model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=hKqORfqMfzGNFHvPnhypO_dTSjTdz1lr4Rkqkoa0vY4,1742
433
+ model_compression_toolkit/target_platform_capabilities/schema/__init__.py,sha256=pKAdbTCFM_2BrZXUtTIw0ouKotrWwUDF_hP3rPwCM2k,696
434
+ model_compression_toolkit/target_platform_capabilities/schema/mct_current_schema.py,sha256=MxEMpEYHpcgGqHMn371jJU6SMCMvV9qXn1NvjQ4XFik,485
435
+ model_compression_toolkit/target_platform_capabilities/schema/schema_functions.py,sha256=jksWB8EkIOY94z7DVhcaynfp7Jy_aJu5zDFjWMQk8O0,1383
436
+ model_compression_toolkit/target_platform_capabilities/schema/v1.py,sha256=tUvJR1tJpo79WuBya4m2HFHrkyxWwfO-cJxtuRZv4RQ,30110
437
+ model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py,sha256=0l1Y2EqivDkWRRRhirSRI3vwUzhUcSTrYgrwKIqO0IM,1548
434
438
  model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py,sha256=1Glr4qKDJfdk5TwM5fzZ12XzgbpQFioDOxb475905gk,2013
435
- model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py,sha256=f3xBAI6ivPvEj4lw8cAvTKdIbs7CRdLAa_0LvhGw3Dg,3924
436
- model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py,sha256=j70nFZ9U75p0R25D1QBKGov1ooizEZl3ikM-zHzmUkI,16742
437
- model_compression_toolkit/target_platform_capabilities/target_platform/operators.py,sha256=rRmrmPBY4rxCWVpEc6FxeOPUFh8MkfwgQsqD82U9a7w,3108
438
- model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py,sha256=mU4djXodftvTqJnFH6-9ISuY1uECjj1xi6SijJWpiRg,9477
439
- model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py,sha256=TDbNQwmF7Id-FoIQZlR7ZOcz_nRb4XKBmDihAgKT0u8,1392
439
+ model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py,sha256=TDJ65oCoMCVf2vqOlyioAZeOaPAILhNHcxLVMfszoII,1346
440
440
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py,sha256=WCP1wfFZgM4eFm-pPeUinr5R_aSx5qwfSQqLZCXUNBA,1513
441
441
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py,sha256=jfhszvuD2Fyy6W2KjlLzXBQKFzTqGAaDZeFVr4-ONQw,8776
442
442
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py,sha256=fIheShGOnxWYKqT8saHpBJqOU5RG_1Hp9qHry7IviIw,2115
443
443
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py,sha256=Cl6-mACpje2jM8RJkibbqE3hvTkFR3r26-lW021mIiA,4019
444
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py,sha256=iZDgHd0SVbgNTT-jtSP0SWsaRGfAJM_p-wpBlBkpRAQ,6723
445
- model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py,sha256=KP8IWlHzkXzVjqIiRtAW6sTYyHJ2wVFFX4hMt_N6o3s,9910
444
+ model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py,sha256=Rkk-6p1jyfriGMYjAWnDhwZUqMq_lN2xTUpZ4MzU9zI,6717
445
+ model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py,sha256=qtNVVVzei96dxa9MCBrHhGsE8So01i3E-aCZw_400H0,9676
446
446
  model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py,sha256=FvrYI0Qy7DCmDp2gyUYyCZq5pY84JgLtJqSIiVTJ8Ss,1030
447
447
  model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
448
448
  model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py,sha256=CWind2Kd91lzBTRAh1A9sHuNw17xXhMb3gV436RpK8c,3033
@@ -450,51 +450,51 @@ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__i
450
450
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py,sha256=yIWwvfTpiT0wRf7GwPgK9elKbGh46jxCrkcLVEjvesU,6081
451
451
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py,sha256=eVIRpx5O0JQI7TSdw5JAWtwrG3MQ8-7hYThQvB9da5c,1528
452
452
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py,sha256=1mMOREEMoNHu_KTMGDp4crN61opKWX6aFn1DrDLvqcc,717
453
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=6mbv-fNVz559j5XCSX5e8aENUJACYuJzQcZBLPh12gU,11057
454
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=Ffsr6g_E_3GzrmZ2PKl2D4bC0Czo0OtQPxlGHg1fdew,6490
455
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py,sha256=iCBfBmIRozoeGVPC3MjZpVyp-Nx4fC94_PKILC82K-Y,5731
453
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py,sha256=-5fj8VUGYGOWpvN_RsBRPA6bYeW7ncH0S8Atbn1e8xI,11343
454
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py,sha256=DiEVKde6bZiRDcoeTKzbrfjFIDVEeES0Q_Ms50NbW7Y,6568
455
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py,sha256=rQY-ApvLKo9LbN2uKO2NsdOgX49TKcED3o8mBxWAFKw,5594
456
456
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py,sha256=vFDyiMymNZSRCdTgAyWn4A-tZD3vzze_PTLBSF2OYe8,721
457
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=bx5lPJCsC5KsIg4noYycWTvbZwyPOepHDpkS6MLnX7E,10793
458
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=Ucan5bShJPGzxEI2r8aG1ArRS2cIdc5FF6KluRVDjtI,6499
459
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py,sha256=09fbd5vEnSQDWfCkMRtYZYy7kIYiWkXDcH_dT1cAmoY,5739
457
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py,sha256=MIkzWvregjIPUDJpt9YCzQdH5krDKt0uYq1C1xszKr4,11066
458
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py,sha256=I3NnmCBSB6KB8ECXJsfXw6FD-ONj39RXL-yB2-nE1xI,6577
459
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py,sha256=R6ZDXT2bwAmdZfmXxIoCo7-_h7oGfyr6cZoZmBJdPa0,5713
460
460
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py,sha256=NUuczImqUxzdfflqSdqkeAN8aCU6Tuiu6U0Fnj9Tzmw,721
461
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=ypbOiVR0ZVHw78g6z9YIoPH0BZut6mPzqgrl6EOpIDI,10543
462
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=XyMjVY9APnzqf1A-tzSy-OcNyhoIQsAQKxOiUCx5DFE,6511
463
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=X853xDEF-3rcPoqxbrlYN28vvW3buSdM36c_eN_LKx8,5758
461
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py,sha256=QHVG6aQLWBT60hdrCvbOfSZsGYD-1SKHR732TMYfNbI,10821
462
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py,sha256=ovHI4lvlcP_haolXmL8TvIpPi9tglhdUxRxNxuf6QPk,6581
463
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py,sha256=PgNAmXZx7hg46KwR16laU7jr2U35rnHiTcR25RaLxd0,5732
464
464
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py,sha256=vKWAoQ2KkhuptS5HZB50zHG6KY8wHpHTxPugw_nGCRo,717
465
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=NI-QPOmg7YqPCQg8X5P1doP_mFIZ2kXm8NxcvzAg7aA,11132
466
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=J2lkRjmb-BXXpaHZ_OZDS9bbDKGY-Q1Inx_1asXElwo,6593
467
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=jAyTXhcChO124odtWC3bYKRH4ZyqLPkKQluJFOoyPIM,5726
465
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py,sha256=hme-SsuB8pZh9OPIRPujjJZ24EoU0y_5rrgNBoc2osY,11398
466
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py,sha256=i6oEt_3FAeccU9QkVCVxWZf2aX17IExAljR8y13k9P4,6663
467
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py,sha256=Iwi-D_0iC19Lo3yWduuaItezXFrRxRhowUY4jGOtwXk,5700
468
468
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py,sha256=wUk4Xsg7jpxOWYjq2K3WUwLcI185p_sVPK-ttG0ydhA,721
469
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=T8o20d-Kerr91l4RR09MFbqoTWAXgqjVUyW-nE43zDg,10865
470
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=EgDKcY-ba9cBmQmh0-sv45GLm-HP6Cc4Rgf-KxZXTgM,6601
471
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=dFQjzFlLDwoUqKNP1at1fS1N1WJadSSasRyzHl6vaB8,5733
469
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py,sha256=xQHVTmpGRImcnqhQ6AdmB8JSWiCLydmAWRZyD4U3TIk,11118
470
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py,sha256=e3su6KmNsc2ziP3eEICp-tcnY9YmGPiLoMJ3TreqVx4,6671
471
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py,sha256=9W-pjOhONqgym1t2vDRTo7x-JQiVlxQsAKAG6HdAww4,5707
472
472
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py,sha256=gAeebYCKyIXH9-Qwze7FwvTihudzAHk_Qsg94fQbkjQ,717
473
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=purcM7kLdh2HyJaxzROAoVSwz1Xlo6GPEe8JQKfMcuM,12911
474
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py,sha256=x_-lIQJ_Cv546EmXblZA2xjvcw8Yo5xg_cy43mhqsh0,6803
475
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py,sha256=5Q54Qgi7_NTByRSJNVCfPUCJZ0lADT98UUZOhyHaV24,5986
473
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py,sha256=4iztway_Dd6igh3qY--d2AYPjWSorhO03Tdi_Mcm-yE,13210
474
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py,sha256=vbBgQfEd5mLnJKGX2CO-KA0x87_qTmDH7HbbtLgCIfg,6881
475
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py,sha256=oDG_Ln0mPmt8p5eKrjGQlHLHCApErLHazny9bIfu3iI,5968
476
476
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py,sha256=C2kwyDE1-rtukkbNSoKRv9q8Nt2GOCaBbl0BdOr3goA,721
477
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=YANvT38YiwO9jE3dC04wHDZBGJQ34hGTvKygHwwbI_U,11751
478
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=XM6qBLIvzsmdFf-AZq5WOlORK2GXC_X-gulReNxHb9E,6601
479
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py,sha256=nP05jqvh6uaj30a3W7zEkJfKtqfP0Nz5bobwRqbYrdM,5807
477
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py,sha256=LOQgPS0yLlrZK83R1ZRr6ZZwo44eojGZ7fbtH9g_5JA,12008
478
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py,sha256=hHK7MY6xfSCRnXQ6Qz0hbN_hM18f-gf3uZmxdl44khU,6679
479
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py,sha256=GmS3CuSQPwLSgPdruXCSHN49_fRiRBn9PKA9CPmtqM8,5789
480
480
  model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py,sha256=tHTUvsaerSfbe22pU0kIDauPpFD7Pq5EmZytVIDkHz4,717
481
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=b1GAFZMtp0Hf1Ybq8gDLUk90m1HFD00LwtEsFpoN5mY,17240
482
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=P6gOd5PNMlIp6bcPPfTIX-hTO0AgT9XswrBdvqm-oJ0,8271
483
- model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=4b3WTV3IDqoqDYx37ba-lxF56K-P5FYyPfIM_TWttQ4,7247
481
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py,sha256=jATi0V3ZhgFVfMag2l4MElc3e5XN8eBBytWUxoEj4nU,17532
482
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py,sha256=9LToJzBBCXEZ5AOj2zzJMRr6S0uwlKKEg3stLK2u1fw,8341
483
+ model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py,sha256=v1Fyp9YKWfdxF9tLfD0fAV41mqEH0S9z-jqr4QFH5CQ,7221
484
484
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
485
485
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py,sha256=is00rNrDmmirYsyMtMkWz0DwOA92-x7hAJwpd6z1n2E,2806
486
486
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py,sha256=CXC-HQolSDu7j8V-Xm-SWGCd74gXB3XnAkEhI_TVbIQ,1516
487
487
  model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
488
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=k1cYUXpVNAvuBVUinSZGu_wDZQvUGAp8e4x9xHBUAOE,8275
489
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py,sha256=h_hePXCggG2qktLuoNAOE1XNtc0qEwMyky7om1c8eC8,4483
490
- model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py,sha256=65WJPRCjliXEUL4AjZRxcyVS3y7KHTMDdkqy6D95kRw,3814
488
+ model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py,sha256=IsvJrhen1cj5ErBiHnbpHMbBqDJA2oSlYQ53bJ6mUJw,8485
489
+ model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py,sha256=JKJy4k7TBCRZQ_cSWNhEdvyg5ylvIcpjU_6GALBOaFI,4461
490
+ model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py,sha256=x5ooqCuKtW6ULenncjwSs_HTps8yUylOBKOzpgJ4yYI,3788
491
491
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py,sha256=cco4TmeIDIh32nj9ZZXVkws4dd9F2UDrmjKzTN8G0V0,697
492
492
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py,sha256=_tf41m40fbax27y5A5JoGHw4p5NY-Kb3c8oxSTnRD_E,2802
493
493
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py,sha256=LIUUQn42YU7oD2YfnEgP0gfqm7Hq9e0fD_8418aKzKI,1511
494
494
  model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py,sha256=t4JKsPcor-7KSCKzIwuaBv0NLNwfhuewAQGlDl6iBeo,717
495
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=rxDkISGCxTB2RaVm59zJWxaJKxGgt4uceDgQ_9E_RmI,10033
496
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py,sha256=-4vNf2Q6c_rgaac19AFO8hG4ANaPfgNPf0kN44mL6TQ,6830
497
- model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py,sha256=YVJJvqGPBdkKnug99p9bjqtbfecDXZKIB2iWVCe7RUY,5960
495
+ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py,sha256=4rod_xFp56WoRIeLF6cxZWGniE0vtyqvdSdXaA0GsNc,10385
496
+ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py,sha256=4vQG9uaV5bAte1VP8oMT5dwiDisW84F1B-de0BdBusY,6808
497
+ model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py,sha256=uG27HAOrD-JMSDXaEycDJeFGqhF8J3ZqKI4CJCW6zA4,5934
498
498
  model_compression_toolkit/trainable_infrastructure/__init__.py,sha256=uewpvlPkH9mBFt8IxoAgIfz6iEcvWbOImm_fb6_BxD8,1543
499
499
  model_compression_toolkit/trainable_infrastructure/common/__init__.py,sha256=huHoBUcKNB6BnY6YaUCcFvdyBtBI172ZoUD8ZYeNc6o,696
500
500
  model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py,sha256=qm2_wa61nga08Jdcl3RkgTsJ0zyHNjZ_A6I2--oVOig,2455
@@ -559,8 +559,8 @@ model_compression_toolkit/xquant/pytorch/model_analyzer.py,sha256=b93o800yVB3Z-i
559
559
  model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py,sha256=bOc-hFL3gdoSM1Th_S2N_-9JJSlPGpZCTx_QLJHS6lg,3388
560
560
  model_compression_toolkit/xquant/pytorch/similarity_functions.py,sha256=CERxq5K8rqaiE-DlwhZBTUd9x69dtYJlkHOPLB54vm8,2354
561
561
  model_compression_toolkit/xquant/pytorch/tensorboard_utils.py,sha256=mkoEktLFFHtEKzzFRn_jCnxjhJolK12TZ5AQeDHzUO8,9767
562
- mct_nightly-2.2.0.20241201.617.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
563
- mct_nightly-2.2.0.20241201.617.dist-info/METADATA,sha256=xO8l44DRh5AfFEoppNzjZywLTqVDJMbQbLYTKc4TSwQ,26446
564
- mct_nightly-2.2.0.20241201.617.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
565
- mct_nightly-2.2.0.20241201.617.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
566
- mct_nightly-2.2.0.20241201.617.dist-info/RECORD,,
562
+ mct_nightly-2.2.0.20241202.131715.dist-info/LICENSE.md,sha256=aYSSIb-5AFPeITTvXm1UAoe0uYBiMmSS8flvXaaFUks,10174
563
+ mct_nightly-2.2.0.20241202.131715.dist-info/METADATA,sha256=YvbvKkI18wDQ20u0NKp5GtD5gZWfoWMYEXcYbMbNNeg,26449
564
+ mct_nightly-2.2.0.20241202.131715.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
565
+ mct_nightly-2.2.0.20241202.131715.dist-info/top_level.txt,sha256=gsYA8juk0Z-ZmQRKULkb3JLGdOdz8jW_cMRjisn9ga4,26
566
+ mct_nightly-2.2.0.20241202.131715.dist-info/RECORD,,
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20241201.000617"
30
+ __version__ = "2.2.0.20241202.131715"
@@ -18,9 +18,6 @@
18
18
  TENSORFLOW = 'tensorflow'
19
19
  PYTORCH = 'pytorch'
20
20
 
21
- # Metadata fields
22
- MCT_VERSION = 'mct_version'
23
- TPC_VERSION = 'tpc_version'
24
21
 
25
22
  WEIGHTS_SIGNED = True
26
23
  # Minimal threshold to use for quantization ranges:
@@ -22,8 +22,9 @@ from model_compression_toolkit.constants import WEIGHTS_NBITS_ATTRIBUTE, CORRECT
22
22
  ACTIVATION_N_BITS_ATTRIBUTE, FP32_BYTES_PER_PARAMETER
23
23
  from model_compression_toolkit.core.common.quantization.node_quantization_config import WeightsAttrQuantizationConfig
24
24
  from model_compression_toolkit.logger import Logger
25
- from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationConfigOptions, \
26
- TargetPlatformCapabilities, LayerFilterParams, OpQuantizationConfig
25
+ from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import QuantizationConfigOptions, \
26
+ OpQuantizationConfig
27
+ from model_compression_toolkit.target_platform_capabilities.target_platform import TargetPlatformCapabilities, LayerFilterParams
27
28
 
28
29
 
29
30
  class BaseNode:
@@ -556,9 +557,10 @@ class BaseNode:
556
557
  # Extract qco with is_match_type to overcome mismatch of function types in TF 2.15
557
558
  matching_qcos = [_qco for _type, _qco in tpc.layer2qco.items() if self.is_match_type(_type)]
558
559
  if matching_qcos:
559
- if len(matching_qcos) > 1:
560
- Logger.error('Found duplicate qco types!')
561
- return matching_qcos[0]
560
+ if all([_qco == matching_qcos[0] for _qco in matching_qcos]):
561
+ return matching_qcos[0]
562
+ else:
563
+ Logger.critical(f"Found duplicate qco types for node '{self.name}' of type '{self.type}'!") # pragma: no cover
562
564
  return tpc.tp_model.default_qco
563
565
 
564
566
  def filter_node_qco_by_graph(self, tpc: TargetPlatformCapabilities,
@@ -85,5 +85,5 @@ class FunctionalNode(BaseNode):
85
85
  Whether _type matches the self node type
86
86
 
87
87
  """
88
- names_match = _type.__name__ == self.type.__name__ if FOUND_TF else False
88
+ names_match = _type.__name__ == self.type.__name__
89
89
  return super().is_match_type(_type) or names_match
@@ -23,8 +23,8 @@ from model_compression_toolkit.core.common import Graph
23
23
  from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
24
24
  from model_compression_toolkit.core.common.graph.edge import EDGE_SINK_INDEX
25
25
  from model_compression_toolkit.core.graph_prep_runner import graph_preparation_runner
26
- from model_compression_toolkit.target_platform_capabilities.target_platform import TargetPlatformCapabilities, \
27
- QuantizationConfigOptions
26
+ from model_compression_toolkit.target_platform_capabilities.target_platform import TargetPlatformCapabilities
27
+ from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import QuantizationConfigOptions
28
28
 
29
29
 
30
30
  def compute_resource_utilization_data(in_model: Any,
@@ -17,8 +17,8 @@ from typing import Callable, List, Tuple
17
17
  from model_compression_toolkit.core import QuantizationConfig
18
18
  from model_compression_toolkit.core.common.quantization.node_quantization_config import BaseNodeQuantizationConfig, \
19
19
  NodeWeightsQuantizationConfig, NodeActivationQuantizationConfig
20
- from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
21
- AttributeQuantizationConfig
20
+ from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import AttributeQuantizationConfig, \
21
+ OpQuantizationConfig
22
22
  from model_compression_toolkit.logger import Logger
23
23
 
24
24
 
@@ -25,8 +25,8 @@ from model_compression_toolkit.core.common.quantization.quantization_params_fn_s
25
25
 
26
26
  from model_compression_toolkit.core.common.quantization.quantization_config import QuantizationConfig, \
27
27
  QuantizationErrorMethod
28
- from model_compression_toolkit.target_platform_capabilities.target_platform import OpQuantizationConfig, \
29
- AttributeQuantizationConfig
28
+ from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import AttributeQuantizationConfig, \
29
+ OpQuantizationConfig
30
30
 
31
31
 
32
32
  ##########################################
@@ -15,7 +15,8 @@
15
15
  import numpy as np
16
16
  from typing import Dict, Union
17
17
 
18
- from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod, Signedness
18
+ from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
19
+ from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import Signedness
19
20
  from model_compression_toolkit.core.common.collectors.statistics_collector import BaseStatsCollector
20
21
  from model_compression_toolkit.core.common.quantization import quantization_params_generation
21
22
  from model_compression_toolkit.core.common.node_prior_info import NodePriorInfo
@@ -33,7 +33,7 @@ from model_compression_toolkit.core.common.quantization.quantization_params_fn_s
33
33
  from model_compression_toolkit.core.common.quantization.quantization_fn_selection import \
34
34
  get_weights_quantization_fn
35
35
  from model_compression_toolkit.target_platform_capabilities.target_platform.targetplatform2framework import TargetPlatformCapabilities
36
- from model_compression_toolkit.target_platform_capabilities.target_platform.op_quantization_config import OpQuantizationConfig, \
36
+ from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import OpQuantizationConfig, \
37
37
  QuantizationConfigOptions
38
38
 
39
39
 
@@ -17,7 +17,7 @@ from model_compression_toolkit.core import CoreConfig, QuantizationConfig
17
17
  from model_compression_toolkit.core.common import BaseNode, Graph
18
18
  from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
19
19
  from model_compression_toolkit.core.common.quantization.node_quantization_config import WeightsAttrQuantizationConfig
20
- from model_compression_toolkit.target_platform_capabilities.target_platform import AttributeQuantizationConfig
20
+ from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import AttributeQuantizationConfig
21
21
 
22
22
 
23
23
  def apply_activation_bias_correction_to_graph(graph: Graph,
@@ -19,7 +19,7 @@ from model_compression_toolkit.core import CoreConfig
19
19
  from model_compression_toolkit.core.common import Graph, BaseNode
20
20
  from model_compression_toolkit.core.common.framework_implementation import FrameworkImplementation
21
21
  from model_compression_toolkit.core.common.quantization.node_quantization_config import WeightsAttrQuantizationConfig
22
- from model_compression_toolkit.target_platform_capabilities.target_platform import AttributeQuantizationConfig
22
+ from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import AttributeQuantizationConfig
23
23
 
24
24
 
25
25
  def apply_bias_correction_to_graph(graph_to_apply_bias_correction: Graph,
@@ -26,8 +26,8 @@ from model_compression_toolkit.logger import Logger
26
26
  from model_compression_toolkit.core.common.graph.base_graph import Graph
27
27
  from model_compression_toolkit.core.common.graph.base_node import BaseNode
28
28
  from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
29
- from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod, \
30
- AttributeQuantizationConfig
29
+ from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
30
+ from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import AttributeQuantizationConfig
31
31
 
32
32
 
33
33
  class BatchNormalizationReconstruction(common.BaseSubstitution):
@@ -22,8 +22,8 @@ from model_compression_toolkit.logger import Logger
22
22
  from model_compression_toolkit.core.common import FrameworkInfo, Graph, BaseNode
23
23
  from model_compression_toolkit.constants import THRESHOLD, SIGNED, SHIFT_NEGATIVE_NON_LINEAR_NUM_BITS
24
24
  from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
25
- from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod, \
26
- AttributeQuantizationConfig
25
+ from model_compression_toolkit.target_platform_capabilities.target_platform import QuantizationMethod
26
+ from model_compression_toolkit.target_platform_capabilities.schema.mct_current_schema import AttributeQuantizationConfig
27
27
  from model_compression_toolkit.core.common.quantization.set_node_quantization_config import create_node_activation_qc, \
28
28
  set_quantization_configs_to_node
29
29
  from model_compression_toolkit.core.common.quantization.core_config import CoreConfig
@@ -302,7 +302,11 @@ class KerasModelBuilder(BaseModelBuilder):
302
302
  # Build a functional node using its args
303
303
  if isinstance(n, FunctionalNode):
304
304
  if n.inputs_as_list: # If the first argument should be a list of tensors:
305
- out_tensors_of_n_float = op_func(input_tensors, *n.op_call_args, **op_call_kwargs)
305
+ if isinstance(op_func, KerasQuantizationWrapper):
306
+ # in wrapped nodes, the op args & kwargs are already in the KerasQuantizationWrapper.
307
+ out_tensors_of_n_float = op_func(input_tensors)
308
+ else:
309
+ out_tensors_of_n_float = op_func(input_tensors, *n.op_call_args, **op_call_kwargs)
306
310
  else: # If the input tensors should not be a list but iterated:
307
311
  out_tensors_of_n_float = op_func(*input_tensors, *n.op_call_args, **op_call_kwargs)
308
312
  else:
@@ -12,10 +12,11 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ from dataclasses import dataclass, asdict
15
16
 
16
17
  from typing import Dict, Any
17
- from model_compression_toolkit.constants import MCT_VERSION, TPC_VERSION, OPERATORS_SCHEDULING, FUSED_NODES_MAPPING, \
18
- CUTS, MAX_CUT, OP_ORDER, OP_RECORD, SHAPE, NODE_OUTPUT_INDEX, NODE_NAME, TOTAL_SIZE, MEM_ELEMENTS
18
+ from model_compression_toolkit.constants import OPERATORS_SCHEDULING, FUSED_NODES_MAPPING, CUTS, MAX_CUT, OP_ORDER, \
19
+ OP_RECORD, SHAPE, NODE_OUTPUT_INDEX, NODE_NAME, TOTAL_SIZE, MEM_ELEMENTS
19
20
  from model_compression_toolkit.core.common.graph.memory_graph.compute_graph_max_cut import SchedulerInfo
20
21
  from model_compression_toolkit.target_platform_capabilities.target_platform import TargetPlatformCapabilities
21
22
 
@@ -43,13 +44,21 @@ def create_model_metadata(tpc: TargetPlatformCapabilities,
43
44
  def get_versions_dict(tpc) -> Dict:
44
45
  """
45
46
 
46
- Returns: A dictionary with TPC and MCT versions.
47
+ Returns: A dictionary with TPC, MCT and TPC-Schema versions.
47
48
 
48
49
  """
49
50
  # imported inside to avoid circular import error
50
51
  from model_compression_toolkit import __version__ as mct_version
51
- tpc_version = f'{tpc.name}.{tpc.version}'
52
- return {MCT_VERSION: mct_version, TPC_VERSION: tpc_version}
52
+
53
+ @dataclass
54
+ class TPCVersions:
55
+ mct_version: str
56
+ tpc_minor_version: str = f'{tpc.tp_model.tpc_minor_version}'
57
+ tpc_patch_version: str = f'{tpc.tp_model.tpc_patch_version}'
58
+ tpc_platform_type: str = f'{tpc.tp_model.tpc_platform_type}'
59
+ tpc_schema: str = f'{tpc.tp_model.SCHEMA_VERSION}'
60
+
61
+ return asdict(TPCVersions(mct_version))
53
62
 
54
63
 
55
64
  def get_scheduler_metadata(scheduler_info: SchedulerInfo) -> Dict[str, Any]:
@@ -0,0 +1,14 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
@@ -0,0 +1,11 @@
1
+ import model_compression_toolkit.target_platform_capabilities.schema.v1 as schema
2
+
3
+ Signedness = schema.Signedness
4
+ AttributeQuantizationConfig = schema.AttributeQuantizationConfig
5
+ OpQuantizationConfig = schema.OpQuantizationConfig
6
+ QuantizationConfigOptions = schema.QuantizationConfigOptions
7
+ OperatorsSetBase = schema.OperatorsSetBase
8
+ OperatorsSet = schema.OperatorsSet
9
+ OperatorSetConcat= schema.OperatorSetConcat
10
+ Fusing = schema.Fusing
11
+ TargetPlatformModel = schema.TargetPlatformModel
@@ -0,0 +1,37 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ import copy
16
+ from typing import Any, Dict
17
+
18
+
19
+ def clone_and_edit_object_params(obj: Any, **kwargs: Dict) -> Any:
20
+ """
21
+ Clones the given object and edit some of its parameters.
22
+
23
+ Args:
24
+ obj: An object to clone.
25
+ **kwargs: Keyword arguments to edit in the cloned object.
26
+
27
+ Returns:
28
+ Edited copy of the given object.
29
+ """
30
+
31
+ obj_copy = copy.deepcopy(obj)
32
+ for k, v in kwargs.items():
33
+ assert hasattr(obj_copy,
34
+ k), f'Edit parameter is possible only for existing parameters in the given object, ' \
35
+ f'but {k} is not a parameter of {obj_copy}.'
36
+ setattr(obj_copy, k, v)
37
+ return obj_copy