mct-nightly 2.2.0.20241127.529__tar.gz → 2.2.0.20241129.526__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (571) hide show
  1. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/PKG-INFO +25 -34
  2. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/README.md +24 -33
  3. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/mct_nightly.egg-info/PKG-INFO +25 -34
  4. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/__init__.py +1 -1
  5. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/LICENSE.md +0 -0
  6. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/mct_nightly.egg-info/SOURCES.txt +0 -0
  7. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/mct_nightly.egg-info/dependency_links.txt +0 -0
  8. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/mct_nightly.egg-info/requires.txt +0 -0
  9. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/mct_nightly.egg-info/top_level.txt +0 -0
  10. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/constants.py +0 -0
  11. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/__init__.py +0 -0
  12. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/analyzer.py +0 -0
  13. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/__init__.py +0 -0
  14. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  15. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  16. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  17. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  18. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  19. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  20. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  21. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  22. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  23. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  24. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/framework_info.py +0 -0
  25. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  26. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  27. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  28. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  29. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  30. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  31. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  32. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  33. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  34. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  35. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  36. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  37. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  38. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  39. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  40. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  41. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  42. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  43. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  44. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  45. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  46. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  47. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  48. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  49. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  50. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  51. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  52. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  53. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  54. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  55. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  56. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  57. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  58. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  59. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  60. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  61. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  62. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  63. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  64. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  65. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  66. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  67. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  68. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  69. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  70. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  71. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  72. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  73. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  74. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  75. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  76. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  77. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/model_collector.py +0 -0
  78. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/model_validation.py +0 -0
  79. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  80. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  81. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  82. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  83. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  84. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  85. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  86. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  87. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  88. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  89. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  90. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  91. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  92. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  93. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  94. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  95. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  96. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  97. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  98. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  99. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  100. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  101. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  102. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  103. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  104. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  105. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  106. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  107. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  108. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  109. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  110. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  111. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  112. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  113. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  114. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  115. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  116. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  117. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  118. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  119. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  120. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  121. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  122. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  123. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  124. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  125. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  126. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  127. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  128. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  129. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  130. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  131. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
  132. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  133. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  134. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
  135. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  136. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  137. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  138. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  139. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  140. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  141. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  142. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  143. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  144. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  145. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  146. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  147. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  148. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  149. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  150. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  151. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/user_info.py +0 -0
  152. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  153. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  154. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  155. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  156. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  157. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/__init__.py +0 -0
  158. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  159. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  160. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  161. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  162. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  163. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  164. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  165. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/constants.py +0 -0
  166. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  167. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/data_util.py +0 -0
  168. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  169. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  170. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  171. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  172. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  173. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  174. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  175. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  176. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  177. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  178. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  179. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  180. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  181. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  182. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  183. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  184. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  185. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  186. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  187. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  188. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  189. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  190. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  191. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  192. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  193. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  194. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  195. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  196. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  197. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  198. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  199. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  200. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  201. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  202. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  203. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  204. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  205. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  206. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  207. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  208. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  209. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  210. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  211. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  212. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  213. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  214. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  215. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  216. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  217. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  218. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  219. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  220. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
  221. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  222. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  223. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  224. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  225. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  226. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  227. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  228. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  229. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  230. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  231. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  232. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  233. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  234. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  235. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
  236. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  237. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  238. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  239. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  240. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  241. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  242. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  243. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  244. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  245. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  246. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
  247. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  248. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  249. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  250. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  251. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  252. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  253. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  254. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  255. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  256. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  257. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  258. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  259. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  260. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  261. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  262. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  263. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  264. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  265. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  266. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  267. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  268. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  269. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  270. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  271. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  272. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  273. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  274. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  275. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  276. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  277. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  278. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  279. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  280. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  281. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  282. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
  283. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  284. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  285. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/core/runner.py +0 -0
  286. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/__init__.py +0 -0
  287. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  288. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  289. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  290. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  291. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  292. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  293. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  294. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  295. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  296. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  297. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  298. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  299. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  300. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  301. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  302. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  303. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  304. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  305. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  306. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  307. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  308. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  309. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  310. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  311. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  312. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  313. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  314. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  315. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  316. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  317. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  318. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  319. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  320. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  321. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  322. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  323. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/defaultdict.py +0 -0
  324. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/__init__.py +0 -0
  325. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  326. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  327. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  328. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  329. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  330. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  331. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  332. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  333. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  334. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  335. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  336. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  337. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  338. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  339. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  340. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  341. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  342. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  343. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  344. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  345. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  346. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  347. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  348. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  349. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  350. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  351. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  352. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  353. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  354. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  355. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  356. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/__init__.py +0 -0
  357. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  358. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  359. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  360. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  361. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  362. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  363. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
  364. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
  365. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  366. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  367. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  368. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  369. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  370. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  371. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  372. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  373. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  374. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  375. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  376. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  377. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  378. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  379. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  380. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  381. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  382. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  383. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  384. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  385. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  386. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  387. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  388. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  389. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  390. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  391. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  392. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  393. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  394. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  395. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  396. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  397. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/gptq/runner.py +0 -0
  398. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/logger.py +0 -0
  399. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/metadata.py +0 -0
  400. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/pruning/__init__.py +0 -0
  401. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  402. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  403. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  404. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  405. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/ptq/__init__.py +0 -0
  406. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  407. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  408. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  409. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  410. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/ptq/runner.py +0 -0
  411. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/__init__.py +0 -0
  412. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/common/__init__.py +0 -0
  413. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  414. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  415. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  416. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  417. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
  418. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  419. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  420. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  421. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  422. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  423. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  424. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  425. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  426. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  427. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  428. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  429. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  430. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  431. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  432. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  433. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  434. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  435. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  436. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  437. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  438. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  439. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  440. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  441. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  442. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  443. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  444. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  445. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  446. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  447. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  448. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  449. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  450. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  451. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  452. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  453. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  454. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  455. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  456. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  457. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  458. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  459. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  460. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  461. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  462. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  463. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  464. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  465. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  466. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  467. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  468. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  469. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  470. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  471. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  472. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  473. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  474. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  475. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  476. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  477. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  478. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  479. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  480. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  481. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  482. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  483. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  484. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  485. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  486. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  487. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
  488. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +0 -0
  489. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
  490. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -0
  491. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  492. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  493. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  494. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  495. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  496. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  497. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  498. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  499. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  500. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  501. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  502. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  503. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  504. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  505. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  506. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  507. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
  508. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  509. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  510. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  511. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  512. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  513. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  514. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  515. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
  516. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  517. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
  518. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
  519. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
  520. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  521. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
  522. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
  523. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
  524. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
  525. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
  526. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  527. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  528. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  529. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  530. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  531. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  532. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  533. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  534. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  535. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  536. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  537. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  538. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  539. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  540. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  541. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  542. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  543. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/verify_packages.py +0 -0
  544. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/__init__.py +0 -0
  545. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  546. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/constants.py +0 -0
  547. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  548. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  549. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  550. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  551. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  552. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  553. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  554. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  555. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  556. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  557. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  558. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  559. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  560. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  561. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  562. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  563. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  564. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  565. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  566. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  567. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  568. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  569. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  570. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/setup.cfg +0 -0
  571. {mct-nightly-2.2.0.20241127.529 → mct-nightly-2.2.0.20241129.526}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241127.529
3
+ Version: 2.2.0.20241129.526
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -56,9 +56,9 @@ Description: <div align="center" markdown="1">
56
56
 
57
57
  Quantization Method | Complexity | Computational Cost | API | Tutorial
58
58
  -------------------- | -----------|--------------------|---------|--------
59
- PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
60
- GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
61
- QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
59
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
60
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
61
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
62
62
 
63
63
  </p>
64
64
  </div>
@@ -66,9 +66,9 @@ Description: <div align="center" markdown="1">
66
66
  For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
67
67
  For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
68
68
 
69
- Required input:
70
- - Floating point model - 32bit model in either .pt or .keras format
71
- - Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
69
+ **Required input**: Floating point model - 32bit model in either .pt or .keras format
70
+
71
+ **Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
72
72
 
73
73
  <div align="center">
74
74
  <p align="center">
@@ -101,13 +101,13 @@ Description: <div align="center" markdown="1">
101
101
  The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
102
102
  __________________________________________________________________________________________________________
103
103
  ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
104
- Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)).
104
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
105
105
  __________________________________________________________________________________________________________
106
106
  ### **Debugging and Visualization**
107
107
  **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
108
- Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor
108
+ Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
109
109
 
110
- **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
110
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
111
111
 
112
112
  **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
113
113
  __________________________________________________________________________________________________________
@@ -117,15 +117,15 @@ Description: <div align="center" markdown="1">
117
117
  More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
118
118
 
119
119
  ## <div align="center">Resources</div>
120
- * [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
120
+ * [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
121
121
 
122
- * MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
122
+ * MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
123
123
 
124
- * [Post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#ptq) | PTQ API docs
125
- * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#gptq) | GPTQ API docs
126
- * [Quantization-aware training](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | QAT API docs
124
+ * [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
125
+ * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
126
+ * [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
127
127
 
128
- * [Debug](https://sony.github.io/model_optimization/docs/guidelines/visualization.html) – modify optimization process or generate explainable report
128
+ * [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
129
129
 
130
130
  * [Release notes](https://github.com/sony/model_optimization/releases)
131
131
 
@@ -159,25 +159,15 @@ Description: <div align="center" markdown="1">
159
159
  <img src="/docsrc/images/PoseEst.png" width="200">
160
160
  <img src="/docsrc/images/ObjDet.png" width="200">
161
161
 
162
- ### Pytorch
163
- We quantized classification networks from the torchvision library.
164
- In the following table we present the ImageNet validation results for these models:
165
-
166
- | Network Name | Float Accuracy | 8Bit Accuracy | Data-Free 8Bit Accuracy |
167
- |---------------------------|-----------------|-----------------|-------------------------|
168
- | MobileNet V2 [3] | 71.886 | 71.444 |71.29|
169
- | ResNet-18 [3] | 69.86 | 69.63 |69.53|
170
- | SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
171
-
172
- ### Keras
173
162
  MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
174
- Below is a graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights (X-axis), using
175
- single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
163
+ Below is a graph of [MobileNetV2](https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html) accuracy on ImageNet vs average bit-width of weights (X-axis), using **single-precision** quantization, **mixed-precision** quantization, and mixed-precision quantization with GPTQ.
176
164
 
177
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
165
+ <p align="center">
166
+ <img src="/docsrc/images/torch_mobilenetv2.png" width="800">
178
167
 
179
168
  For more results, please see [1]
180
169
 
170
+
181
171
  ### Pruning Results
182
172
 
183
173
  Results for applying pruning to reduce the parameters of the following models by 50%:
@@ -189,19 +179,20 @@ Description: <div align="center" markdown="1">
189
179
 
190
180
  ## <div align="center">Troubleshooting and Community</div>
191
181
 
192
- If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
193
- for common pitfalls and some tools to improve quantized model's accuracy.
182
+ If you encountered a large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
183
+ for common pitfalls and some tools to improve the quantized model's accuracy.
194
184
 
195
185
  Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
196
186
 
197
- You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
187
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under the [discussions section](https://github.com/sony/model_optimization/discussions).
198
188
 
199
189
 
200
190
  ## <div align="center">Contributions</div>
201
- MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
191
+ We'd love your input! MCT would not be possible without help from our community, and welcomes contributions from anyone!
202
192
 
203
193
  *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
204
194
 
195
+ Thank you 🙏 to all our contributors!
205
196
 
206
197
  ## <div align="center">License</div>
207
198
  MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
@@ -50,9 +50,9 @@ MCT supports various quantization methods as appears below.
50
50
 
51
51
  Quantization Method | Complexity | Computational Cost | API | Tutorial
52
52
  -------------------- | -----------|--------------------|---------|--------
53
- PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
54
- GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
55
- QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
53
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
54
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
55
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
56
56
 
57
57
  </p>
58
58
  </div>
@@ -60,9 +60,9 @@ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](
60
60
  For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
61
61
  For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
62
62
 
63
- Required input:
64
- - Floating point model - 32bit model in either .pt or .keras format
65
- - Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
63
+ **Required input**: Floating point model - 32bit model in either .pt or .keras format
64
+
65
+ **Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
66
66
 
67
67
  <div align="center">
68
68
  <p align="center">
@@ -95,13 +95,13 @@ Generates synthetic images based on the statistics stored in the model's batch n
95
95
  The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
96
96
  __________________________________________________________________________________________________________
97
97
  ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
98
- Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)).
98
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
99
99
  __________________________________________________________________________________________________________
100
100
  ### **Debugging and Visualization**
101
101
  **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
102
- Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor
102
+ Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
103
103
 
104
- **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
104
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
105
105
 
106
106
  **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
107
107
  __________________________________________________________________________________________________________
@@ -111,15 +111,15 @@ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhance
111
111
  More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
112
112
 
113
113
  ## <div align="center">Resources</div>
114
- * [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
114
+ * [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
115
115
 
116
- * MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
116
+ * MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
117
117
 
118
- * [Post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#ptq) | PTQ API docs
119
- * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#gptq) | GPTQ API docs
120
- * [Quantization-aware training](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | QAT API docs
118
+ * [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
119
+ * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
120
+ * [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
121
121
 
122
- * [Debug](https://sony.github.io/model_optimization/docs/guidelines/visualization.html) – modify optimization process or generate explainable report
122
+ * [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
123
123
 
124
124
  * [Release notes](https://github.com/sony/model_optimization/releases)
125
125
 
@@ -153,25 +153,15 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
153
153
  <img src="/docsrc/images/PoseEst.png" width="200">
154
154
  <img src="/docsrc/images/ObjDet.png" width="200">
155
155
 
156
- ### Pytorch
157
- We quantized classification networks from the torchvision library.
158
- In the following table we present the ImageNet validation results for these models:
159
-
160
- | Network Name | Float Accuracy | 8Bit Accuracy | Data-Free 8Bit Accuracy |
161
- |---------------------------|-----------------|-----------------|-------------------------|
162
- | MobileNet V2 [3] | 71.886 | 71.444 |71.29|
163
- | ResNet-18 [3] | 69.86 | 69.63 |69.53|
164
- | SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
165
-
166
- ### Keras
167
156
  MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
168
- Below is a graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights (X-axis), using
169
- single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
157
+ Below is a graph of [MobileNetV2](https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html) accuracy on ImageNet vs average bit-width of weights (X-axis), using **single-precision** quantization, **mixed-precision** quantization, and mixed-precision quantization with GPTQ.
170
158
 
171
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
159
+ <p align="center">
160
+ <img src="/docsrc/images/torch_mobilenetv2.png" width="800">
172
161
 
173
162
  For more results, please see [1]
174
163
 
164
+
175
165
  ### Pruning Results
176
166
 
177
167
  Results for applying pruning to reduce the parameters of the following models by 50%:
@@ -183,19 +173,20 @@ Results for applying pruning to reduce the parameters of the following models by
183
173
 
184
174
  ## <div align="center">Troubleshooting and Community</div>
185
175
 
186
- If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
187
- for common pitfalls and some tools to improve quantized model's accuracy.
176
+ If you encountered a large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
177
+ for common pitfalls and some tools to improve the quantized model's accuracy.
188
178
 
189
179
  Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
190
180
 
191
- You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
181
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under the [discussions section](https://github.com/sony/model_optimization/discussions).
192
182
 
193
183
 
194
184
  ## <div align="center">Contributions</div>
195
- MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
185
+ We'd love your input! MCT would not be possible without help from our community, and welcomes contributions from anyone!
196
186
 
197
187
  *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
198
188
 
189
+ Thank you 🙏 to all our contributors!
199
190
 
200
191
  ## <div align="center">License</div>
201
192
  MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241127.529
3
+ Version: 2.2.0.20241129.526
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -56,9 +56,9 @@ Description: <div align="center" markdown="1">
56
56
 
57
57
  Quantization Method | Complexity | Computational Cost | API | Tutorial
58
58
  -------------------- | -----------|--------------------|---------|--------
59
- PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
60
- GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
61
- QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
59
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
60
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
61
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
62
62
 
63
63
  </p>
64
64
  </div>
@@ -66,9 +66,9 @@ Description: <div align="center" markdown="1">
66
66
  For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
67
67
  For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
68
68
 
69
- Required input:
70
- - Floating point model - 32bit model in either .pt or .keras format
71
- - Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
69
+ **Required input**: Floating point model - 32bit model in either .pt or .keras format
70
+
71
+ **Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
72
72
 
73
73
  <div align="center">
74
74
  <p align="center">
@@ -101,13 +101,13 @@ Description: <div align="center" markdown="1">
101
101
  The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
102
102
  __________________________________________________________________________________________________________
103
103
  ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
104
- Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)).
104
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
105
105
  __________________________________________________________________________________________________________
106
106
  ### **Debugging and Visualization**
107
107
  **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
108
- Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor
108
+ Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
109
109
 
110
- **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
110
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
111
111
 
112
112
  **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
113
113
  __________________________________________________________________________________________________________
@@ -117,15 +117,15 @@ Description: <div align="center" markdown="1">
117
117
  More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
118
118
 
119
119
  ## <div align="center">Resources</div>
120
- * [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
120
+ * [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
121
121
 
122
- * MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
122
+ * MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
123
123
 
124
- * [Post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#ptq) | PTQ API docs
125
- * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#gptq) | GPTQ API docs
126
- * [Quantization-aware training](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | QAT API docs
124
+ * [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
125
+ * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
126
+ * [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
127
127
 
128
- * [Debug](https://sony.github.io/model_optimization/docs/guidelines/visualization.html) – modify optimization process or generate explainable report
128
+ * [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
129
129
 
130
130
  * [Release notes](https://github.com/sony/model_optimization/releases)
131
131
 
@@ -159,25 +159,15 @@ Description: <div align="center" markdown="1">
159
159
  <img src="/docsrc/images/PoseEst.png" width="200">
160
160
  <img src="/docsrc/images/ObjDet.png" width="200">
161
161
 
162
- ### Pytorch
163
- We quantized classification networks from the torchvision library.
164
- In the following table we present the ImageNet validation results for these models:
165
-
166
- | Network Name | Float Accuracy | 8Bit Accuracy | Data-Free 8Bit Accuracy |
167
- |---------------------------|-----------------|-----------------|-------------------------|
168
- | MobileNet V2 [3] | 71.886 | 71.444 |71.29|
169
- | ResNet-18 [3] | 69.86 | 69.63 |69.53|
170
- | SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
171
-
172
- ### Keras
173
162
  MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
174
- Below is a graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights (X-axis), using
175
- single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
163
+ Below is a graph of [MobileNetV2](https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html) accuracy on ImageNet vs average bit-width of weights (X-axis), using **single-precision** quantization, **mixed-precision** quantization, and mixed-precision quantization with GPTQ.
176
164
 
177
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
165
+ <p align="center">
166
+ <img src="/docsrc/images/torch_mobilenetv2.png" width="800">
178
167
 
179
168
  For more results, please see [1]
180
169
 
170
+
181
171
  ### Pruning Results
182
172
 
183
173
  Results for applying pruning to reduce the parameters of the following models by 50%:
@@ -189,19 +179,20 @@ Description: <div align="center" markdown="1">
189
179
 
190
180
  ## <div align="center">Troubleshooting and Community</div>
191
181
 
192
- If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
193
- for common pitfalls and some tools to improve quantized model's accuracy.
182
+ If you encountered a large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
183
+ for common pitfalls and some tools to improve the quantized model's accuracy.
194
184
 
195
185
  Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
196
186
 
197
- You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
187
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under the [discussions section](https://github.com/sony/model_optimization/discussions).
198
188
 
199
189
 
200
190
  ## <div align="center">Contributions</div>
201
- MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
191
+ We'd love your input! MCT would not be possible without help from our community, and welcomes contributions from anyone!
202
192
 
203
193
  *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
204
194
 
195
+ Thank you 🙏 to all our contributors!
205
196
 
206
197
  ## <div align="center">License</div>
207
198
  MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20241127.000529"
30
+ __version__ = "2.2.0.20241129.000526"