mct-nightly 2.2.0.20241126.528__tar.gz → 2.2.0.20241128.546__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/PKG-INFO +29 -35
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/README.md +28 -34
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/mct_nightly.egg-info/PKG-INFO +29 -35
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/LICENSE.md +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/data_util.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/verify_packages.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/setup.cfg +0 -0
- {mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/setup.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.2.0.
|
3
|
+
Version: 2.2.0.20241128.546
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Home-page: UNKNOWN
|
6
6
|
License: UNKNOWN
|
@@ -56,9 +56,9 @@ Description: <div align="center" markdown="1">
|
|
56
56
|
|
57
57
|
Quantization Method | Complexity | Computational Cost | API | Tutorial
|
58
58
|
-------------------- | -----------|--------------------|---------|--------
|
59
|
-
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/
|
60
|
-
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/
|
61
|
-
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/
|
59
|
+
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
60
|
+
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
61
|
+
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
62
62
|
|
63
63
|
</p>
|
64
64
|
</div>
|
@@ -66,9 +66,9 @@ Description: <div align="center" markdown="1">
|
|
66
66
|
For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
|
67
67
|
For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
|
68
68
|
|
69
|
-
|
70
|
-
|
71
|
-
|
69
|
+
**Required input**: Floating point model - 32bit model in either .pt or .keras format
|
70
|
+
|
71
|
+
**Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
|
72
72
|
|
73
73
|
<div align="center">
|
74
74
|
<p align="center">
|
@@ -98,15 +98,16 @@ Description: <div align="center" markdown="1">
|
|
98
98
|
__________________________________________________________________________________________________________
|
99
99
|
### Data-free quantization (Data Generation) [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
|
100
100
|
Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
|
101
|
+
The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
|
101
102
|
__________________________________________________________________________________________________________
|
102
103
|
### Structured Pruning [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
|
103
|
-
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/
|
104
|
+
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
|
104
105
|
__________________________________________________________________________________________________________
|
105
106
|
### **Debugging and Visualization**
|
106
107
|
**🎛️ Network Editor (Modify Quantization Configurations)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
|
107
|
-
Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor
|
108
|
+
Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
|
108
109
|
|
109
|
-
**🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/
|
110
|
+
**🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
|
110
111
|
|
111
112
|
**🔑 XQuant (Explainable Quantization)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
|
112
113
|
__________________________________________________________________________________________________________
|
@@ -116,15 +117,15 @@ Description: <div align="center" markdown="1">
|
|
116
117
|
More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
117
118
|
|
118
119
|
## <div align="center">Resources</div>
|
119
|
-
* [User Guide](https://sony.github.io/model_optimization/
|
120
|
+
* [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
|
120
121
|
|
121
|
-
* MCT's [API Docs](https://sony.github.io/model_optimization/
|
122
|
+
* MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
|
122
123
|
|
123
|
-
* [Post-training quantization](https://sony.github.io/model_optimization/
|
124
|
-
* [Gradient-based post-training quantization](https://sony.github.io/model_optimization/
|
125
|
-
* [Quantization-aware training](https://sony.github.io/model_optimization/
|
124
|
+
* [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
|
125
|
+
* [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
|
126
|
+
* [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
|
126
127
|
|
127
|
-
* [Debug](https://sony.github.io/model_optimization/
|
128
|
+
* [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
|
128
129
|
|
129
130
|
* [Release notes](https://github.com/sony/model_optimization/releases)
|
130
131
|
|
@@ -158,25 +159,15 @@ Description: <div align="center" markdown="1">
|
|
158
159
|
<img src="/docsrc/images/PoseEst.png" width="200">
|
159
160
|
<img src="/docsrc/images/ObjDet.png" width="200">
|
160
161
|
|
161
|
-
### Pytorch
|
162
|
-
We quantized classification networks from the torchvision library.
|
163
|
-
In the following table we present the ImageNet validation results for these models:
|
164
|
-
|
165
|
-
| Network Name | Float Accuracy | 8Bit Accuracy | Data-Free 8Bit Accuracy |
|
166
|
-
|---------------------------|-----------------|-----------------|-------------------------|
|
167
|
-
| MobileNet V2 [3] | 71.886 | 71.444 |71.29|
|
168
|
-
| ResNet-18 [3] | 69.86 | 69.63 |69.53|
|
169
|
-
| SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
|
170
|
-
|
171
|
-
### Keras
|
172
162
|
MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
|
173
|
-
Below is a graph of [MobileNetV2](https://
|
174
|
-
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
163
|
+
Below is a graph of [MobileNetV2](https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html) accuracy on ImageNet vs average bit-width of weights (X-axis), using **single-precision** quantization, **mixed-precision** quantization, and mixed-precision quantization with GPTQ.
|
175
164
|
|
176
|
-
<
|
165
|
+
<p align="center">
|
166
|
+
<img src="/docsrc/images/torch_mobilenetv2.png" width="800">
|
177
167
|
|
178
168
|
For more results, please see [1]
|
179
169
|
|
170
|
+
|
180
171
|
### Pruning Results
|
181
172
|
|
182
173
|
Results for applying pruning to reduce the parameters of the following models by 50%:
|
@@ -188,19 +179,20 @@ Description: <div align="center" markdown="1">
|
|
188
179
|
|
189
180
|
## <div align="center">Troubleshooting and Community</div>
|
190
181
|
|
191
|
-
If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
|
192
|
-
for common pitfalls and some tools to improve quantized model's accuracy.
|
182
|
+
If you encountered a large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
|
183
|
+
for common pitfalls and some tools to improve the quantized model's accuracy.
|
193
184
|
|
194
185
|
Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
|
195
186
|
|
196
|
-
You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
|
187
|
+
You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under the [discussions section](https://github.com/sony/model_optimization/discussions).
|
197
188
|
|
198
189
|
|
199
190
|
## <div align="center">Contributions</div>
|
200
|
-
MCT
|
191
|
+
We'd love your input! MCT would not be possible without help from our community, and welcomes contributions from anyone!
|
201
192
|
|
202
193
|
*Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
|
203
194
|
|
195
|
+
Thank you 🙏 to all our contributors!
|
204
196
|
|
205
197
|
## <div align="center">License</div>
|
206
198
|
MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
|
@@ -215,7 +207,9 @@ Description: <div align="center" markdown="1">
|
|
215
207
|
|
216
208
|
[3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
|
217
209
|
|
218
|
-
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization
|
210
|
+
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization, European Conference on Computer Vision Workshop 2024, Computational Aspects of Deep Learning (CADL)](https://arxiv.org/abs/2309.11531)
|
211
|
+
|
212
|
+
[5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://arxiv.org/abs/2410.22110)
|
219
213
|
|
220
214
|
Platform: UNKNOWN
|
221
215
|
Classifier: Programming Language :: Python :: 3
|
@@ -50,9 +50,9 @@ MCT supports various quantization methods as appears below.
|
|
50
50
|
|
51
51
|
Quantization Method | Complexity | Computational Cost | API | Tutorial
|
52
52
|
-------------------- | -----------|--------------------|---------|--------
|
53
|
-
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/
|
54
|
-
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/
|
55
|
-
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/
|
53
|
+
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
54
|
+
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
55
|
+
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
56
56
|
|
57
57
|
</p>
|
58
58
|
</div>
|
@@ -60,9 +60,9 @@ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](
|
|
60
60
|
For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
|
61
61
|
For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
|
62
62
|
|
63
|
-
Required input
|
64
|
-
|
65
|
-
|
63
|
+
**Required input**: Floating point model - 32bit model in either .pt or .keras format
|
64
|
+
|
65
|
+
**Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
|
66
66
|
|
67
67
|
<div align="center">
|
68
68
|
<p align="center">
|
@@ -92,15 +92,16 @@ ________________________________________________________________________________
|
|
92
92
|
__________________________________________________________________________________________________________
|
93
93
|
### Data-free quantization (Data Generation) [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
|
94
94
|
Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
|
95
|
+
The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
|
95
96
|
__________________________________________________________________________________________________________
|
96
97
|
### Structured Pruning [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
|
97
|
-
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/
|
98
|
+
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
|
98
99
|
__________________________________________________________________________________________________________
|
99
100
|
### **Debugging and Visualization**
|
100
101
|
**🎛️ Network Editor (Modify Quantization Configurations)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
|
101
|
-
Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor
|
102
|
+
Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
|
102
103
|
|
103
|
-
**🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/
|
104
|
+
**🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
|
104
105
|
|
105
106
|
**🔑 XQuant (Explainable Quantization)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
|
106
107
|
__________________________________________________________________________________________________________
|
@@ -110,15 +111,15 @@ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhance
|
|
110
111
|
More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
111
112
|
|
112
113
|
## <div align="center">Resources</div>
|
113
|
-
* [User Guide](https://sony.github.io/model_optimization/
|
114
|
+
* [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
|
114
115
|
|
115
|
-
* MCT's [API Docs](https://sony.github.io/model_optimization/
|
116
|
+
* MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
|
116
117
|
|
117
|
-
* [Post-training quantization](https://sony.github.io/model_optimization/
|
118
|
-
* [Gradient-based post-training quantization](https://sony.github.io/model_optimization/
|
119
|
-
* [Quantization-aware training](https://sony.github.io/model_optimization/
|
118
|
+
* [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
|
119
|
+
* [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
|
120
|
+
* [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
|
120
121
|
|
121
|
-
* [Debug](https://sony.github.io/model_optimization/
|
122
|
+
* [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
|
122
123
|
|
123
124
|
* [Release notes](https://github.com/sony/model_optimization/releases)
|
124
125
|
|
@@ -152,25 +153,15 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
|
|
152
153
|
<img src="/docsrc/images/PoseEst.png" width="200">
|
153
154
|
<img src="/docsrc/images/ObjDet.png" width="200">
|
154
155
|
|
155
|
-
### Pytorch
|
156
|
-
We quantized classification networks from the torchvision library.
|
157
|
-
In the following table we present the ImageNet validation results for these models:
|
158
|
-
|
159
|
-
| Network Name | Float Accuracy | 8Bit Accuracy | Data-Free 8Bit Accuracy |
|
160
|
-
|---------------------------|-----------------|-----------------|-------------------------|
|
161
|
-
| MobileNet V2 [3] | 71.886 | 71.444 |71.29|
|
162
|
-
| ResNet-18 [3] | 69.86 | 69.63 |69.53|
|
163
|
-
| SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
|
164
|
-
|
165
|
-
### Keras
|
166
156
|
MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
|
167
|
-
Below is a graph of [MobileNetV2](https://
|
168
|
-
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
157
|
+
Below is a graph of [MobileNetV2](https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html) accuracy on ImageNet vs average bit-width of weights (X-axis), using **single-precision** quantization, **mixed-precision** quantization, and mixed-precision quantization with GPTQ.
|
169
158
|
|
170
|
-
<
|
159
|
+
<p align="center">
|
160
|
+
<img src="/docsrc/images/torch_mobilenetv2.png" width="800">
|
171
161
|
|
172
162
|
For more results, please see [1]
|
173
163
|
|
164
|
+
|
174
165
|
### Pruning Results
|
175
166
|
|
176
167
|
Results for applying pruning to reduce the parameters of the following models by 50%:
|
@@ -182,19 +173,20 @@ Results for applying pruning to reduce the parameters of the following models by
|
|
182
173
|
|
183
174
|
## <div align="center">Troubleshooting and Community</div>
|
184
175
|
|
185
|
-
If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
|
186
|
-
for common pitfalls and some tools to improve quantized model's accuracy.
|
176
|
+
If you encountered a large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
|
177
|
+
for common pitfalls and some tools to improve the quantized model's accuracy.
|
187
178
|
|
188
179
|
Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
|
189
180
|
|
190
|
-
You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
|
181
|
+
You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under the [discussions section](https://github.com/sony/model_optimization/discussions).
|
191
182
|
|
192
183
|
|
193
184
|
## <div align="center">Contributions</div>
|
194
|
-
MCT
|
185
|
+
We'd love your input! MCT would not be possible without help from our community, and welcomes contributions from anyone!
|
195
186
|
|
196
187
|
*Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
|
197
188
|
|
189
|
+
Thank you 🙏 to all our contributors!
|
198
190
|
|
199
191
|
## <div align="center">License</div>
|
200
192
|
MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
|
@@ -209,4 +201,6 @@ MCT is licensed under Apache License Version 2.0. By contributing to the project
|
|
209
201
|
|
210
202
|
[3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
|
211
203
|
|
212
|
-
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization
|
204
|
+
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization, European Conference on Computer Vision Workshop 2024, Computational Aspects of Deep Learning (CADL)](https://arxiv.org/abs/2309.11531)
|
205
|
+
|
206
|
+
[5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://arxiv.org/abs/2410.22110)
|
{mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/mct_nightly.egg-info/PKG-INFO
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.2.0.
|
3
|
+
Version: 2.2.0.20241128.546
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Home-page: UNKNOWN
|
6
6
|
License: UNKNOWN
|
@@ -56,9 +56,9 @@ Description: <div align="center" markdown="1">
|
|
56
56
|
|
57
57
|
Quantization Method | Complexity | Computational Cost | API | Tutorial
|
58
58
|
-------------------- | -----------|--------------------|---------|--------
|
59
|
-
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/
|
60
|
-
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/
|
61
|
-
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/
|
59
|
+
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
60
|
+
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
61
|
+
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
62
62
|
|
63
63
|
</p>
|
64
64
|
</div>
|
@@ -66,9 +66,9 @@ Description: <div align="center" markdown="1">
|
|
66
66
|
For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
|
67
67
|
For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
|
68
68
|
|
69
|
-
|
70
|
-
|
71
|
-
|
69
|
+
**Required input**: Floating point model - 32bit model in either .pt or .keras format
|
70
|
+
|
71
|
+
**Optional input**: Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
|
72
72
|
|
73
73
|
<div align="center">
|
74
74
|
<p align="center">
|
@@ -98,15 +98,16 @@ Description: <div align="center" markdown="1">
|
|
98
98
|
__________________________________________________________________________________________________________
|
99
99
|
### Data-free quantization (Data Generation) [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
|
100
100
|
Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
|
101
|
+
The specifications of the method are detailed in the paper: _"**Data Generation for Hardware-Friendly Post-Training Quantization**"_ [5].
|
101
102
|
__________________________________________________________________________________________________________
|
102
103
|
### Structured Pruning [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
|
103
|
-
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/
|
104
|
+
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/api/api_docs/methods/keras_pruning_experimental.html)).
|
104
105
|
__________________________________________________________________________________________________________
|
105
106
|
### **Debugging and Visualization**
|
106
107
|
**🎛️ Network Editor (Modify Quantization Configurations)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
|
107
|
-
Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor
|
108
|
+
Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor.
|
108
109
|
|
109
|
-
**🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/
|
110
|
+
**🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/guidelines/visualization.html).
|
110
111
|
|
111
112
|
**🔑 XQuant (Explainable Quantization)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
|
112
113
|
__________________________________________________________________________________________________________
|
@@ -116,15 +117,15 @@ Description: <div align="center" markdown="1">
|
|
116
117
|
More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
117
118
|
|
118
119
|
## <div align="center">Resources</div>
|
119
|
-
* [User Guide](https://sony.github.io/model_optimization/
|
120
|
+
* [User Guide](https://sony.github.io/model_optimization/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
|
120
121
|
|
121
|
-
* MCT's [API Docs](https://sony.github.io/model_optimization/
|
122
|
+
* MCT's [API Docs](https://sony.github.io/model_optimization/api/api_docs/) is separated per quantization methods:
|
122
123
|
|
123
|
-
* [Post-training quantization](https://sony.github.io/model_optimization/
|
124
|
-
* [Gradient-based post-training quantization](https://sony.github.io/model_optimization/
|
125
|
-
* [Quantization-aware training](https://sony.github.io/model_optimization/
|
124
|
+
* [Post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#ptq) | PTQ API docs
|
125
|
+
* [Gradient-based post-training quantization](https://sony.github.io/model_optimization/api/api_docs/index.html#gptq) | GPTQ API docs
|
126
|
+
* [Quantization-aware training](https://sony.github.io/model_optimization/api/api_docs/index.html#qat) | QAT API docs
|
126
127
|
|
127
|
-
* [Debug](https://sony.github.io/model_optimization/
|
128
|
+
* [Debug](https://sony.github.io/model_optimization/guidelines/visualization.html) – modify optimization process or generate an explainable report
|
128
129
|
|
129
130
|
* [Release notes](https://github.com/sony/model_optimization/releases)
|
130
131
|
|
@@ -158,25 +159,15 @@ Description: <div align="center" markdown="1">
|
|
158
159
|
<img src="/docsrc/images/PoseEst.png" width="200">
|
159
160
|
<img src="/docsrc/images/ObjDet.png" width="200">
|
160
161
|
|
161
|
-
### Pytorch
|
162
|
-
We quantized classification networks from the torchvision library.
|
163
|
-
In the following table we present the ImageNet validation results for these models:
|
164
|
-
|
165
|
-
| Network Name | Float Accuracy | 8Bit Accuracy | Data-Free 8Bit Accuracy |
|
166
|
-
|---------------------------|-----------------|-----------------|-------------------------|
|
167
|
-
| MobileNet V2 [3] | 71.886 | 71.444 |71.29|
|
168
|
-
| ResNet-18 [3] | 69.86 | 69.63 |69.53|
|
169
|
-
| SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
|
170
|
-
|
171
|
-
### Keras
|
172
162
|
MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
|
173
|
-
Below is a graph of [MobileNetV2](https://
|
174
|
-
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
163
|
+
Below is a graph of [MobileNetV2](https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html) accuracy on ImageNet vs average bit-width of weights (X-axis), using **single-precision** quantization, **mixed-precision** quantization, and mixed-precision quantization with GPTQ.
|
175
164
|
|
176
|
-
<
|
165
|
+
<p align="center">
|
166
|
+
<img src="/docsrc/images/torch_mobilenetv2.png" width="800">
|
177
167
|
|
178
168
|
For more results, please see [1]
|
179
169
|
|
170
|
+
|
180
171
|
### Pruning Results
|
181
172
|
|
182
173
|
Results for applying pruning to reduce the parameters of the following models by 50%:
|
@@ -188,19 +179,20 @@ Description: <div align="center" markdown="1">
|
|
188
179
|
|
189
180
|
## <div align="center">Troubleshooting and Community</div>
|
190
181
|
|
191
|
-
If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
|
192
|
-
for common pitfalls and some tools to improve quantized model's accuracy.
|
182
|
+
If you encountered a large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
|
183
|
+
for common pitfalls and some tools to improve the quantized model's accuracy.
|
193
184
|
|
194
185
|
Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
|
195
186
|
|
196
|
-
You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
|
187
|
+
You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under the [discussions section](https://github.com/sony/model_optimization/discussions).
|
197
188
|
|
198
189
|
|
199
190
|
## <div align="center">Contributions</div>
|
200
|
-
MCT
|
191
|
+
We'd love your input! MCT would not be possible without help from our community, and welcomes contributions from anyone!
|
201
192
|
|
202
193
|
*Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
|
203
194
|
|
195
|
+
Thank you 🙏 to all our contributors!
|
204
196
|
|
205
197
|
## <div align="center">License</div>
|
206
198
|
MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
|
@@ -215,7 +207,9 @@ Description: <div align="center" markdown="1">
|
|
215
207
|
|
216
208
|
[3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
|
217
209
|
|
218
|
-
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization
|
210
|
+
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization, European Conference on Computer Vision Workshop 2024, Computational Aspects of Deep Learning (CADL)](https://arxiv.org/abs/2309.11531)
|
211
|
+
|
212
|
+
[5] Dikstein, L., Lapid, A., Netzer, A., & Habi, H. V., 2024. [Data Generation for Hardware-Friendly Post-Training Quantization, Accepted to IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025](https://arxiv.org/abs/2410.22110)
|
219
213
|
|
220
214
|
Platform: UNKNOWN
|
221
215
|
Classifier: Programming Language :: Python :: 3
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.
|
30
|
+
__version__ = "2.2.0.20241128.000546"
|
File without changes
|
{mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/mct_nightly.egg-info/SOURCES.txt
RENAMED
File without changes
|
File without changes
|
{mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/mct_nightly.egg-info/requires.txt
RENAMED
File without changes
|
{mct-nightly-2.2.0.20241126.528 → mct-nightly-2.2.0.20241128.546}/mct_nightly.egg-info/top_level.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|