mct-nightly 2.2.0.20241120.525__tar.gz → 2.2.0.20241121.524__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/PKG-INFO +1 -1
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/SOURCES.txt +1 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/__init__.py +1 -1
- mct-nightly-2.2.0.20241121.524/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +83 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +3 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +30 -10
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +8 -3
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +16 -8
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/LICENSE.md +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/README.md +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/data_util.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/verify_packages.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/setup.cfg +0 -0
- {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/setup.py +0 -0
{mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/SOURCES.txt
RENAMED
@@ -255,6 +255,7 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_
|
|
255
255
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py
|
256
256
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py
|
257
257
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py
|
258
|
+
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py
|
258
259
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py
|
259
260
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py
|
260
261
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.
|
30
|
+
__version__ = "2.2.0.20241121.000524"
|
@@ -0,0 +1,83 @@
|
|
1
|
+
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from torch import nn
|
16
|
+
import torch.nn.functional as F
|
17
|
+
|
18
|
+
from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
|
19
|
+
from model_compression_toolkit.core.common import BaseNode, Graph, BaseSubstitution
|
20
|
+
from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
|
21
|
+
from model_compression_toolkit.core.pytorch.constants import *
|
22
|
+
from model_compression_toolkit.logger import Logger
|
23
|
+
|
24
|
+
|
25
|
+
class FunctionalLinear(BaseSubstitution):
|
26
|
+
"""
|
27
|
+
Replace functional linear with Linear.
|
28
|
+
"""
|
29
|
+
|
30
|
+
def __init__(self):
|
31
|
+
"""
|
32
|
+
Matches: functional linear
|
33
|
+
"""
|
34
|
+
func_node = NodeOperationMatcher(F.linear)
|
35
|
+
super().__init__(matcher_instance=func_node)
|
36
|
+
|
37
|
+
def substitute(self,
|
38
|
+
graph: Graph,
|
39
|
+
func_node: FunctionalNode) -> Graph:
|
40
|
+
"""
|
41
|
+
Substitute functional.linear and its inputs with Linear.
|
42
|
+
Args:
|
43
|
+
graph: Graph we apply the substitution on.
|
44
|
+
node: node that match the pattern in the substitution init.
|
45
|
+
|
46
|
+
Returns:
|
47
|
+
Graph after applying the substitution.
|
48
|
+
"""
|
49
|
+
|
50
|
+
# Create new node of layer Linear
|
51
|
+
if 1 not in func_node.weights:
|
52
|
+
Logger.critical(f'Weight input missing for node {func_node.name}.') # pragma: no cover
|
53
|
+
# Extract index of kernel and bias according to tensor_input_allocs if they were input as kwargs. If
|
54
|
+
# they were input as args, use their fixed positions.
|
55
|
+
weight_index = func_node.tensor_input_allocs.index(KERNEL) if KERNEL in func_node.tensor_input_allocs else 1
|
56
|
+
bias_index = func_node.tensor_input_allocs.index(BIAS) if BIAS in func_node.tensor_input_allocs else 2
|
57
|
+
if weight_index not in func_node.weights:
|
58
|
+
Logger.critical(f'Mismatch between tensor_input_allocs and weight index in node {func_node.name}.') # pragma: no cover
|
59
|
+
weight = func_node.weights[weight_index]
|
60
|
+
bias = func_node.weights.get(bias_index)
|
61
|
+
|
62
|
+
framework_attr = {
|
63
|
+
IN_FEATURES: func_node.input_shape[0][-1],
|
64
|
+
OUT_FEATURES: func_node.output_shape[0][-1],
|
65
|
+
BIAS: bias is not None,
|
66
|
+
}
|
67
|
+
|
68
|
+
weights = {KERNEL: weight} if bias is None else {KERNEL: weight, BIAS: bias}
|
69
|
+
|
70
|
+
new_node = BaseNode(
|
71
|
+
name=func_node.name,
|
72
|
+
framework_attr=framework_attr,
|
73
|
+
input_shape=func_node.input_shape[0],
|
74
|
+
output_shape=func_node.output_shape,
|
75
|
+
weights=weights,
|
76
|
+
layer_class=nn.Linear,
|
77
|
+
has_activation=func_node.has_activation,
|
78
|
+
reuse=func_node.reuse,
|
79
|
+
reuse_group=func_node.reuse_group
|
80
|
+
)
|
81
|
+
|
82
|
+
graph.replace_node(func_node, new_node)
|
83
|
+
return graph
|
@@ -50,6 +50,8 @@ from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.fu
|
|
50
50
|
FunctionalBatchNorm
|
51
51
|
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.functional_layer_norm import \
|
52
52
|
FunctionalLayerNorm
|
53
|
+
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.functional_linear import \
|
54
|
+
FunctionalLinear
|
53
55
|
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.linear_collapsing import \
|
54
56
|
pytorch_linear_collapsing
|
55
57
|
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.multi_head_attention_decomposition \
|
@@ -266,6 +268,7 @@ class PytorchImplementation(FrameworkImplementation):
|
|
266
268
|
FunctionalConvSubstitution(fw_info),
|
267
269
|
FunctionalBatchNorm(),
|
268
270
|
FunctionalLayerNorm(),
|
271
|
+
FunctionalLinear(),
|
269
272
|
RemoveIdentity()]
|
270
273
|
|
271
274
|
def get_substitutions_pre_statistics_collection(self,
|
@@ -31,15 +31,20 @@ OPSET_DIMENSION_MANIPULATION_OPS = "DimensionManipulationOps"
|
|
31
31
|
OPSET_MERGE_OPS = "MergeOps"
|
32
32
|
OPSET_CONV = "Conv"
|
33
33
|
OPSET_FULLY_CONNECTED = "FullyConnected"
|
34
|
+
OPSET_BATCH_NORM = "BatchNorm"
|
34
35
|
OPSET_ANY_RELU = "AnyReLU"
|
35
36
|
OPSET_ADD = "Add"
|
36
37
|
OPSET_SUB = "Sub"
|
37
38
|
OPSET_MUL = "Mul"
|
38
39
|
OPSET_DIV = "Div"
|
40
|
+
OPSET_MIN_MAX = "MinMax"
|
39
41
|
OPSET_PRELU = "PReLU"
|
40
42
|
OPSET_SWISH = "Swish"
|
41
43
|
OPSET_SIGMOID = "Sigmoid"
|
42
44
|
OPSET_TANH = "Tanh"
|
45
|
+
OPSET_GELU = "Gelu"
|
46
|
+
OPSET_HARDSIGMOID = "HardSigmoid"
|
47
|
+
OPSET_HARDSWISH = "HardSwish"
|
43
48
|
|
44
49
|
|
45
50
|
def get_tp_model() -> TargetPlatformModel:
|
@@ -172,6 +177,11 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
172
177
|
# If the QuantizationConfigOptions contains only one configuration,
|
173
178
|
# this configuration will be used for the operation quantization:
|
174
179
|
default_configuration_options = tp.QuantizationConfigOptions([default_config])
|
180
|
+
default_config_input16 = default_config.clone_and_edit(supported_input_activation_n_bits=(8, 16))
|
181
|
+
default_config_options_16bit = tp.QuantizationConfigOptions([default_config_input16,
|
182
|
+
default_config_input16.clone_and_edit(activation_n_bits=16,
|
183
|
+
signedness=Signedness.SIGNED)],
|
184
|
+
base_config=default_config_input16)
|
175
185
|
|
176
186
|
# Create a QuantizationConfigOptions for quantizing constants in functional ops.
|
177
187
|
# Constant configuration is similar to the default eight bit configuration except for PoT
|
@@ -212,6 +222,9 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
212
222
|
weights_per_channel_threshold=False))
|
213
223
|
qpreserving_const_config_options = tp.QuantizationConfigOptions([qpreserving_const_config])
|
214
224
|
|
225
|
+
mp_cfg_list_16bit = [mp_cfg.clone_and_edit(activation_n_bits=16, signedness=Signedness.SIGNED)
|
226
|
+
for mp_cfg in mixed_precision_cfg_list]
|
227
|
+
|
215
228
|
# Create a TargetPlatformModel and set its default quantization config.
|
216
229
|
# This default configuration will be used for all operations
|
217
230
|
# unless specified otherwise (see OperatorsSet, for example):
|
@@ -246,30 +259,37 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
246
259
|
tp.OperatorsSet(OPSET_MERGE_OPS, const_configuration_options_inout16_per_tensor)
|
247
260
|
|
248
261
|
# Create Mixed-Precision quantization configuration options from the given list of OpQuantizationConfig objects
|
249
|
-
mixed_precision_configuration_options = tp.QuantizationConfigOptions(mixed_precision_cfg_list,
|
262
|
+
mixed_precision_configuration_options = tp.QuantizationConfigOptions(mixed_precision_cfg_list + mp_cfg_list_16bit,
|
250
263
|
base_config=base_config)
|
251
264
|
|
252
265
|
# Define operator sets that use mixed_precision_configuration_options:
|
253
266
|
conv = tp.OperatorsSet(OPSET_CONV, mixed_precision_configuration_options)
|
254
267
|
fc = tp.OperatorsSet(OPSET_FULLY_CONNECTED, mixed_precision_configuration_options)
|
255
268
|
|
256
|
-
|
257
|
-
|
258
|
-
|
269
|
+
tp.OperatorsSet(OPSET_BATCH_NORM, default_config_options_16bit)
|
270
|
+
|
271
|
+
# Note: Operations sets without quantization configuration are useful for creating fusing patterns
|
272
|
+
any_relu = tp.OperatorsSet(OPSET_ANY_RELU, default_config_options_16bit)
|
259
273
|
add = tp.OperatorsSet(OPSET_ADD, const_configuration_options_inout16)
|
260
274
|
sub = tp.OperatorsSet(OPSET_SUB, const_configuration_options_inout16)
|
261
275
|
mul = tp.OperatorsSet(OPSET_MUL, const_configuration_options_inout16)
|
262
276
|
div = tp.OperatorsSet(OPSET_DIV, const_configuration_options)
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
277
|
+
tp.OperatorsSet(OPSET_MIN_MAX, const_configuration_options_inout16)
|
278
|
+
prelu = tp.OperatorsSet(OPSET_PRELU, default_config_options_16bit)
|
279
|
+
swish = tp.OperatorsSet(OPSET_SWISH, default_config_options_16bit)
|
280
|
+
sigmoid = tp.OperatorsSet(OPSET_SIGMOID, default_config_options_16bit)
|
281
|
+
tanh = tp.OperatorsSet(OPSET_TANH, default_config_options_16bit)
|
282
|
+
gelu = tp.OperatorsSet(OPSET_GELU, default_config_options_16bit)
|
283
|
+
hardsigmoid = tp.OperatorsSet(OPSET_HARDSIGMOID, default_config_options_16bit)
|
284
|
+
hardswish = tp.OperatorsSet(OPSET_HARDSWISH, default_config_options_16bit)
|
267
285
|
|
268
286
|
# Combine multiple operators into a single operator to avoid quantization between
|
269
287
|
# them. To do this we define fusing patterns using the OperatorsSets that were created.
|
270
288
|
# To group multiple sets with regard to fusing, an OperatorSetConcat can be created
|
271
|
-
activations_after_conv_to_fuse = tp.OperatorSetConcat(any_relu, swish, prelu, sigmoid,
|
272
|
-
|
289
|
+
activations_after_conv_to_fuse = tp.OperatorSetConcat(any_relu, swish, prelu, sigmoid,
|
290
|
+
tanh, gelu, hardswish, hardsigmoid)
|
291
|
+
activations_after_fc_to_fuse = tp.OperatorSetConcat(any_relu, swish, sigmoid, tanh, gelu,
|
292
|
+
hardswish, hardsigmoid)
|
273
293
|
any_binary = tp.OperatorSetConcat(add, sub, mul, div)
|
274
294
|
|
275
295
|
# ------------------- #
|
@@ -26,11 +26,11 @@ if FOUND_SONY_CUSTOM_LAYERS:
|
|
26
26
|
if version.parse(tf.__version__) >= version.parse("2.13"):
|
27
27
|
from keras.src.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
|
28
28
|
MaxPooling2D, Activation, ReLU, Add, Subtract, Multiply, PReLU, Flatten, Cropping2D, LeakyReLU, Permute, \
|
29
|
-
Conv2DTranspose, Identity, Concatenate
|
29
|
+
Conv2DTranspose, Identity, Concatenate, BatchNormalization, Minimum, Maximum
|
30
30
|
else:
|
31
31
|
from keras.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
|
32
32
|
MaxPooling2D, Activation, ReLU, Add, Subtract, Multiply, PReLU, Flatten, Cropping2D, LeakyReLU, Permute, \
|
33
|
-
Conv2DTranspose, Identity, Concatenate
|
33
|
+
Conv2DTranspose, Identity, Concatenate, BatchNormalization, Minimum, Maximum
|
34
34
|
|
35
35
|
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import get_tp_model
|
36
36
|
import model_compression_toolkit as mct
|
@@ -38,7 +38,7 @@ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tp
|
|
38
38
|
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
|
39
39
|
OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
|
40
40
|
OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
|
41
|
-
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH
|
41
|
+
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH, OPSET_GELU, OPSET_BATCH_NORM, OPSET_MIN_MAX, OPSET_HARDSIGMOID
|
42
42
|
|
43
43
|
tp = mct.target_platform
|
44
44
|
|
@@ -117,6 +117,7 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
117
117
|
tp.OperationsSetToLayers(OPSET_FULLY_CONNECTED, [Dense],
|
118
118
|
attr_mapping={KERNEL_ATTR: DefaultDict(default_value=KERAS_KERNEL),
|
119
119
|
BIAS_ATTR: DefaultDict(default_value=BIAS)})
|
120
|
+
tp.OperationsSetToLayers(OPSET_BATCH_NORM, [BatchNormalization])
|
120
121
|
tp.OperationsSetToLayers(OPSET_ANY_RELU, [tf.nn.relu,
|
121
122
|
tf.nn.relu6,
|
122
123
|
tf.nn.leaky_relu,
|
@@ -128,9 +129,13 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
128
129
|
tp.OperationsSetToLayers(OPSET_SUB, [tf.subtract, Subtract])
|
129
130
|
tp.OperationsSetToLayers(OPSET_MUL, [tf.math.multiply, Multiply])
|
130
131
|
tp.OperationsSetToLayers(OPSET_DIV, [tf.math.divide, tf.math.truediv])
|
132
|
+
tp.OperationsSetToLayers(OPSET_MIN_MAX, [tf.math.minimum, tf.math.maximum, Minimum, Maximum])
|
131
133
|
tp.OperationsSetToLayers(OPSET_PRELU, [PReLU])
|
132
134
|
tp.OperationsSetToLayers(OPSET_SWISH, [tf.nn.swish, tp.LayerFilterParams(Activation, activation="swish")])
|
133
135
|
tp.OperationsSetToLayers(OPSET_SIGMOID, [tf.nn.sigmoid, tp.LayerFilterParams(Activation, activation="sigmoid")])
|
134
136
|
tp.OperationsSetToLayers(OPSET_TANH, [tf.nn.tanh, tp.LayerFilterParams(Activation, activation="tanh")])
|
137
|
+
tp.OperationsSetToLayers(OPSET_GELU, [tf.nn.gelu, tp.LayerFilterParams(Activation, activation="gelu")])
|
138
|
+
tp.OperationsSetToLayers(OPSET_HARDSIGMOID, [tf.keras.activations.hard_sigmoid,
|
139
|
+
tp.LayerFilterParams(Activation, activation="hard_sigmoid")])
|
135
140
|
|
136
141
|
return keras_tpc
|
@@ -17,11 +17,13 @@ import operator
|
|
17
17
|
|
18
18
|
import torch
|
19
19
|
from torch import add, sub, mul, div, divide, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, \
|
20
|
-
chunk, unbind, topk, gather, equal, transpose, permute, argmax, squeeze, multiply, subtract
|
21
|
-
|
20
|
+
chunk, unbind, topk, gather, equal, transpose, permute, argmax, squeeze, multiply, subtract, minimum, \
|
21
|
+
maximum
|
22
|
+
from torch.nn import Conv2d, Linear, ConvTranspose2d, MaxPool2d, BatchNorm2d
|
22
23
|
from torch.nn import Dropout, Flatten, Hardtanh
|
23
|
-
from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, LeakyReLU
|
24
|
-
|
24
|
+
from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, Hardsigmoid, LeakyReLU, GELU
|
25
|
+
import torch.nn.functional as F
|
26
|
+
from torch.nn.functional import relu, relu6, prelu, silu, hardtanh, hardswish, hardsigmoid, leaky_relu, gelu
|
25
27
|
|
26
28
|
from model_compression_toolkit.defaultdict import DefaultDict
|
27
29
|
from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, PYTORCH_KERNEL, \
|
@@ -32,7 +34,8 @@ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tp
|
|
32
34
|
from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
|
33
35
|
OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
|
34
36
|
OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
|
35
|
-
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH
|
37
|
+
OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH, OPSET_GELU, OPSET_BATCH_NORM, OPSET_MIN_MAX, OPSET_HARDSIGMOID, \
|
38
|
+
OPSET_HARDSWISH
|
36
39
|
|
37
40
|
tp = mct.target_platform
|
38
41
|
|
@@ -95,6 +98,7 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
95
98
|
attr_mapping=pytorch_linear_attr_mapping)
|
96
99
|
tp.OperationsSetToLayers(OPSET_FULLY_CONNECTED, [Linear],
|
97
100
|
attr_mapping=pytorch_linear_attr_mapping)
|
101
|
+
tp.OperationsSetToLayers(OPSET_BATCH_NORM, [BatchNorm2d])
|
98
102
|
tp.OperationsSetToLayers(OPSET_ANY_RELU, [torch.relu,
|
99
103
|
ReLU,
|
100
104
|
ReLU6,
|
@@ -109,9 +113,13 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
109
113
|
tp.OperationsSetToLayers(OPSET_SUB, [operator.sub, sub, subtract])
|
110
114
|
tp.OperationsSetToLayers(OPSET_MUL, [operator.mul, mul, multiply])
|
111
115
|
tp.OperationsSetToLayers(OPSET_DIV, [operator.truediv, div, divide])
|
116
|
+
tp.OperationsSetToLayers(OPSET_MIN_MAX, [minimum, maximum])
|
112
117
|
tp.OperationsSetToLayers(OPSET_PRELU, [PReLU, prelu])
|
113
|
-
tp.OperationsSetToLayers(OPSET_SWISH, [SiLU, silu
|
114
|
-
tp.OperationsSetToLayers(OPSET_SIGMOID, [Sigmoid, sigmoid])
|
115
|
-
tp.OperationsSetToLayers(OPSET_TANH, [Tanh, tanh])
|
118
|
+
tp.OperationsSetToLayers(OPSET_SWISH, [SiLU, silu])
|
119
|
+
tp.OperationsSetToLayers(OPSET_SIGMOID, [Sigmoid, sigmoid, F.sigmoid])
|
120
|
+
tp.OperationsSetToLayers(OPSET_TANH, [Tanh, tanh, F.tanh])
|
121
|
+
tp.OperationsSetToLayers(OPSET_GELU, [GELU, gelu])
|
122
|
+
tp.OperationsSetToLayers(OPSET_HARDSIGMOID, [Hardsigmoid, hardsigmoid])
|
123
|
+
tp.OperationsSetToLayers(OPSET_HARDSWISH, [Hardswish, hardswish])
|
116
124
|
|
117
125
|
return pytorch_tpc
|
File without changes
|
File without changes
|
File without changes
|
{mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/requires.txt
RENAMED
File without changes
|
{mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/top_level.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|