mct-nightly 2.2.0.20241120.525__tar.gz → 2.2.0.20241121.524__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (571) hide show
  1. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/PKG-INFO +1 -1
  2. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/SOURCES.txt +1 -0
  4. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/__init__.py +1 -1
  5. mct-nightly-2.2.0.20241121.524/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py +83 -0
  6. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +3 -0
  7. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +30 -10
  8. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +8 -3
  9. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +16 -8
  10. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/LICENSE.md +0 -0
  11. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/README.md +0 -0
  12. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/dependency_links.txt +0 -0
  13. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/requires.txt +0 -0
  14. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/mct_nightly.egg-info/top_level.txt +0 -0
  15. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/constants.py +0 -0
  16. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/__init__.py +0 -0
  17. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/analyzer.py +0 -0
  18. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/__init__.py +0 -0
  19. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  20. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  21. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  22. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  23. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  24. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  25. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  26. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  27. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  28. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  29. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/framework_info.py +0 -0
  30. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  31. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  32. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  33. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  34. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  35. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  36. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  37. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  38. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  39. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  40. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  41. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  42. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  43. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  44. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  45. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  46. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  47. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  48. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  49. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  50. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  51. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  52. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  53. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  54. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  55. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  56. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  57. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  58. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  59. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  60. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  61. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  62. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  63. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  64. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  65. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  66. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  67. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  68. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  69. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  70. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  71. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  72. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  73. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  74. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  75. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  76. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  77. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  78. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  79. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  80. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  81. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  82. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/model_collector.py +0 -0
  83. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/model_validation.py +0 -0
  84. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  85. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  86. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  87. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  88. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  89. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  90. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  91. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  92. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  93. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  94. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  95. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  96. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  97. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  98. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  99. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  100. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  101. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  102. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  103. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  104. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  105. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  106. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  107. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  108. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  109. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  110. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  111. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  112. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  113. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  114. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  115. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  116. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  117. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  118. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  119. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  120. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  121. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  122. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  123. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  124. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  125. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  126. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  127. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  128. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  129. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  130. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  131. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  132. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  133. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  134. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  135. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  136. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
  137. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  138. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  139. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
  140. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  141. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  142. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  143. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  144. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  145. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  146. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  147. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  148. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  149. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  150. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  151. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  152. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  153. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  154. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  155. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  156. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/user_info.py +0 -0
  157. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  158. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  159. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  160. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  161. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  162. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/__init__.py +0 -0
  163. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  164. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  165. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  166. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  167. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  168. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  169. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  170. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/constants.py +0 -0
  171. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  172. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/data_util.py +0 -0
  173. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  174. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  175. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  176. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  177. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  178. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  179. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  180. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  181. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  182. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  183. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  184. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  185. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  186. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  187. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  188. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  189. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  190. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  191. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  192. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  193. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  194. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  195. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  196. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  197. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  198. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  199. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  200. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  201. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  202. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  203. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  204. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  205. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  206. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  207. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  208. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  209. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  210. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  211. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  212. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  213. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  214. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  215. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  216. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  217. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  218. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  219. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  220. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  221. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  222. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  223. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  224. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  225. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
  226. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  227. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  228. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  229. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  230. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  231. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  232. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  233. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  234. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  235. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  236. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  237. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  238. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  239. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  240. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
  241. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  242. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  243. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  244. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  245. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  246. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  247. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  248. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  249. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  250. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  251. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  252. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  253. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  254. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  255. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  256. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  257. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  258. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  259. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  260. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  261. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  262. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  263. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  264. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  265. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  266. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  267. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  268. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  269. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  270. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  271. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  272. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  273. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  274. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  275. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  276. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  277. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  278. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  279. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  280. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  281. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  282. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  283. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  284. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  285. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
  286. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  287. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  288. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/core/runner.py +0 -0
  289. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/__init__.py +0 -0
  290. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  291. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  292. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  293. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  294. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  295. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  296. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  297. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  298. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  299. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  300. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  301. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  302. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  303. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  304. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  305. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  306. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  307. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  308. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  309. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  310. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  311. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  312. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  313. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  314. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  315. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  316. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  317. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  318. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  319. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  320. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  321. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  322. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  323. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  324. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  325. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  326. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/defaultdict.py +0 -0
  327. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/__init__.py +0 -0
  328. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  329. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  330. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  331. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  332. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  333. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  334. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  335. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  336. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  337. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  338. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  339. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  340. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  341. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  342. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  343. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  344. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  345. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  346. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  347. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  348. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  349. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  350. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  351. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  352. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  353. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  354. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  355. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  356. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  357. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  358. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  359. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/__init__.py +0 -0
  360. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  361. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  362. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  363. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  364. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  365. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  366. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
  367. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
  368. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  369. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  370. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  371. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  372. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  373. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  374. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  375. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  376. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  377. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  378. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  379. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  380. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  381. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  382. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  383. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  384. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  385. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  386. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  387. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  388. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  389. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  390. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  391. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  392. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  393. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  394. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  395. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  396. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  397. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  398. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  399. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  400. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/gptq/runner.py +0 -0
  401. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/logger.py +0 -0
  402. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/metadata.py +0 -0
  403. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/pruning/__init__.py +0 -0
  404. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  405. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  406. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  407. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  408. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/__init__.py +0 -0
  409. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  410. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  411. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  412. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  413. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/ptq/runner.py +0 -0
  414. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/__init__.py +0 -0
  415. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/common/__init__.py +0 -0
  416. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  417. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  418. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  419. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  420. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
  421. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  422. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  423. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  424. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  425. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  426. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  427. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  428. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  429. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  430. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  431. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  432. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  433. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  434. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  435. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  436. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  437. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  438. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  439. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  440. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  441. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  442. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  443. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  444. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  445. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  446. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  447. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  448. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  449. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  450. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  451. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  452. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  453. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  454. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  455. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  456. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  457. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  458. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  459. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  460. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  461. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  462. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  463. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  464. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  465. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  466. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  467. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  468. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  469. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  470. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  471. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  472. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  473. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  474. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  475. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  476. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  477. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  478. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  479. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  480. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  481. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  482. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  483. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  484. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  485. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  486. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  487. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  488. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  489. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  490. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
  491. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  492. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  493. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  494. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  495. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  496. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  497. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  498. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  499. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  500. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  501. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  502. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  503. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  504. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  505. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  506. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  507. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
  508. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  509. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  510. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  511. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  512. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  513. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  514. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  515. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
  516. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  517. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
  518. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
  519. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
  520. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  521. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
  522. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
  523. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
  524. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
  525. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
  526. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  527. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  528. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  529. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  530. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  531. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  532. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  533. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  534. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  535. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  536. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  537. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  538. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  539. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  540. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  541. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  542. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  543. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/verify_packages.py +0 -0
  544. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/__init__.py +0 -0
  545. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  546. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/constants.py +0 -0
  547. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  548. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  549. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  550. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  551. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  552. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  553. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  554. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  555. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  556. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  557. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  558. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  559. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  560. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  561. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  562. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  563. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  564. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  565. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  566. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  567. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  568. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  569. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  570. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/setup.cfg +0 -0
  571. {mct-nightly-2.2.0.20241120.525 → mct-nightly-2.2.0.20241121.524}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241120.525
3
+ Version: 2.2.0.20241121.524
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241120.525
3
+ Version: 2.2.0.20241121.524
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -255,6 +255,7 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_
255
255
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py
256
256
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py
257
257
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py
258
+ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_linear.py
258
259
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py
259
260
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py
260
261
  model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20241120.000525"
30
+ __version__ = "2.2.0.20241121.000524"
@@ -0,0 +1,83 @@
1
+ # Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from torch import nn
16
+ import torch.nn.functional as F
17
+
18
+ from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
19
+ from model_compression_toolkit.core.common import BaseNode, Graph, BaseSubstitution
20
+ from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
21
+ from model_compression_toolkit.core.pytorch.constants import *
22
+ from model_compression_toolkit.logger import Logger
23
+
24
+
25
+ class FunctionalLinear(BaseSubstitution):
26
+ """
27
+ Replace functional linear with Linear.
28
+ """
29
+
30
+ def __init__(self):
31
+ """
32
+ Matches: functional linear
33
+ """
34
+ func_node = NodeOperationMatcher(F.linear)
35
+ super().__init__(matcher_instance=func_node)
36
+
37
+ def substitute(self,
38
+ graph: Graph,
39
+ func_node: FunctionalNode) -> Graph:
40
+ """
41
+ Substitute functional.linear and its inputs with Linear.
42
+ Args:
43
+ graph: Graph we apply the substitution on.
44
+ node: node that match the pattern in the substitution init.
45
+
46
+ Returns:
47
+ Graph after applying the substitution.
48
+ """
49
+
50
+ # Create new node of layer Linear
51
+ if 1 not in func_node.weights:
52
+ Logger.critical(f'Weight input missing for node {func_node.name}.') # pragma: no cover
53
+ # Extract index of kernel and bias according to tensor_input_allocs if they were input as kwargs. If
54
+ # they were input as args, use their fixed positions.
55
+ weight_index = func_node.tensor_input_allocs.index(KERNEL) if KERNEL in func_node.tensor_input_allocs else 1
56
+ bias_index = func_node.tensor_input_allocs.index(BIAS) if BIAS in func_node.tensor_input_allocs else 2
57
+ if weight_index not in func_node.weights:
58
+ Logger.critical(f'Mismatch between tensor_input_allocs and weight index in node {func_node.name}.') # pragma: no cover
59
+ weight = func_node.weights[weight_index]
60
+ bias = func_node.weights.get(bias_index)
61
+
62
+ framework_attr = {
63
+ IN_FEATURES: func_node.input_shape[0][-1],
64
+ OUT_FEATURES: func_node.output_shape[0][-1],
65
+ BIAS: bias is not None,
66
+ }
67
+
68
+ weights = {KERNEL: weight} if bias is None else {KERNEL: weight, BIAS: bias}
69
+
70
+ new_node = BaseNode(
71
+ name=func_node.name,
72
+ framework_attr=framework_attr,
73
+ input_shape=func_node.input_shape[0],
74
+ output_shape=func_node.output_shape,
75
+ weights=weights,
76
+ layer_class=nn.Linear,
77
+ has_activation=func_node.has_activation,
78
+ reuse=func_node.reuse,
79
+ reuse_group=func_node.reuse_group
80
+ )
81
+
82
+ graph.replace_node(func_node, new_node)
83
+ return graph
@@ -50,6 +50,8 @@ from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.fu
50
50
  FunctionalBatchNorm
51
51
  from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.functional_layer_norm import \
52
52
  FunctionalLayerNorm
53
+ from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.functional_linear import \
54
+ FunctionalLinear
53
55
  from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.linear_collapsing import \
54
56
  pytorch_linear_collapsing
55
57
  from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.multi_head_attention_decomposition \
@@ -266,6 +268,7 @@ class PytorchImplementation(FrameworkImplementation):
266
268
  FunctionalConvSubstitution(fw_info),
267
269
  FunctionalBatchNorm(),
268
270
  FunctionalLayerNorm(),
271
+ FunctionalLinear(),
269
272
  RemoveIdentity()]
270
273
 
271
274
  def get_substitutions_pre_statistics_collection(self,
@@ -31,15 +31,20 @@ OPSET_DIMENSION_MANIPULATION_OPS = "DimensionManipulationOps"
31
31
  OPSET_MERGE_OPS = "MergeOps"
32
32
  OPSET_CONV = "Conv"
33
33
  OPSET_FULLY_CONNECTED = "FullyConnected"
34
+ OPSET_BATCH_NORM = "BatchNorm"
34
35
  OPSET_ANY_RELU = "AnyReLU"
35
36
  OPSET_ADD = "Add"
36
37
  OPSET_SUB = "Sub"
37
38
  OPSET_MUL = "Mul"
38
39
  OPSET_DIV = "Div"
40
+ OPSET_MIN_MAX = "MinMax"
39
41
  OPSET_PRELU = "PReLU"
40
42
  OPSET_SWISH = "Swish"
41
43
  OPSET_SIGMOID = "Sigmoid"
42
44
  OPSET_TANH = "Tanh"
45
+ OPSET_GELU = "Gelu"
46
+ OPSET_HARDSIGMOID = "HardSigmoid"
47
+ OPSET_HARDSWISH = "HardSwish"
43
48
 
44
49
 
45
50
  def get_tp_model() -> TargetPlatformModel:
@@ -172,6 +177,11 @@ def generate_tp_model(default_config: OpQuantizationConfig,
172
177
  # If the QuantizationConfigOptions contains only one configuration,
173
178
  # this configuration will be used for the operation quantization:
174
179
  default_configuration_options = tp.QuantizationConfigOptions([default_config])
180
+ default_config_input16 = default_config.clone_and_edit(supported_input_activation_n_bits=(8, 16))
181
+ default_config_options_16bit = tp.QuantizationConfigOptions([default_config_input16,
182
+ default_config_input16.clone_and_edit(activation_n_bits=16,
183
+ signedness=Signedness.SIGNED)],
184
+ base_config=default_config_input16)
175
185
 
176
186
  # Create a QuantizationConfigOptions for quantizing constants in functional ops.
177
187
  # Constant configuration is similar to the default eight bit configuration except for PoT
@@ -212,6 +222,9 @@ def generate_tp_model(default_config: OpQuantizationConfig,
212
222
  weights_per_channel_threshold=False))
213
223
  qpreserving_const_config_options = tp.QuantizationConfigOptions([qpreserving_const_config])
214
224
 
225
+ mp_cfg_list_16bit = [mp_cfg.clone_and_edit(activation_n_bits=16, signedness=Signedness.SIGNED)
226
+ for mp_cfg in mixed_precision_cfg_list]
227
+
215
228
  # Create a TargetPlatformModel and set its default quantization config.
216
229
  # This default configuration will be used for all operations
217
230
  # unless specified otherwise (see OperatorsSet, for example):
@@ -246,30 +259,37 @@ def generate_tp_model(default_config: OpQuantizationConfig,
246
259
  tp.OperatorsSet(OPSET_MERGE_OPS, const_configuration_options_inout16_per_tensor)
247
260
 
248
261
  # Create Mixed-Precision quantization configuration options from the given list of OpQuantizationConfig objects
249
- mixed_precision_configuration_options = tp.QuantizationConfigOptions(mixed_precision_cfg_list,
262
+ mixed_precision_configuration_options = tp.QuantizationConfigOptions(mixed_precision_cfg_list + mp_cfg_list_16bit,
250
263
  base_config=base_config)
251
264
 
252
265
  # Define operator sets that use mixed_precision_configuration_options:
253
266
  conv = tp.OperatorsSet(OPSET_CONV, mixed_precision_configuration_options)
254
267
  fc = tp.OperatorsSet(OPSET_FULLY_CONNECTED, mixed_precision_configuration_options)
255
268
 
256
- # Define operations sets without quantization configuration
257
- # options (useful for creating fusing patterns, for example):
258
- any_relu = tp.OperatorsSet(OPSET_ANY_RELU)
269
+ tp.OperatorsSet(OPSET_BATCH_NORM, default_config_options_16bit)
270
+
271
+ # Note: Operations sets without quantization configuration are useful for creating fusing patterns
272
+ any_relu = tp.OperatorsSet(OPSET_ANY_RELU, default_config_options_16bit)
259
273
  add = tp.OperatorsSet(OPSET_ADD, const_configuration_options_inout16)
260
274
  sub = tp.OperatorsSet(OPSET_SUB, const_configuration_options_inout16)
261
275
  mul = tp.OperatorsSet(OPSET_MUL, const_configuration_options_inout16)
262
276
  div = tp.OperatorsSet(OPSET_DIV, const_configuration_options)
263
- prelu = tp.OperatorsSet(OPSET_PRELU)
264
- swish = tp.OperatorsSet(OPSET_SWISH)
265
- sigmoid = tp.OperatorsSet(OPSET_SIGMOID)
266
- tanh = tp.OperatorsSet(OPSET_TANH)
277
+ tp.OperatorsSet(OPSET_MIN_MAX, const_configuration_options_inout16)
278
+ prelu = tp.OperatorsSet(OPSET_PRELU, default_config_options_16bit)
279
+ swish = tp.OperatorsSet(OPSET_SWISH, default_config_options_16bit)
280
+ sigmoid = tp.OperatorsSet(OPSET_SIGMOID, default_config_options_16bit)
281
+ tanh = tp.OperatorsSet(OPSET_TANH, default_config_options_16bit)
282
+ gelu = tp.OperatorsSet(OPSET_GELU, default_config_options_16bit)
283
+ hardsigmoid = tp.OperatorsSet(OPSET_HARDSIGMOID, default_config_options_16bit)
284
+ hardswish = tp.OperatorsSet(OPSET_HARDSWISH, default_config_options_16bit)
267
285
 
268
286
  # Combine multiple operators into a single operator to avoid quantization between
269
287
  # them. To do this we define fusing patterns using the OperatorsSets that were created.
270
288
  # To group multiple sets with regard to fusing, an OperatorSetConcat can be created
271
- activations_after_conv_to_fuse = tp.OperatorSetConcat(any_relu, swish, prelu, sigmoid, tanh)
272
- activations_after_fc_to_fuse = tp.OperatorSetConcat(any_relu, swish, sigmoid)
289
+ activations_after_conv_to_fuse = tp.OperatorSetConcat(any_relu, swish, prelu, sigmoid,
290
+ tanh, gelu, hardswish, hardsigmoid)
291
+ activations_after_fc_to_fuse = tp.OperatorSetConcat(any_relu, swish, sigmoid, tanh, gelu,
292
+ hardswish, hardsigmoid)
273
293
  any_binary = tp.OperatorSetConcat(add, sub, mul, div)
274
294
 
275
295
  # ------------------- #
@@ -26,11 +26,11 @@ if FOUND_SONY_CUSTOM_LAYERS:
26
26
  if version.parse(tf.__version__) >= version.parse("2.13"):
27
27
  from keras.src.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
28
28
  MaxPooling2D, Activation, ReLU, Add, Subtract, Multiply, PReLU, Flatten, Cropping2D, LeakyReLU, Permute, \
29
- Conv2DTranspose, Identity, Concatenate
29
+ Conv2DTranspose, Identity, Concatenate, BatchNormalization, Minimum, Maximum
30
30
  else:
31
31
  from keras.layers import Conv2D, DepthwiseConv2D, Dense, Reshape, ZeroPadding2D, Dropout, \
32
32
  MaxPooling2D, Activation, ReLU, Add, Subtract, Multiply, PReLU, Flatten, Cropping2D, LeakyReLU, Permute, \
33
- Conv2DTranspose, Identity, Concatenate
33
+ Conv2DTranspose, Identity, Concatenate, BatchNormalization, Minimum, Maximum
34
34
 
35
35
  from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import get_tp_model
36
36
  import model_compression_toolkit as mct
@@ -38,7 +38,7 @@ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tp
38
38
  from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
39
39
  OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
40
40
  OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
41
- OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH
41
+ OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH, OPSET_GELU, OPSET_BATCH_NORM, OPSET_MIN_MAX, OPSET_HARDSIGMOID
42
42
 
43
43
  tp = mct.target_platform
44
44
 
@@ -117,6 +117,7 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
117
117
  tp.OperationsSetToLayers(OPSET_FULLY_CONNECTED, [Dense],
118
118
  attr_mapping={KERNEL_ATTR: DefaultDict(default_value=KERAS_KERNEL),
119
119
  BIAS_ATTR: DefaultDict(default_value=BIAS)})
120
+ tp.OperationsSetToLayers(OPSET_BATCH_NORM, [BatchNormalization])
120
121
  tp.OperationsSetToLayers(OPSET_ANY_RELU, [tf.nn.relu,
121
122
  tf.nn.relu6,
122
123
  tf.nn.leaky_relu,
@@ -128,9 +129,13 @@ def generate_keras_tpc(name: str, tp_model: tp.TargetPlatformModel):
128
129
  tp.OperationsSetToLayers(OPSET_SUB, [tf.subtract, Subtract])
129
130
  tp.OperationsSetToLayers(OPSET_MUL, [tf.math.multiply, Multiply])
130
131
  tp.OperationsSetToLayers(OPSET_DIV, [tf.math.divide, tf.math.truediv])
132
+ tp.OperationsSetToLayers(OPSET_MIN_MAX, [tf.math.minimum, tf.math.maximum, Minimum, Maximum])
131
133
  tp.OperationsSetToLayers(OPSET_PRELU, [PReLU])
132
134
  tp.OperationsSetToLayers(OPSET_SWISH, [tf.nn.swish, tp.LayerFilterParams(Activation, activation="swish")])
133
135
  tp.OperationsSetToLayers(OPSET_SIGMOID, [tf.nn.sigmoid, tp.LayerFilterParams(Activation, activation="sigmoid")])
134
136
  tp.OperationsSetToLayers(OPSET_TANH, [tf.nn.tanh, tp.LayerFilterParams(Activation, activation="tanh")])
137
+ tp.OperationsSetToLayers(OPSET_GELU, [tf.nn.gelu, tp.LayerFilterParams(Activation, activation="gelu")])
138
+ tp.OperationsSetToLayers(OPSET_HARDSIGMOID, [tf.keras.activations.hard_sigmoid,
139
+ tp.LayerFilterParams(Activation, activation="hard_sigmoid")])
135
140
 
136
141
  return keras_tpc
@@ -17,11 +17,13 @@ import operator
17
17
 
18
18
  import torch
19
19
  from torch import add, sub, mul, div, divide, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, \
20
- chunk, unbind, topk, gather, equal, transpose, permute, argmax, squeeze, multiply, subtract
21
- from torch.nn import Conv2d, Linear, ConvTranspose2d, MaxPool2d
20
+ chunk, unbind, topk, gather, equal, transpose, permute, argmax, squeeze, multiply, subtract, minimum, \
21
+ maximum
22
+ from torch.nn import Conv2d, Linear, ConvTranspose2d, MaxPool2d, BatchNorm2d
22
23
  from torch.nn import Dropout, Flatten, Hardtanh
23
- from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, LeakyReLU
24
- from torch.nn.functional import relu, relu6, prelu, silu, hardtanh, hardswish, leaky_relu
24
+ from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, Hardsigmoid, LeakyReLU, GELU
25
+ import torch.nn.functional as F
26
+ from torch.nn.functional import relu, relu6, prelu, silu, hardtanh, hardswish, hardsigmoid, leaky_relu, gelu
25
27
 
26
28
  from model_compression_toolkit.defaultdict import DefaultDict
27
29
  from model_compression_toolkit.target_platform_capabilities.constants import KERNEL_ATTR, BIAS_ATTR, PYTORCH_KERNEL, \
@@ -32,7 +34,8 @@ from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tp
32
34
  from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.v4.tp_model import OPSET_NO_QUANTIZATION, \
33
35
  OPSET_QUANTIZATION_PRESERVING, OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, OPSET_DIMENSION_MANIPULATION_OPS, \
34
36
  OPSET_MERGE_OPS, OPSET_CONV, OPSET_FULLY_CONNECTED, OPSET_ANY_RELU, OPSET_ADD, OPSET_SUB, OPSET_MUL, OPSET_DIV, \
35
- OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH
37
+ OPSET_PRELU, OPSET_SWISH, OPSET_SIGMOID, OPSET_TANH, OPSET_GELU, OPSET_BATCH_NORM, OPSET_MIN_MAX, OPSET_HARDSIGMOID, \
38
+ OPSET_HARDSWISH
36
39
 
37
40
  tp = mct.target_platform
38
41
 
@@ -95,6 +98,7 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
95
98
  attr_mapping=pytorch_linear_attr_mapping)
96
99
  tp.OperationsSetToLayers(OPSET_FULLY_CONNECTED, [Linear],
97
100
  attr_mapping=pytorch_linear_attr_mapping)
101
+ tp.OperationsSetToLayers(OPSET_BATCH_NORM, [BatchNorm2d])
98
102
  tp.OperationsSetToLayers(OPSET_ANY_RELU, [torch.relu,
99
103
  ReLU,
100
104
  ReLU6,
@@ -109,9 +113,13 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
109
113
  tp.OperationsSetToLayers(OPSET_SUB, [operator.sub, sub, subtract])
110
114
  tp.OperationsSetToLayers(OPSET_MUL, [operator.mul, mul, multiply])
111
115
  tp.OperationsSetToLayers(OPSET_DIV, [operator.truediv, div, divide])
116
+ tp.OperationsSetToLayers(OPSET_MIN_MAX, [minimum, maximum])
112
117
  tp.OperationsSetToLayers(OPSET_PRELU, [PReLU, prelu])
113
- tp.OperationsSetToLayers(OPSET_SWISH, [SiLU, silu, Hardswish, hardswish])
114
- tp.OperationsSetToLayers(OPSET_SIGMOID, [Sigmoid, sigmoid])
115
- tp.OperationsSetToLayers(OPSET_TANH, [Tanh, tanh])
118
+ tp.OperationsSetToLayers(OPSET_SWISH, [SiLU, silu])
119
+ tp.OperationsSetToLayers(OPSET_SIGMOID, [Sigmoid, sigmoid, F.sigmoid])
120
+ tp.OperationsSetToLayers(OPSET_TANH, [Tanh, tanh, F.tanh])
121
+ tp.OperationsSetToLayers(OPSET_GELU, [GELU, gelu])
122
+ tp.OperationsSetToLayers(OPSET_HARDSIGMOID, [Hardsigmoid, hardsigmoid])
123
+ tp.OperationsSetToLayers(OPSET_HARDSWISH, [Hardswish, hardswish])
116
124
 
117
125
  return pytorch_tpc