mct-nightly 2.2.0.20241118.531__tar.gz → 2.2.0.20241120.525__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (570) hide show
  1. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/PKG-INFO +60 -85
  2. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/README.md +59 -84
  3. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/mct_nightly.egg-info/PKG-INFO +60 -85
  4. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/__init__.py +1 -1
  5. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/LICENSE.md +0 -0
  6. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/mct_nightly.egg-info/SOURCES.txt +0 -0
  7. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/mct_nightly.egg-info/dependency_links.txt +0 -0
  8. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/mct_nightly.egg-info/requires.txt +0 -0
  9. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/mct_nightly.egg-info/top_level.txt +0 -0
  10. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/constants.py +0 -0
  11. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/__init__.py +0 -0
  12. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/analyzer.py +0 -0
  13. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/__init__.py +0 -0
  14. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  15. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  16. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  17. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  18. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  19. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  20. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  21. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  22. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  23. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  24. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/framework_info.py +0 -0
  25. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  26. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  27. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  28. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  29. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  30. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  31. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  32. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  33. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  34. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  35. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  36. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  37. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  38. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  39. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  40. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  41. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  42. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  43. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  44. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  45. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  46. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  47. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  48. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  49. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  50. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  51. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  52. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  53. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  54. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  55. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  56. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  57. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  58. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  59. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  60. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  61. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  62. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  63. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  64. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  65. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  66. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  67. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  68. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  69. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  70. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  71. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  72. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  73. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  74. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  75. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  76. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  77. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/model_collector.py +0 -0
  78. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/model_validation.py +0 -0
  79. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  80. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  81. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  82. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  83. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  84. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  85. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  86. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  87. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  88. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  89. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  90. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  91. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  92. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  93. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  94. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  95. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  96. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  97. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  98. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  99. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  100. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  101. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  102. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  103. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  104. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  105. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  106. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  107. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  108. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  109. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  110. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  111. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  112. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  113. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  114. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  115. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  116. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  117. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  118. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  119. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  120. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  121. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  122. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  123. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  124. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  125. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  126. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  127. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  128. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  129. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  130. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  131. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
  132. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  133. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  134. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
  135. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  136. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  137. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  138. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  139. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  140. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  141. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  142. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  143. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  144. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  145. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  146. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  147. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  148. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  149. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  150. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  151. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/user_info.py +0 -0
  152. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  153. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  154. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  155. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  156. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  157. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/__init__.py +0 -0
  158. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  159. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  160. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  161. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  162. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  163. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  164. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  165. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/constants.py +0 -0
  166. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  167. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/data_util.py +0 -0
  168. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  169. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  170. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  171. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  172. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  173. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  174. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  175. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  176. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  177. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  178. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  179. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  180. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  181. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  182. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  183. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  184. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  185. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  186. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  187. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  188. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  189. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  190. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  191. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  192. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  193. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  194. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  195. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  196. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  197. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  198. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  199. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  200. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  201. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  202. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  203. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  204. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  205. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  206. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  207. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  208. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  209. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  210. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  211. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  212. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  213. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  214. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  215. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  216. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  217. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  218. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  219. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  220. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
  221. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  222. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  223. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  224. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  225. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  226. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  227. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  228. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  229. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  230. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  231. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  232. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  233. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  234. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  235. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
  236. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  237. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  238. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  239. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  240. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  241. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  242. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  243. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  244. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  245. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  246. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  247. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  248. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  249. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  250. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  251. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  252. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  253. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  254. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  255. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  256. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  257. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  258. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  259. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  260. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  261. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  262. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  263. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  264. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  265. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  266. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  267. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  268. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  269. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  270. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  271. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  272. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  273. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  274. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  275. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  276. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  277. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  278. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  279. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  280. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  281. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
  282. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  283. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  284. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/runner.py +0 -0
  285. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/__init__.py +0 -0
  286. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  287. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  288. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  289. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  290. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  291. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  292. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  293. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  294. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  295. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  296. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  297. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  298. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  299. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  300. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  301. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  302. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  303. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  304. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  305. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  306. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  307. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  308. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  309. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  310. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  311. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  312. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  313. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  314. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  315. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  316. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  317. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  318. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  319. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  320. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  321. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  322. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/defaultdict.py +0 -0
  323. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/__init__.py +0 -0
  324. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  325. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  326. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  327. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  328. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  329. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  330. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  331. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  332. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  333. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  334. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  335. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  336. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  337. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  338. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  339. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  340. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  341. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  342. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  343. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  344. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  345. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  346. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  347. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  348. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  349. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  350. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  351. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  352. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  353. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  354. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  355. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/__init__.py +0 -0
  356. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  357. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  358. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  359. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  360. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  361. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  362. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
  363. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
  364. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  365. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  366. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  367. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  368. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  369. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  370. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  371. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  372. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  373. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  374. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  375. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  376. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  377. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  378. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  379. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  380. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  381. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  382. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  383. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  384. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  385. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  386. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  387. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  388. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  389. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  390. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  391. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  392. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  393. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  394. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  395. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  396. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/runner.py +0 -0
  397. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/logger.py +0 -0
  398. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/metadata.py +0 -0
  399. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/pruning/__init__.py +0 -0
  400. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  401. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  402. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  403. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  404. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/__init__.py +0 -0
  405. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  406. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  407. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  408. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  409. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/runner.py +0 -0
  410. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/__init__.py +0 -0
  411. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/common/__init__.py +0 -0
  412. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  413. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  414. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  415. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  416. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
  417. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  418. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  419. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  420. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  421. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  422. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  423. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  424. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  425. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  426. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  427. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  428. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  429. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  430. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  431. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  432. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  433. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  434. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  435. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  436. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  437. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  438. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  439. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  440. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  441. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  442. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  443. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  444. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  445. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  446. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  447. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  448. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  449. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  450. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  451. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  452. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  453. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  454. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  455. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  456. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  457. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  458. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  459. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  460. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  461. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  462. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  463. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  464. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  465. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  466. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  467. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  468. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  469. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  470. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  471. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  472. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  473. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  474. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  475. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  476. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  477. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  478. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  479. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  480. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  481. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  482. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  483. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  484. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  485. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  486. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
  487. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +0 -0
  488. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
  489. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -0
  490. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  491. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  492. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  493. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  494. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  495. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  496. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  497. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  498. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  499. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  500. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  501. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  502. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  503. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  504. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  505. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  506. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
  507. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  508. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  509. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  510. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  511. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  512. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  513. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  514. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
  515. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  516. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
  517. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
  518. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
  519. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  520. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
  521. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
  522. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
  523. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
  524. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
  525. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  526. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  527. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  528. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  529. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  530. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  531. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  532. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  533. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  534. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  535. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  536. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  537. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  538. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  539. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  540. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  541. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  542. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/verify_packages.py +0 -0
  543. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/__init__.py +0 -0
  544. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  545. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/constants.py +0 -0
  546. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  547. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  548. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  549. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  550. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  551. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  552. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  553. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  554. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  555. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  556. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  557. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  558. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  559. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  560. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  561. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  562. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  563. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  564. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  565. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  566. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  567. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  568. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  569. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/setup.cfg +0 -0
  570. {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/setup.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241118.531
3
+ Version: 2.2.0.20241120.525
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -17,7 +17,7 @@ Description: <div align="center" markdown="1">
17
17
  <p align="center">
18
18
  <a href="#getting-started">Getting Started</a> •
19
19
  <a href="#tutorials-and-examples">Tutorials</a> •
20
- <a href="#supported-features">High level features and techniques</a> •
20
+ <a href="#high-level-features-and-techniques">High level features and techniques</a> •
21
21
  <a href="#resources">Resources</a> •
22
22
  <a href="#contributions">Community</a> •
23
23
  <a href="#license">License</a>
@@ -34,7 +34,7 @@ Description: <div align="center" markdown="1">
34
34
 
35
35
  __________________________________________________________________________________________________________
36
36
 
37
- ## Getting Started
37
+ ## <div align="center">Getting Started</div>
38
38
  ### Quick Installation
39
39
  Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
40
40
  ```
@@ -54,17 +54,17 @@ Description: <div align="center" markdown="1">
54
54
  <div align="center">
55
55
  <p align="center">
56
56
 
57
- Quantization Method | Complexity | Computational Cost | Tutorial
58
- -------------------- | -----------|--------------------|---------
59
- PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
60
- GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
61
- QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
57
+ Quantization Method | Complexity | Computational Cost | API | Tutorial
58
+ -------------------- | -----------|--------------------|---------|--------
59
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
60
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
61
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
62
62
 
63
63
  </p>
64
64
  </div>
65
65
 
66
66
  For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
67
- For further details, please see [Supported features and algorithms](#supported-features).
67
+ For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
68
68
 
69
69
  Required input:
70
70
  - Floating point model - 32bit model in either .pt or .keras format
@@ -77,7 +77,45 @@ Description: <div align="center" markdown="1">
77
77
  </p>
78
78
  </div>
79
79
 
80
- ### Resources
80
+ ## <div align="center">High level features and techniques</div>
81
+
82
+ MCT offers a range of powerful features to optimize models for efficient edge deployment. These supported features include:
83
+
84
+ ### Quantization Core Features
85
+
86
+ 🏆 **Mixed-precision search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mixed_precision_ptq.ipynb). Assigning optimal quantization bit-width per layer (for weights/activations)
87
+
88
+ 📈 **Graph optimizations**.
89
+ Transforming the model to be best fitted for quantization process.
90
+
91
+ 🔎 **Quantization parameter search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_threshold_search.ipynb). Minimizing expected quantization-noise during thresholds search using methods such as MSE, No-Clipping and MAE.
92
+
93
+ 🧮 **Advanced quantization algorithms** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_z_score_threshold.ipynb). Enhancing quantization performance for advanced cases is available with some algorithms that can be applied, such as Shift negative correction, Outliers filtering and clustering.
94
+ __________________________________________________________________________________________________________
95
+ ### Hardware-aware optimization
96
+
97
+ 🎯 **TPC (Target Platform Capabilities)**. Describes the target hardware’s constrains, for which the model optimization is targeted. See [TPC Readme](./model_compression_toolkit/target_platform_capabilities/README.md) for more information.
98
+ __________________________________________________________________________________________________________
99
+ ### Data-free quantization (Data Generation) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
100
+ Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
101
+ __________________________________________________________________________________________________________
102
+ ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
103
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)).
104
+ __________________________________________________________________________________________________________
105
+ ### **Debugging and Visualization**
106
+ **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
107
+ Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor
108
+
109
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
110
+
111
+ **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
112
+ __________________________________________________________________________________________________________
113
+ ### Enhanced Post-Training Quantization (EPTQ)
114
+ As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
115
+ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization**"_ [4].
116
+ More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
117
+
118
+ ## <div align="center">Resources</div>
81
119
  * [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
82
120
 
83
121
  * MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
@@ -91,7 +129,7 @@ Description: <div align="center" markdown="1">
91
129
  * [Release notes](https://github.com/sony/model_optimization/releases)
92
130
 
93
131
 
94
- ### Supported Versions
132
+ ## <div align="center">Supported Versions</div>
95
133
 
96
134
  Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
97
135
  <details id="supported-versions">
@@ -112,76 +150,13 @@ Description: <div align="center" markdown="1">
112
150
 
113
151
  </details>
114
152
 
115
- ## Supported Features
116
- MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
117
-
118
- ### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
119
- MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
120
- You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
121
-
122
- ### Quantization
123
- MCT supports different quantization methods:
124
- * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
125
- * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
126
- * Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
127
-
128
-
129
- | Quantization Method | Complexity | Computational Cost |
130
- |-----------------------------------------------|------------|-----------------------------|
131
- | PTQ | Low | Low (~CPU minutes) |
132
- | GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) |
133
- | QAT | High | High (~12-36 GPU hours) |
134
-
135
-
136
- In addition, MCT supports different quantization schemes for quantizing weights and activations:
137
-
138
- * Power-Of-Two (hardware-friendly quantization [1])
139
- * Symmetric
140
- * Uniform
141
-
142
- Main features:
143
- * <ins>Graph optimizations:</ins> Transforming the model to an equivalent (yet, more efficient) model (for example, batch-normalization layer folding to its preceding linear layer).
144
- * <ins>Quantization parameter search:</ins> Different methods can be used to minimize the expected added quantization-noise during thresholds search (by default, we use Mean-Square-Error, but other metrics can be used such as No-Clipping, Mean-Average-Error, and more).
145
- * <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
146
- * <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
147
- * <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
148
- * <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
149
- * <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
150
- * <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
151
- * <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
152
-
153
- ### Enhanced Post-Training Quantization (EPTQ)
154
- As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
155
-
156
- The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
157
-
158
- More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
159
-
160
-
161
- ### Structured Pruning [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
162
- MCT introduces a structured and hardware-aware model pruning.
163
- This pruning technique is designed to compress models for specific hardware architectures,
164
- taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
165
- By pruning groups of channels (SIMD groups), our approach not only reduces model size
166
- and complexity, but ensures that better utilization of channels is in line with the SIMD architecture
167
- for a target Resource Utilization of weights memory footprint.
168
- [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)
169
- [Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html)
170
-
171
- #### Experimental features
172
-
173
- Some features are experimental and subject to future changes.
174
-
175
- For more details, we highly recommend visiting our project website where experimental features are mentioned as experimental.
176
-
177
-
178
- ## Results
153
+ ## <div align="center">Results</div>
179
154
 
180
155
  <p align="center">
181
- <img src="/docsrc/images/Classification.png" width="225">
182
- <img src="/docsrc/images/SemSeg.png" width="225">
183
- <img src="/docsrc/images/PoseEst.png" width="225">
184
- <img src="/docsrc/images/ObjDet.png" width="225">
156
+ <img src="/docsrc/images/Classification.png" width="200">
157
+ <img src="/docsrc/images/SemSeg.png" width="200">
158
+ <img src="/docsrc/images/PoseEst.png" width="200">
159
+ <img src="/docsrc/images/ObjDet.png" width="200">
185
160
 
186
161
  ### Pytorch
187
162
  We quantized classification networks from the torchvision library.
@@ -202,7 +177,7 @@ Description: <div align="center" markdown="1">
202
177
 
203
178
  For more results, please see [1]
204
179
 
205
- #### Pruning Results
180
+ ### Pruning Results
206
181
 
207
182
  Results for applying pruning to reduce the parameters of the following models by 50%:
208
183
 
@@ -211,7 +186,7 @@ Description: <div align="center" markdown="1">
211
186
  | ResNet50 [2] | 75.1 | 72.4 |
212
187
  | DenseNet121 [3] | 74.44 | 71.71 |
213
188
 
214
- ## Troubleshooting and Community
189
+ ## <div align="center">Troubleshooting and Community</div>
215
190
 
216
191
  If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
217
192
  for common pitfalls and some tools to improve quantized model's accuracy.
@@ -221,18 +196,18 @@ Description: <div align="center" markdown="1">
221
196
  You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
222
197
 
223
198
 
224
- ## Contributions
199
+ ## <div align="center">Contributions</div>
225
200
  MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
226
201
 
227
202
  *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
228
203
 
229
204
 
230
- ## License
205
+ ## <div align="center">License</div>
231
206
  MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
232
207
 
233
208
  <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
234
209
 
235
- ## References
210
+ ## <div align="center">References</div>
236
211
 
237
212
  [1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).
238
213
 
@@ -240,7 +215,7 @@ Description: <div align="center" markdown="1">
240
215
 
241
216
  [3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
242
217
 
243
- [4] Gordon, O., Habi, H. V., & Netzer, A., 2023. [EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian. arXiv preprint](https://arxiv.org/abs/2309.11531)
218
+ [4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization. arXiv preprint](https://arxiv.org/abs/2309.11531)
244
219
 
245
220
  Platform: UNKNOWN
246
221
  Classifier: Programming Language :: Python :: 3
@@ -11,7 +11,7 @@ ______________________________________________________________________
11
11
  <p align="center">
12
12
  <a href="#getting-started">Getting Started</a> •
13
13
  <a href="#tutorials-and-examples">Tutorials</a> •
14
- <a href="#supported-features">High level features and techniques</a> •
14
+ <a href="#high-level-features-and-techniques">High level features and techniques</a> •
15
15
  <a href="#resources">Resources</a> •
16
16
  <a href="#contributions">Community</a> •
17
17
  <a href="#license">License</a>
@@ -28,7 +28,7 @@ ______________________________________________________________________
28
28
 
29
29
  __________________________________________________________________________________________________________
30
30
 
31
- ## Getting Started
31
+ ## <div align="center">Getting Started</div>
32
32
  ### Quick Installation
33
33
  Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
34
34
  ```
@@ -48,17 +48,17 @@ MCT supports various quantization methods as appears below.
48
48
  <div align="center">
49
49
  <p align="center">
50
50
 
51
- Quantization Method | Complexity | Computational Cost | Tutorial
52
- -------------------- | -----------|--------------------|---------
53
- PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
54
- GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
55
- QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
51
+ Quantization Method | Complexity | Computational Cost | API | Tutorial
52
+ -------------------- | -----------|--------------------|---------|--------
53
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
54
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
55
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
56
56
 
57
57
  </p>
58
58
  </div>
59
59
 
60
60
  For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
61
- For further details, please see [Supported features and algorithms](#supported-features).
61
+ For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
62
62
 
63
63
  Required input:
64
64
  - Floating point model - 32bit model in either .pt or .keras format
@@ -71,7 +71,45 @@ Required input:
71
71
  </p>
72
72
  </div>
73
73
 
74
- ### Resources
74
+ ## <div align="center">High level features and techniques</div>
75
+
76
+ MCT offers a range of powerful features to optimize models for efficient edge deployment. These supported features include:
77
+
78
+ ### Quantization Core Features
79
+
80
+ 🏆 **Mixed-precision search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mixed_precision_ptq.ipynb). Assigning optimal quantization bit-width per layer (for weights/activations)
81
+
82
+ 📈 **Graph optimizations**.
83
+ Transforming the model to be best fitted for quantization process.
84
+
85
+ 🔎 **Quantization parameter search** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_threshold_search.ipynb). Minimizing expected quantization-noise during thresholds search using methods such as MSE, No-Clipping and MAE.
86
+
87
+ 🧮 **Advanced quantization algorithms** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_z_score_threshold.ipynb). Enhancing quantization performance for advanced cases is available with some algorithms that can be applied, such as Shift negative correction, Outliers filtering and clustering.
88
+ __________________________________________________________________________________________________________
89
+ ### Hardware-aware optimization
90
+
91
+ 🎯 **TPC (Target Platform Capabilities)**. Describes the target hardware’s constrains, for which the model optimization is targeted. See [TPC Readme](./model_compression_toolkit/target_platform_capabilities/README.md) for more information.
92
+ __________________________________________________________________________________________________________
93
+ ### Data-free quantization (Data Generation) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
94
+ Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
95
+ __________________________________________________________________________________________________________
96
+ ### Structured Pruning [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
97
+ Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)).
98
+ __________________________________________________________________________________________________________
99
+ ### **Debugging and Visualization**
100
+ **🎛️ Network Editor (Modify Quantization Configurations)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
101
+ Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor
102
+
103
+ **🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
104
+
105
+ **🔑 XQuant (Explainable Quantization)** [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
106
+ __________________________________________________________________________________________________________
107
+ ### Enhanced Post-Training Quantization (EPTQ)
108
+ As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
109
+ The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization**"_ [4].
110
+ More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
111
+
112
+ ## <div align="center">Resources</div>
75
113
  * [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
76
114
 
77
115
  * MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
@@ -85,7 +123,7 @@ Required input:
85
123
  * [Release notes](https://github.com/sony/model_optimization/releases)
86
124
 
87
125
 
88
- ### Supported Versions
126
+ ## <div align="center">Supported Versions</div>
89
127
 
90
128
  Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
91
129
  <details id="supported-versions">
@@ -106,76 +144,13 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
106
144
 
107
145
  </details>
108
146
 
109
- ## Supported Features
110
- MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
111
-
112
- ### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
113
- MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
114
- You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
115
-
116
- ### Quantization
117
- MCT supports different quantization methods:
118
- * Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
119
- * Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
120
- * Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
121
-
122
-
123
- | Quantization Method | Complexity | Computational Cost |
124
- |-----------------------------------------------|------------|-----------------------------|
125
- | PTQ | Low | Low (~CPU minutes) |
126
- | GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) |
127
- | QAT | High | High (~12-36 GPU hours) |
128
-
129
-
130
- In addition, MCT supports different quantization schemes for quantizing weights and activations:
131
-
132
- * Power-Of-Two (hardware-friendly quantization [1])
133
- * Symmetric
134
- * Uniform
135
-
136
- Main features:
137
- * <ins>Graph optimizations:</ins> Transforming the model to an equivalent (yet, more efficient) model (for example, batch-normalization layer folding to its preceding linear layer).
138
- * <ins>Quantization parameter search:</ins> Different methods can be used to minimize the expected added quantization-noise during thresholds search (by default, we use Mean-Square-Error, but other metrics can be used such as No-Clipping, Mean-Average-Error, and more).
139
- * <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
140
- * <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
141
- * <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
142
- * <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
143
- * <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
144
- * <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
145
- * <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
146
-
147
- ### Enhanced Post-Training Quantization (EPTQ)
148
- As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
149
-
150
- The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
151
-
152
- More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
153
-
154
-
155
- ### Structured Pruning [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
156
- MCT introduces a structured and hardware-aware model pruning.
157
- This pruning technique is designed to compress models for specific hardware architectures,
158
- taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
159
- By pruning groups of channels (SIMD groups), our approach not only reduces model size
160
- and complexity, but ensures that better utilization of channels is in line with the SIMD architecture
161
- for a target Resource Utilization of weights memory footprint.
162
- [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)
163
- [Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html)
164
-
165
- #### Experimental features
166
-
167
- Some features are experimental and subject to future changes.
168
-
169
- For more details, we highly recommend visiting our project website where experimental features are mentioned as experimental.
170
-
171
-
172
- ## Results
147
+ ## <div align="center">Results</div>
173
148
 
174
149
  <p align="center">
175
- <img src="/docsrc/images/Classification.png" width="225">
176
- <img src="/docsrc/images/SemSeg.png" width="225">
177
- <img src="/docsrc/images/PoseEst.png" width="225">
178
- <img src="/docsrc/images/ObjDet.png" width="225">
150
+ <img src="/docsrc/images/Classification.png" width="200">
151
+ <img src="/docsrc/images/SemSeg.png" width="200">
152
+ <img src="/docsrc/images/PoseEst.png" width="200">
153
+ <img src="/docsrc/images/ObjDet.png" width="200">
179
154
 
180
155
  ### Pytorch
181
156
  We quantized classification networks from the torchvision library.
@@ -196,7 +171,7 @@ single-precision quantization, mixed-precision quantization, and mixed-precision
196
171
 
197
172
  For more results, please see [1]
198
173
 
199
- #### Pruning Results
174
+ ### Pruning Results
200
175
 
201
176
  Results for applying pruning to reduce the parameters of the following models by 50%:
202
177
 
@@ -205,7 +180,7 @@ Results for applying pruning to reduce the parameters of the following models by
205
180
  | ResNet50 [2] | 75.1 | 72.4 |
206
181
  | DenseNet121 [3] | 74.44 | 71.71 |
207
182
 
208
- ## Troubleshooting and Community
183
+ ## <div align="center">Troubleshooting and Community</div>
209
184
 
210
185
  If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
211
186
  for common pitfalls and some tools to improve quantized model's accuracy.
@@ -215,18 +190,18 @@ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md)
215
190
  You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
216
191
 
217
192
 
218
- ## Contributions
193
+ ## <div align="center">Contributions</div>
219
194
  MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
220
195
 
221
196
  *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
222
197
 
223
198
 
224
- ## License
199
+ ## <div align="center">License</div>
225
200
  MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
226
201
 
227
202
  <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
228
203
 
229
- ## References
204
+ ## <div align="center">References</div>
230
205
 
231
206
  [1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).
232
207
 
@@ -234,4 +209,4 @@ MCT is licensed under Apache License Version 2.0. By contributing to the project
234
209
 
235
210
  [3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
236
211
 
237
- [4] Gordon, O., Habi, H. V., & Netzer, A., 2023. [EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian. arXiv preprint](https://arxiv.org/abs/2309.11531)
212
+ [4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization. arXiv preprint](https://arxiv.org/abs/2309.11531)