mct-nightly 2.2.0.20241118.531__tar.gz → 2.2.0.20241120.525__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/PKG-INFO +60 -85
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/README.md +59 -84
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/mct_nightly.egg-info/PKG-INFO +60 -85
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/LICENSE.md +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/data_util.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/verify_packages.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/setup.cfg +0 -0
- {mct-nightly-2.2.0.20241118.531 → mct-nightly-2.2.0.20241120.525}/setup.py +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.2.0.
|
3
|
+
Version: 2.2.0.20241120.525
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Home-page: UNKNOWN
|
6
6
|
License: UNKNOWN
|
@@ -17,7 +17,7 @@ Description: <div align="center" markdown="1">
|
|
17
17
|
<p align="center">
|
18
18
|
<a href="#getting-started">Getting Started</a> •
|
19
19
|
<a href="#tutorials-and-examples">Tutorials</a> •
|
20
|
-
<a href="#
|
20
|
+
<a href="#high-level-features-and-techniques">High level features and techniques</a> •
|
21
21
|
<a href="#resources">Resources</a> •
|
22
22
|
<a href="#contributions">Community</a> •
|
23
23
|
<a href="#license">License</a>
|
@@ -34,7 +34,7 @@ Description: <div align="center" markdown="1">
|
|
34
34
|
|
35
35
|
__________________________________________________________________________________________________________
|
36
36
|
|
37
|
-
## Getting Started
|
37
|
+
## <div align="center">Getting Started</div>
|
38
38
|
### Quick Installation
|
39
39
|
Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
|
40
40
|
```
|
@@ -54,17 +54,17 @@ Description: <div align="center" markdown="1">
|
|
54
54
|
<div align="center">
|
55
55
|
<p align="center">
|
56
56
|
|
57
|
-
Quantization Method | Complexity | Computational Cost | Tutorial
|
58
|
-
-------------------- |
|
59
|
-
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
60
|
-
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
61
|
-
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
57
|
+
Quantization Method | Complexity | Computational Cost | API | Tutorial
|
58
|
+
-------------------- | -----------|--------------------|---------|--------
|
59
|
+
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
60
|
+
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
61
|
+
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
62
62
|
|
63
63
|
</p>
|
64
64
|
</div>
|
65
65
|
|
66
66
|
For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
|
67
|
-
For further details, please see [Supported features and algorithms](#
|
67
|
+
For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
|
68
68
|
|
69
69
|
Required input:
|
70
70
|
- Floating point model - 32bit model in either .pt or .keras format
|
@@ -77,7 +77,45 @@ Description: <div align="center" markdown="1">
|
|
77
77
|
</p>
|
78
78
|
</div>
|
79
79
|
|
80
|
-
|
80
|
+
## <div align="center">High level features and techniques</div>
|
81
|
+
|
82
|
+
MCT offers a range of powerful features to optimize models for efficient edge deployment. These supported features include:
|
83
|
+
|
84
|
+
### Quantization Core Features
|
85
|
+
|
86
|
+
🏆 **Mixed-precision search** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mixed_precision_ptq.ipynb). Assigning optimal quantization bit-width per layer (for weights/activations)
|
87
|
+
|
88
|
+
📈 **Graph optimizations**.
|
89
|
+
Transforming the model to be best fitted for quantization process.
|
90
|
+
|
91
|
+
🔎 **Quantization parameter search** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_threshold_search.ipynb). Minimizing expected quantization-noise during thresholds search using methods such as MSE, No-Clipping and MAE.
|
92
|
+
|
93
|
+
🧮 **Advanced quantization algorithms** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_z_score_threshold.ipynb). Enhancing quantization performance for advanced cases is available with some algorithms that can be applied, such as Shift negative correction, Outliers filtering and clustering.
|
94
|
+
__________________________________________________________________________________________________________
|
95
|
+
### Hardware-aware optimization
|
96
|
+
|
97
|
+
🎯 **TPC (Target Platform Capabilities)**. Describes the target hardware’s constrains, for which the model optimization is targeted. See [TPC Readme](./model_compression_toolkit/target_platform_capabilities/README.md) for more information.
|
98
|
+
__________________________________________________________________________________________________________
|
99
|
+
### Data-free quantization (Data Generation) [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
|
100
|
+
Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
|
101
|
+
__________________________________________________________________________________________________________
|
102
|
+
### Structured Pruning [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
|
103
|
+
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)).
|
104
|
+
__________________________________________________________________________________________________________
|
105
|
+
### **Debugging and Visualization**
|
106
|
+
**🎛️ Network Editor (Modify Quantization Configurations)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
|
107
|
+
Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor
|
108
|
+
|
109
|
+
**🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
|
110
|
+
|
111
|
+
**🔑 XQuant (Explainable Quantization)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
|
112
|
+
__________________________________________________________________________________________________________
|
113
|
+
### Enhanced Post-Training Quantization (EPTQ)
|
114
|
+
As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
|
115
|
+
The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization**"_ [4].
|
116
|
+
More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
117
|
+
|
118
|
+
## <div align="center">Resources</div>
|
81
119
|
* [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
|
82
120
|
|
83
121
|
* MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
|
@@ -91,7 +129,7 @@ Description: <div align="center" markdown="1">
|
|
91
129
|
* [Release notes](https://github.com/sony/model_optimization/releases)
|
92
130
|
|
93
131
|
|
94
|
-
|
132
|
+
## <div align="center">Supported Versions</div>
|
95
133
|
|
96
134
|
Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
|
97
135
|
<details id="supported-versions">
|
@@ -112,76 +150,13 @@ Description: <div align="center" markdown="1">
|
|
112
150
|
|
113
151
|
</details>
|
114
152
|
|
115
|
-
##
|
116
|
-
MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
|
117
|
-
|
118
|
-
### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
119
|
-
MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
|
120
|
-
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
|
121
|
-
|
122
|
-
### Quantization
|
123
|
-
MCT supports different quantization methods:
|
124
|
-
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
|
125
|
-
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
|
126
|
-
* Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
127
|
-
|
128
|
-
|
129
|
-
| Quantization Method | Complexity | Computational Cost |
|
130
|
-
|-----------------------------------------------|------------|-----------------------------|
|
131
|
-
| PTQ | Low | Low (~CPU minutes) |
|
132
|
-
| GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) |
|
133
|
-
| QAT | High | High (~12-36 GPU hours) |
|
134
|
-
|
135
|
-
|
136
|
-
In addition, MCT supports different quantization schemes for quantizing weights and activations:
|
137
|
-
|
138
|
-
* Power-Of-Two (hardware-friendly quantization [1])
|
139
|
-
* Symmetric
|
140
|
-
* Uniform
|
141
|
-
|
142
|
-
Main features:
|
143
|
-
* <ins>Graph optimizations:</ins> Transforming the model to an equivalent (yet, more efficient) model (for example, batch-normalization layer folding to its preceding linear layer).
|
144
|
-
* <ins>Quantization parameter search:</ins> Different methods can be used to minimize the expected added quantization-noise during thresholds search (by default, we use Mean-Square-Error, but other metrics can be used such as No-Clipping, Mean-Average-Error, and more).
|
145
|
-
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
|
146
|
-
* <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
|
147
|
-
* <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
|
148
|
-
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
149
|
-
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
|
150
|
-
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
|
151
|
-
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
|
152
|
-
|
153
|
-
### Enhanced Post-Training Quantization (EPTQ)
|
154
|
-
As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
|
155
|
-
|
156
|
-
The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
|
157
|
-
|
158
|
-
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
159
|
-
|
160
|
-
|
161
|
-
### Structured Pruning [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
162
|
-
MCT introduces a structured and hardware-aware model pruning.
|
163
|
-
This pruning technique is designed to compress models for specific hardware architectures,
|
164
|
-
taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
|
165
|
-
By pruning groups of channels (SIMD groups), our approach not only reduces model size
|
166
|
-
and complexity, but ensures that better utilization of channels is in line with the SIMD architecture
|
167
|
-
for a target Resource Utilization of weights memory footprint.
|
168
|
-
[Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)
|
169
|
-
[Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html)
|
170
|
-
|
171
|
-
#### Experimental features
|
172
|
-
|
173
|
-
Some features are experimental and subject to future changes.
|
174
|
-
|
175
|
-
For more details, we highly recommend visiting our project website where experimental features are mentioned as experimental.
|
176
|
-
|
177
|
-
|
178
|
-
## Results
|
153
|
+
## <div align="center">Results</div>
|
179
154
|
|
180
155
|
<p align="center">
|
181
|
-
<img src="/docsrc/images/Classification.png" width="
|
182
|
-
<img src="/docsrc/images/SemSeg.png" width="
|
183
|
-
<img src="/docsrc/images/PoseEst.png" width="
|
184
|
-
<img src="/docsrc/images/ObjDet.png" width="
|
156
|
+
<img src="/docsrc/images/Classification.png" width="200">
|
157
|
+
<img src="/docsrc/images/SemSeg.png" width="200">
|
158
|
+
<img src="/docsrc/images/PoseEst.png" width="200">
|
159
|
+
<img src="/docsrc/images/ObjDet.png" width="200">
|
185
160
|
|
186
161
|
### Pytorch
|
187
162
|
We quantized classification networks from the torchvision library.
|
@@ -202,7 +177,7 @@ Description: <div align="center" markdown="1">
|
|
202
177
|
|
203
178
|
For more results, please see [1]
|
204
179
|
|
205
|
-
|
180
|
+
### Pruning Results
|
206
181
|
|
207
182
|
Results for applying pruning to reduce the parameters of the following models by 50%:
|
208
183
|
|
@@ -211,7 +186,7 @@ Description: <div align="center" markdown="1">
|
|
211
186
|
| ResNet50 [2] | 75.1 | 72.4 |
|
212
187
|
| DenseNet121 [3] | 74.44 | 71.71 |
|
213
188
|
|
214
|
-
## Troubleshooting and Community
|
189
|
+
## <div align="center">Troubleshooting and Community</div>
|
215
190
|
|
216
191
|
If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
|
217
192
|
for common pitfalls and some tools to improve quantized model's accuracy.
|
@@ -221,18 +196,18 @@ Description: <div align="center" markdown="1">
|
|
221
196
|
You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
|
222
197
|
|
223
198
|
|
224
|
-
## Contributions
|
199
|
+
## <div align="center">Contributions</div>
|
225
200
|
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
|
226
201
|
|
227
202
|
*Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
|
228
203
|
|
229
204
|
|
230
|
-
## License
|
205
|
+
## <div align="center">License</div>
|
231
206
|
MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
|
232
207
|
|
233
208
|
<a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
|
234
209
|
|
235
|
-
## References
|
210
|
+
## <div align="center">References</div>
|
236
211
|
|
237
212
|
[1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).
|
238
213
|
|
@@ -240,7 +215,7 @@ Description: <div align="center" markdown="1">
|
|
240
215
|
|
241
216
|
[3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
|
242
217
|
|
243
|
-
[4] Gordon, O., Habi, H. V., & Netzer, A.,
|
218
|
+
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization. arXiv preprint](https://arxiv.org/abs/2309.11531)
|
244
219
|
|
245
220
|
Platform: UNKNOWN
|
246
221
|
Classifier: Programming Language :: Python :: 3
|
@@ -11,7 +11,7 @@ ______________________________________________________________________
|
|
11
11
|
<p align="center">
|
12
12
|
<a href="#getting-started">Getting Started</a> •
|
13
13
|
<a href="#tutorials-and-examples">Tutorials</a> •
|
14
|
-
<a href="#
|
14
|
+
<a href="#high-level-features-and-techniques">High level features and techniques</a> •
|
15
15
|
<a href="#resources">Resources</a> •
|
16
16
|
<a href="#contributions">Community</a> •
|
17
17
|
<a href="#license">License</a>
|
@@ -28,7 +28,7 @@ ______________________________________________________________________
|
|
28
28
|
|
29
29
|
__________________________________________________________________________________________________________
|
30
30
|
|
31
|
-
## Getting Started
|
31
|
+
## <div align="center">Getting Started</div>
|
32
32
|
### Quick Installation
|
33
33
|
Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
|
34
34
|
```
|
@@ -48,17 +48,17 @@ MCT supports various quantization methods as appears below.
|
|
48
48
|
<div align="center">
|
49
49
|
<p align="center">
|
50
50
|
|
51
|
-
Quantization Method | Complexity | Computational Cost | Tutorial
|
52
|
-
-------------------- |
|
53
|
-
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
54
|
-
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
55
|
-
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
51
|
+
Quantization Method | Complexity | Computational Cost | API | Tutorial
|
52
|
+
-------------------- | -----------|--------------------|---------|--------
|
53
|
+
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
54
|
+
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
55
|
+
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | [QAT API](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
56
56
|
|
57
57
|
</p>
|
58
58
|
</div>
|
59
59
|
|
60
60
|
For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
|
61
|
-
For further details, please see [Supported features and algorithms](#
|
61
|
+
For further details, please see [Supported features and algorithms](#high-level-features-and-techniques).
|
62
62
|
|
63
63
|
Required input:
|
64
64
|
- Floating point model - 32bit model in either .pt or .keras format
|
@@ -71,7 +71,45 @@ Required input:
|
|
71
71
|
</p>
|
72
72
|
</div>
|
73
73
|
|
74
|
-
|
74
|
+
## <div align="center">High level features and techniques</div>
|
75
|
+
|
76
|
+
MCT offers a range of powerful features to optimize models for efficient edge deployment. These supported features include:
|
77
|
+
|
78
|
+
### Quantization Core Features
|
79
|
+
|
80
|
+
🏆 **Mixed-precision search** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mixed_precision_ptq.ipynb). Assigning optimal quantization bit-width per layer (for weights/activations)
|
81
|
+
|
82
|
+
📈 **Graph optimizations**.
|
83
|
+
Transforming the model to be best fitted for quantization process.
|
84
|
+
|
85
|
+
🔎 **Quantization parameter search** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_threshold_search.ipynb). Minimizing expected quantization-noise during thresholds search using methods such as MSE, No-Clipping and MAE.
|
86
|
+
|
87
|
+
🧮 **Advanced quantization algorithms** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_activation_z_score_threshold.ipynb). Enhancing quantization performance for advanced cases is available with some algorithms that can be applied, such as Shift negative correction, Outliers filtering and clustering.
|
88
|
+
__________________________________________________________________________________________________________
|
89
|
+
### Hardware-aware optimization
|
90
|
+
|
91
|
+
🎯 **TPC (Target Platform Capabilities)**. Describes the target hardware’s constrains, for which the model optimization is targeted. See [TPC Readme](./model_compression_toolkit/target_platform_capabilities/README.md) for more information.
|
92
|
+
__________________________________________________________________________________________________________
|
93
|
+
### Data-free quantization (Data Generation) [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb)
|
94
|
+
Generates synthetic images based on the statistics stored in the model's batch normalization layers, according to your specific needs, for when image data isn’t available. See [Data Generation Library](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md) for more.
|
95
|
+
__________________________________________________________________________________________________________
|
96
|
+
### Structured Pruning [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_pruning_mnist.ipynb)
|
97
|
+
Reduces model size/complexity and ensures better channels utilization by removing redundant input channels from layers and reconstruction of layer weights. Read more ([Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html) / [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)).
|
98
|
+
__________________________________________________________________________________________________________
|
99
|
+
### **Debugging and Visualization**
|
100
|
+
**🎛️ Network Editor (Modify Quantization Configurations)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_network_editor.ipynb).
|
101
|
+
Modify your model's quantization configuration for specific layers or apply a custom edit rule (e.g adjust layer's bit-width) using MCT’s network editor
|
102
|
+
|
103
|
+
**🖥️ Visualization**. Observe useful information for troubleshooting the quantized model's performance using TensorBoard. [Read more](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
|
104
|
+
|
105
|
+
**🔑 XQuant (Explainable Quantization)** [](https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_xquant.ipynb). Get valuable insights regarding the quality and success of the quantization process of your model. The report includes histograms and similarity metrics between the original float model and the quantized model in key points of the model. The report can be visualized using TensorBoard.
|
106
|
+
__________________________________________________________________________________________________________
|
107
|
+
### Enhanced Post-Training Quantization (EPTQ)
|
108
|
+
As part of the GPTQ capability, we provide an advanced optimization algorithm called EPTQ.
|
109
|
+
The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization**"_ [4].
|
110
|
+
More details on how to use EPTQ via MCT can be found in the [GPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
111
|
+
|
112
|
+
## <div align="center">Resources</div>
|
75
113
|
* [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
|
76
114
|
|
77
115
|
* MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
|
@@ -85,7 +123,7 @@ Required input:
|
|
85
123
|
* [Release notes](https://github.com/sony/model_optimization/releases)
|
86
124
|
|
87
125
|
|
88
|
-
|
126
|
+
## <div align="center">Supported Versions</div>
|
89
127
|
|
90
128
|
Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
|
91
129
|
<details id="supported-versions">
|
@@ -106,76 +144,13 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
|
|
106
144
|
|
107
145
|
</details>
|
108
146
|
|
109
|
-
##
|
110
|
-
MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
|
111
|
-
|
112
|
-
### Data Generation [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
113
|
-
MCT provides tools for generating synthetic images based on the statistics stored in a model's batch normalization layers. These generated images are valuable for various compression tasks where image data is required, such as quantization and pruning.
|
114
|
-
You can customize data generation configurations to suit your specific needs. [Go to the Data Generation page.](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/data_generation/README.md)
|
115
|
-
|
116
|
-
### Quantization
|
117
|
-
MCT supports different quantization methods:
|
118
|
-
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_post_training_quantization.html)
|
119
|
-
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_gradient_post_training_quantization.html), [PyTorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_gradient_post_training_quantization.html)
|
120
|
-
* Quantization-aware training (QAT) [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
121
|
-
|
122
|
-
|
123
|
-
| Quantization Method | Complexity | Computational Cost |
|
124
|
-
|-----------------------------------------------|------------|-----------------------------|
|
125
|
-
| PTQ | Low | Low (~CPU minutes) |
|
126
|
-
| GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) |
|
127
|
-
| QAT | High | High (~12-36 GPU hours) |
|
128
|
-
|
129
|
-
|
130
|
-
In addition, MCT supports different quantization schemes for quantizing weights and activations:
|
131
|
-
|
132
|
-
* Power-Of-Two (hardware-friendly quantization [1])
|
133
|
-
* Symmetric
|
134
|
-
* Uniform
|
135
|
-
|
136
|
-
Main features:
|
137
|
-
* <ins>Graph optimizations:</ins> Transforming the model to an equivalent (yet, more efficient) model (for example, batch-normalization layer folding to its preceding linear layer).
|
138
|
-
* <ins>Quantization parameter search:</ins> Different methods can be used to minimize the expected added quantization-noise during thresholds search (by default, we use Mean-Square-Error, but other metrics can be used such as No-Clipping, Mean-Average-Error, and more).
|
139
|
-
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as:
|
140
|
-
* <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
|
141
|
-
* <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
|
142
|
-
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
143
|
-
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
|
144
|
-
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).
|
145
|
-
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md).
|
146
|
-
|
147
|
-
### Enhanced Post-Training Quantization (EPTQ)
|
148
|
-
As part of the GPTQ we provide an advanced optimization algorithm called EPTQ.
|
149
|
-
|
150
|
-
The specifications of the algorithm are detailed in the paper: _"**EPTQ: Enhanced Post-Training Quantization via Label-Free Hessian**"_ [4].
|
151
|
-
|
152
|
-
More details on the how to use EPTQ via MCT can be found in the [EPTQ guidelines](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/gptq/README.md).
|
153
|
-
|
154
|
-
|
155
|
-
### Structured Pruning [*](https://github.com/sony/model_optimization?tab=readme-ov-file#experimental-features)
|
156
|
-
MCT introduces a structured and hardware-aware model pruning.
|
157
|
-
This pruning technique is designed to compress models for specific hardware architectures,
|
158
|
-
taking into account the target platform's Single Instruction, Multiple Data (SIMD) capabilities.
|
159
|
-
By pruning groups of channels (SIMD groups), our approach not only reduces model size
|
160
|
-
and complexity, but ensures that better utilization of channels is in line with the SIMD architecture
|
161
|
-
for a target Resource Utilization of weights memory footprint.
|
162
|
-
[Keras API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/keras_pruning_experimental.html)
|
163
|
-
[Pytorch API](https://sony.github.io/model_optimization/docs/api/api_docs/methods/pytorch_pruning_experimental.html)
|
164
|
-
|
165
|
-
#### Experimental features
|
166
|
-
|
167
|
-
Some features are experimental and subject to future changes.
|
168
|
-
|
169
|
-
For more details, we highly recommend visiting our project website where experimental features are mentioned as experimental.
|
170
|
-
|
171
|
-
|
172
|
-
## Results
|
147
|
+
## <div align="center">Results</div>
|
173
148
|
|
174
149
|
<p align="center">
|
175
|
-
<img src="/docsrc/images/Classification.png" width="
|
176
|
-
<img src="/docsrc/images/SemSeg.png" width="
|
177
|
-
<img src="/docsrc/images/PoseEst.png" width="
|
178
|
-
<img src="/docsrc/images/ObjDet.png" width="
|
150
|
+
<img src="/docsrc/images/Classification.png" width="200">
|
151
|
+
<img src="/docsrc/images/SemSeg.png" width="200">
|
152
|
+
<img src="/docsrc/images/PoseEst.png" width="200">
|
153
|
+
<img src="/docsrc/images/ObjDet.png" width="200">
|
179
154
|
|
180
155
|
### Pytorch
|
181
156
|
We quantized classification networks from the torchvision library.
|
@@ -196,7 +171,7 @@ single-precision quantization, mixed-precision quantization, and mixed-precision
|
|
196
171
|
|
197
172
|
For more results, please see [1]
|
198
173
|
|
199
|
-
|
174
|
+
### Pruning Results
|
200
175
|
|
201
176
|
Results for applying pruning to reduce the parameters of the following models by 50%:
|
202
177
|
|
@@ -205,7 +180,7 @@ Results for applying pruning to reduce the parameters of the following models by
|
|
205
180
|
| ResNet50 [2] | 75.1 | 72.4 |
|
206
181
|
| DenseNet121 [3] | 74.44 | 71.71 |
|
207
182
|
|
208
|
-
## Troubleshooting and Community
|
183
|
+
## <div align="center">Troubleshooting and Community</div>
|
209
184
|
|
210
185
|
If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
|
211
186
|
for common pitfalls and some tools to improve quantized model's accuracy.
|
@@ -215,18 +190,18 @@ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md)
|
|
215
190
|
You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
|
216
191
|
|
217
192
|
|
218
|
-
## Contributions
|
193
|
+
## <div align="center">Contributions</div>
|
219
194
|
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
|
220
195
|
|
221
196
|
*Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
|
222
197
|
|
223
198
|
|
224
|
-
## License
|
199
|
+
## <div align="center">License</div>
|
225
200
|
MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
|
226
201
|
|
227
202
|
<a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
|
228
203
|
|
229
|
-
## References
|
204
|
+
## <div align="center">References</div>
|
230
205
|
|
231
206
|
[1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).
|
232
207
|
|
@@ -234,4 +209,4 @@ MCT is licensed under Apache License Version 2.0. By contributing to the project
|
|
234
209
|
|
235
210
|
[3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html)
|
236
211
|
|
237
|
-
[4] Gordon, O., Habi, H. V., & Netzer, A.,
|
212
|
+
[4] Gordon, O., Cohen, E., Habi, H. V., & Netzer, A., 2024. [EPTQ: Enhanced Post-Training Quantization via Hessian-guided Network-wise Optimization. arXiv preprint](https://arxiv.org/abs/2309.11531)
|