mct-nightly 2.2.0.20241114.506__tar.gz → 2.2.0.20241115.526__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (570) hide show
  1. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/PKG-INFO +107 -60
  2. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/README.md +106 -59
  3. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/mct_nightly.egg-info/PKG-INFO +107 -60
  4. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/__init__.py +1 -1
  5. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/LICENSE.md +0 -0
  6. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/mct_nightly.egg-info/SOURCES.txt +0 -0
  7. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/mct_nightly.egg-info/dependency_links.txt +0 -0
  8. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/mct_nightly.egg-info/requires.txt +0 -0
  9. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/mct_nightly.egg-info/top_level.txt +0 -0
  10. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/constants.py +0 -0
  11. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/__init__.py +0 -0
  12. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/analyzer.py +0 -0
  13. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/__init__.py +0 -0
  14. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  15. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  16. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  17. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  18. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  19. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  20. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  21. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  22. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  23. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  24. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/framework_info.py +0 -0
  25. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  26. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  27. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  28. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  29. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  30. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  31. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  32. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  33. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  34. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  35. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  36. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  37. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  38. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  39. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  40. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  41. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  42. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  43. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  44. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  45. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  46. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  47. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  48. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  49. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  50. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  51. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  52. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  53. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  54. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  55. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  56. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  57. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  58. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  59. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  60. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  61. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  62. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  63. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  64. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  65. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  66. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  67. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  68. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  69. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  70. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  71. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  72. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  73. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  74. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  75. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  76. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  77. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/model_collector.py +0 -0
  78. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/model_validation.py +0 -0
  79. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  80. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  81. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  82. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  83. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  84. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  85. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  86. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  87. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  88. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  89. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  90. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  91. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  92. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  93. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  94. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  95. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  96. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  97. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  98. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  99. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  100. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  101. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  102. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  103. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  104. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  105. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  106. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  107. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  108. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  109. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  110. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  111. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  112. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  113. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  114. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  115. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  116. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  117. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  118. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  119. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  120. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  121. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  122. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  123. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  124. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  125. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  126. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  127. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  128. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  129. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  130. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  131. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
  132. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  133. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  134. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
  135. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  136. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  137. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  138. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  139. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  140. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  141. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  142. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  143. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  144. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  145. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  146. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  147. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  148. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  149. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  150. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  151. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/user_info.py +0 -0
  152. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  153. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  154. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  155. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  156. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  157. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/__init__.py +0 -0
  158. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  159. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  160. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  161. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  162. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  163. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  164. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  165. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/constants.py +0 -0
  166. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  167. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/data_util.py +0 -0
  168. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  169. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  170. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  171. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  172. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  173. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  174. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  175. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  176. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  177. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  178. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  179. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  180. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  181. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  182. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  183. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  184. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  185. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  186. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  187. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  188. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  189. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  190. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  191. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  192. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  193. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  194. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  195. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  196. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  197. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  198. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  199. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  200. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  201. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  202. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  203. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  204. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  205. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  206. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  207. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  208. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  209. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  210. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  211. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  212. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  213. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  214. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  215. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  216. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  217. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  218. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  219. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  220. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
  221. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  222. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  223. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  224. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  225. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  226. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  227. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  228. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  229. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  230. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  231. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  232. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  233. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  234. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  235. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
  236. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  237. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  238. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  239. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  240. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  241. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  242. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  243. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  244. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  245. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  246. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  247. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  248. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  249. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  250. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  251. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  252. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  253. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  254. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  255. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  256. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  257. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  258. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  259. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  260. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  261. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  262. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  263. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  264. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  265. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  266. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  267. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  268. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  269. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  270. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  271. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  272. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  273. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  274. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  275. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  276. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  277. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  278. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  279. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  280. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  281. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
  282. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  283. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  284. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/runner.py +0 -0
  285. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/__init__.py +0 -0
  286. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  287. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  288. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  289. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  290. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  291. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  292. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  293. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  294. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  295. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  296. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  297. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  298. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  299. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  300. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  301. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  302. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  303. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  304. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  305. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  306. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  307. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  308. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  309. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  310. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  311. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  312. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  313. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  314. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  315. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  316. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  317. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  318. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  319. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  320. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  321. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  322. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/defaultdict.py +0 -0
  323. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/__init__.py +0 -0
  324. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  325. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  326. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  327. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  328. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  329. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  330. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  331. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  332. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  333. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  334. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  335. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  336. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  337. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  338. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  339. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  340. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  341. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  342. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  343. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  344. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  345. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  346. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  347. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  348. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  349. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  350. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  351. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  352. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  353. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  354. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  355. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/__init__.py +0 -0
  356. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  357. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  358. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  359. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  360. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  361. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  362. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
  363. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
  364. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  365. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  366. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  367. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  368. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  369. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  370. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  371. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  372. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  373. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  374. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  375. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  376. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  377. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  378. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  379. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  380. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  381. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  382. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  383. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  384. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  385. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  386. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  387. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  388. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  389. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  390. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  391. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  392. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  393. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  394. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  395. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  396. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/runner.py +0 -0
  397. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/logger.py +0 -0
  398. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/metadata.py +0 -0
  399. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/pruning/__init__.py +0 -0
  400. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  401. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  402. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  403. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  404. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/__init__.py +0 -0
  405. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  406. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  407. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  408. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  409. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/runner.py +0 -0
  410. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/__init__.py +0 -0
  411. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/common/__init__.py +0 -0
  412. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  413. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  414. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  415. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  416. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
  417. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  418. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  419. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  420. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  421. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  422. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  423. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  424. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  425. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  426. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  427. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  428. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  429. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  430. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  431. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  432. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  433. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  434. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  435. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  436. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  437. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  438. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  439. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  440. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  441. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  442. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  443. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  444. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  445. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  446. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  447. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  448. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  449. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  450. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  451. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  452. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  453. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  454. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  455. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  456. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  457. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  458. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  459. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  460. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  461. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  462. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  463. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  464. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  465. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  466. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  467. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  468. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  469. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  470. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  471. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  472. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  473. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  474. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  475. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  476. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  477. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  478. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  479. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  480. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  481. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  482. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  483. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  484. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  485. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  486. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
  487. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +0 -0
  488. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
  489. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -0
  490. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  491. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  492. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  493. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  494. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  495. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  496. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  497. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  498. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  499. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  500. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  501. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  502. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  503. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  504. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  505. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  506. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
  507. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  508. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  509. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  510. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  511. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  512. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  513. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  514. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
  515. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  516. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
  517. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
  518. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
  519. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  520. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
  521. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
  522. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
  523. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
  524. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
  525. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  526. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  527. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  528. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  529. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  530. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  531. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  532. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  533. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  534. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  535. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  536. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  537. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  538. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  539. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  540. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  541. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  542. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/verify_packages.py +0 -0
  543. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/__init__.py +0 -0
  544. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  545. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/constants.py +0 -0
  546. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  547. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  548. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  549. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  550. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  551. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  552. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  553. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  554. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  555. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  556. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  557. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  558. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  559. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  560. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  561. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  562. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  563. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  564. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  565. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  566. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  567. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  568. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  569. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/setup.cfg +0 -0
  570. {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/setup.py +0 -0
@@ -1,72 +1,108 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241114.506
3
+ Version: 2.2.0.20241115.526
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
7
- Description: # Model Compression Toolkit (MCT)
7
+ Description: <div align="center" markdown="1">
8
+ <p>
9
+ <a href="https://sony.github.io/model_optimization/" target="_blank">
10
+ <img src="/docsrc/images/mctHeader-cropped.svg" width="1000"></a>
11
+ </p>
12
+
13
+ ______________________________________________________________________
14
+
15
+ </div>
16
+ <div align="center">
17
+ <p align="center">
18
+ <a href="#getting-started">Getting Started</a> •
19
+ <a href="#tutorials-and-examples">Tutorials</a> •
20
+ <a href="#supported-features">High level features and techniques</a> •
21
+ <a href="#resources">Resources</a> •
22
+ <a href="#contributions">Community</a> •
23
+ <a href="#license">License</a>
24
+ </p>
25
+ <p align="center">
26
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.1%20%7C%202.2%20%7C%202.3-blue" /></a>
27
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/TensorFlow-2.12%20%7C%202.13%20%7C%202.14%20%7C%202.15-blue" /></a>
28
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C3.10%20%7C3.11-blue" /></a>
29
+ <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
30
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
31
+
32
+ </p>
33
+ </div>
34
+
35
+ __________________________________________________________________________________________________________
8
36
 
9
- Model Compression Toolkit (MCT) is an open-source project for neural network model optimization under efficient, constrained hardware.
10
-
11
- This project provides researchers, developers, and engineers tools for optimizing and deploying state-of-the-art neural networks on efficient hardware.
12
-
13
- Specifically, this project aims to apply quantization to compress neural networks.
14
-
15
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
16
-
17
- MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
37
+ ## Getting Started
38
+ ### Quick Installation
39
+ Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
40
+ ```
41
+ pip install model-compression-toolkit
42
+ ```
43
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
18
44
 
45
+ **Important note**: In order to use MCT, you’ll need to provide a floating point .pt or .keras model as an input.
19
46
 
47
+ ### Tutorials and Examples
20
48
 
21
- ## Table of Contents
49
+ Our [tutorials](https://github.com/sony/model_optimization/blob/main/tutorials/README.md) section will walk you through the basics of the MCT tool, covering various compression techniques for both Keras and PyTorch models.
50
+ Access interactive notebooks for hands-on learning with popular models/tasks or move on to [Resources](#resources) section.
22
51
 
23
- - [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
24
- - [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
25
- - [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
26
- - [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
27
- - [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
28
- - [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
52
+ ### Supported Quantization Methods</div>
53
+ MCT supports various quantization methods as appears below.
54
+ <div align="center">
55
+ <p align="center">
29
56
 
57
+ Quantization Method | Complexity | Computational Cost | Tutorial
58
+ -------------------- | -----------|--------------------|---------
59
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
60
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
61
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
30
62
 
31
- ## Getting Started
63
+ </p>
64
+ </div>
32
65
 
33
- This section provides an installation and a quick starting guide.
66
+ For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
67
+ For further details, please see [Supported features and algorithms](#supported-features).
34
68
 
35
- ### Installation
69
+ Required input:
70
+ - Floating point model - 32bit model in either .pt or .keras format
71
+ - Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
36
72
 
37
- To install the latest stable release of MCT, run the following command:
38
- ```
39
- pip install model-compression-toolkit
40
- ```
73
+ <div align="center">
74
+ <p align="center">
41
75
 
42
- For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
76
+ <img src="/docsrc/images/mctDiagram_clean.svg" width="800">
77
+ </p>
78
+ </div>
43
79
 
80
+ ### Resources
81
+ * [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
44
82
 
45
- ### Quick start & tutorials
83
+ * MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
46
84
 
47
- Explore the Model Compression Toolkit (MCT) through our tutorials,
48
- covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
49
- for hands-on learning. For example:
50
- * [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
51
- * [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb)
52
- * [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
85
+ * [Post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#ptq) | PTQ API docs
86
+ * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#gptq) | GPTQ API docs
87
+ * [Quantization-aware training](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | QAT API docs
88
+
89
+ * [Debug](https://sony.github.io/model_optimization/docs/guidelines/visualization.html) – modify optimization process or generate explainable report
90
+
91
+ * [Release notes](https://github.com/sony/model_optimization/releases)
53
92
 
54
93
 
55
94
  ### Supported Versions
56
95
 
57
96
  Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
97
+ <details id="supported-versions">
98
+ <summary>Supported Versions Table</summary>
58
99
 
59
-
60
- | | PyTorch 2.1 | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
61
- |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
62
- | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
63
- | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
64
- | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
65
- | Python 3.12 | | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
66
-
67
-
68
-
69
-
100
+ | | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
101
+ |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
102
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
103
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
104
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
105
+ | Python 3.12 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
70
106
 
71
107
  | | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
72
108
  |-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
@@ -74,6 +110,7 @@ Description: # Model Compression Toolkit (MCT)
74
110
  | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml) |
75
111
  | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml) |
76
112
 
113
+ </details>
77
114
 
78
115
  ## Supported Features
79
116
  MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
@@ -91,9 +128,9 @@ Description: # Model Compression Toolkit (MCT)
91
128
 
92
129
  | Quantization Method | Complexity | Computational Cost |
93
130
  |-----------------------------------------------|------------|-----------------------------|
94
- | PTQ | Low | Low (order of minutes) |
95
- | GPTQ (parameters fine-tuning using gradients) | Mild | Mild (order of 2-3 hours) |
96
- | QAT | High | High (order of 12-36 hours) |
131
+ | PTQ | Low | Low (~CPU minutes) |
132
+ | GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) |
133
+ | QAT | High | High (~12-36 GPU hours) |
97
134
 
98
135
 
99
136
  In addition, MCT supports different quantization schemes for quantizing weights and activations:
@@ -139,15 +176,14 @@ Description: # Model Compression Toolkit (MCT)
139
176
 
140
177
 
141
178
  ## Results
142
- ### Keras
143
- Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
144
- single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
145
-
146
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
147
179
 
148
- For more results, please see [1]
180
+ <p align="center">
181
+ <img src="/docsrc/images/Classification.png" width="225">
182
+ <img src="/docsrc/images/SemSeg.png" width="225">
183
+ <img src="/docsrc/images/PoseEst.png" width="225">
184
+ <img src="/docsrc/images/ObjDet.png" width="225">
149
185
 
150
- ### Pytorch
186
+ ### Pytorch
151
187
  We quantized classification networks from the torchvision library.
152
188
  In the following table we present the ImageNet validation results for these models:
153
189
 
@@ -157,6 +193,14 @@ Description: # Model Compression Toolkit (MCT)
157
193
  | ResNet-18 [3] | 69.86 | 69.63 |69.53|
158
194
  | SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
159
195
 
196
+ ### Keras
197
+ MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
198
+ Below is a graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights (X-axis), using
199
+ single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
200
+
201
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
202
+
203
+ For more results, please see [1]
160
204
 
161
205
  #### Pruning Results
162
206
 
@@ -167,23 +211,26 @@ Description: # Model Compression Toolkit (MCT)
167
211
  | ResNet50 [2] | 75.1 | 72.4 |
168
212
  | DenseNet121 [3] | 74.44 | 71.71 |
169
213
 
214
+ ## Troubleshooting and Community
170
215
 
171
- ## Trouble Shooting
216
+ If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
217
+ for common pitfalls and some tools to improve quantized model's accuracy.
172
218
 
173
- If the accuracy degradation of the quantized model is too large for your application, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
174
- for common pitfalls and some tools to improve quantization accuracy.
219
+ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
175
220
 
176
- Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
221
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
177
222
 
178
223
 
179
224
  ## Contributions
180
225
  MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
181
226
 
182
- *You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
227
+ *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
183
228
 
184
229
 
185
230
  ## License
186
- [Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
231
+ MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
232
+
233
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
187
234
 
188
235
  ## References
189
236
 
@@ -1,66 +1,102 @@
1
- # Model Compression Toolkit (MCT)
1
+ <div align="center" markdown="1">
2
+ <p>
3
+ <a href="https://sony.github.io/model_optimization/" target="_blank">
4
+ <img src="/docsrc/images/mctHeader-cropped.svg" width="1000"></a>
5
+ </p>
6
+
7
+ ______________________________________________________________________
8
+
9
+ </div>
10
+ <div align="center">
11
+ <p align="center">
12
+ <a href="#getting-started">Getting Started</a> •
13
+ <a href="#tutorials-and-examples">Tutorials</a> •
14
+ <a href="#supported-features">High level features and techniques</a> •
15
+ <a href="#resources">Resources</a> •
16
+ <a href="#contributions">Community</a> •
17
+ <a href="#license">License</a>
18
+ </p>
19
+ <p align="center">
20
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.1%20%7C%202.2%20%7C%202.3-blue" /></a>
21
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/TensorFlow-2.12%20%7C%202.13%20%7C%202.14%20%7C%202.15-blue" /></a>
22
+ <a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C3.10%20%7C3.11-blue" /></a>
23
+ <a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
24
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
25
+
26
+ </p>
27
+ </div>
28
+
29
+ __________________________________________________________________________________________________________
2
30
 
3
- Model Compression Toolkit (MCT) is an open-source project for neural network model optimization under efficient, constrained hardware.
4
-
5
- This project provides researchers, developers, and engineers tools for optimizing and deploying state-of-the-art neural networks on efficient hardware.
6
-
7
- Specifically, this project aims to apply quantization to compress neural networks.
8
-
9
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mct_block_diagram.svg" width="10000">
10
-
11
- MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
31
+ ## Getting Started
32
+ ### Quick Installation
33
+ Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
34
+ ```
35
+ pip install model-compression-toolkit
36
+ ```
37
+ For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
12
38
 
39
+ **Important note**: In order to use MCT, you’ll need to provide a floating point .pt or .keras model as an input.
13
40
 
41
+ ### Tutorials and Examples
14
42
 
15
- ## Table of Contents
43
+ Our [tutorials](https://github.com/sony/model_optimization/blob/main/tutorials/README.md) section will walk you through the basics of the MCT tool, covering various compression techniques for both Keras and PyTorch models.
44
+ Access interactive notebooks for hands-on learning with popular models/tasks or move on to [Resources](#resources) section.
16
45
 
17
- - [Getting Started](https://github.com/sony/model_optimization?tab=readme-ov-file#getting-started)
18
- - [Supported features](https://github.com/sony/model_optimization?tab=readme-ov-file#supported-features)
19
- - [Results](https://github.com/sony/model_optimization?tab=readme-ov-file#results)
20
- - [Troubleshooting](https://github.com/sony/model_optimization?tab=readme-ov-file#trouble-shooting)
21
- - [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
22
- - [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
46
+ ### Supported Quantization Methods</div>
47
+ MCT supports various quantization methods as appears below.
48
+ <div align="center">
49
+ <p align="center">
23
50
 
51
+ Quantization Method | Complexity | Computational Cost | Tutorial
52
+ -------------------- | -----------|--------------------|---------
53
+ PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
54
+ GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
55
+ QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
24
56
 
25
- ## Getting Started
57
+ </p>
58
+ </div>
26
59
 
27
- This section provides an installation and a quick starting guide.
60
+ For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
61
+ For further details, please see [Supported features and algorithms](#supported-features).
28
62
 
29
- ### Installation
63
+ Required input:
64
+ - Floating point model - 32bit model in either .pt or .keras format
65
+ - Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
30
66
 
31
- To install the latest stable release of MCT, run the following command:
32
- ```
33
- pip install model-compression-toolkit
34
- ```
67
+ <div align="center">
68
+ <p align="center">
35
69
 
36
- For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
70
+ <img src="/docsrc/images/mctDiagram_clean.svg" width="800">
71
+ </p>
72
+ </div>
37
73
 
74
+ ### Resources
75
+ * [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
38
76
 
39
- ### Quick start & tutorials
77
+ * MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
40
78
 
41
- Explore the Model Compression Toolkit (MCT) through our tutorials,
42
- covering compression techniques for Keras and PyTorch models. Access interactive [notebooks](https://github.com/sony/model_optimization/blob/main/tutorials/README.md)
43
- for hands-on learning. For example:
44
- * [Keras MobileNetV2 post training quantization](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/imx500_notebooks/keras/example_keras_mobilenetv2_for_imx500.ipynb)
45
- * [Post training quantization with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb)
46
- * [Data Generation for ResNet18 with PyTorch](https://github.com/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_data_generation.ipynb).
79
+ * [Post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#ptq) | PTQ API docs
80
+ * [Gradient-based post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#gptq) | GPTQ API docs
81
+ * [Quantization-aware training](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | QAT API docs
82
+
83
+ * [Debug](https://sony.github.io/model_optimization/docs/guidelines/visualization.html) – modify optimization process or generate explainable report
84
+
85
+ * [Release notes](https://github.com/sony/model_optimization/releases)
47
86
 
48
87
 
49
88
  ### Supported Versions
50
89
 
51
90
  Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
91
+ <details id="supported-versions">
92
+ <summary>Supported Versions Table</summary>
52
93
 
53
-
54
- | | PyTorch 2.1 | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
55
- |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
56
- | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
57
- | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
58
- | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch21.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
59
- | Python 3.12 | | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
60
-
61
-
62
-
63
-
94
+ | | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
95
+ |-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
96
+ | Python 3.9 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
97
+ | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
98
+ | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
99
+ | Python 3.12 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
64
100
 
65
101
  | | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
66
102
  |-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
@@ -68,6 +104,7 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
68
104
  | Python 3.10 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml) |
69
105
  | Python 3.11 | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml) | [![Run Tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml) |
70
106
 
107
+ </details>
71
108
 
72
109
  ## Supported Features
73
110
  MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
@@ -85,9 +122,9 @@ MCT supports different quantization methods:
85
122
 
86
123
  | Quantization Method | Complexity | Computational Cost |
87
124
  |-----------------------------------------------|------------|-----------------------------|
88
- | PTQ | Low | Low (order of minutes) |
89
- | GPTQ (parameters fine-tuning using gradients) | Mild | Mild (order of 2-3 hours) |
90
- | QAT | High | High (order of 12-36 hours) |
125
+ | PTQ | Low | Low (~CPU minutes) |
126
+ | GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) |
127
+ | QAT | High | High (~12-36 GPU hours) |
91
128
 
92
129
 
93
130
  In addition, MCT supports different quantization schemes for quantizing weights and activations:
@@ -133,15 +170,14 @@ For more details, we highly recommend visiting our project website where experim
133
170
 
134
171
 
135
172
  ## Results
136
- ### Keras
137
- Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
138
- single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
139
-
140
- <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
141
173
 
142
- For more results, please see [1]
174
+ <p align="center">
175
+ <img src="/docsrc/images/Classification.png" width="225">
176
+ <img src="/docsrc/images/SemSeg.png" width="225">
177
+ <img src="/docsrc/images/PoseEst.png" width="225">
178
+ <img src="/docsrc/images/ObjDet.png" width="225">
143
179
 
144
- ### Pytorch
180
+ ### Pytorch
145
181
  We quantized classification networks from the torchvision library.
146
182
  In the following table we present the ImageNet validation results for these models:
147
183
 
@@ -151,6 +187,14 @@ In the following table we present the ImageNet validation results for these mode
151
187
  | ResNet-18 [3] | 69.86 | 69.63 |69.53|
152
188
  | SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
153
189
 
190
+ ### Keras
191
+ MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
192
+ Below is a graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights (X-axis), using
193
+ single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
194
+
195
+ <img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
196
+
197
+ For more results, please see [1]
154
198
 
155
199
  #### Pruning Results
156
200
 
@@ -161,23 +205,26 @@ Results for applying pruning to reduce the parameters of the following models by
161
205
  | ResNet50 [2] | 75.1 | 72.4 |
162
206
  | DenseNet121 [3] | 74.44 | 71.71 |
163
207
 
208
+ ## Troubleshooting and Community
164
209
 
165
- ## Trouble Shooting
210
+ If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
211
+ for common pitfalls and some tools to improve quantized model's accuracy.
166
212
 
167
- If the accuracy degradation of the quantized model is too large for your application, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
168
- for common pitfalls and some tools to improve quantization accuracy.
213
+ Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
169
214
 
170
- Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
215
+ You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
171
216
 
172
217
 
173
218
  ## Contributions
174
219
  MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
175
220
 
176
- *You will find more information about contributions in the [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md).
221
+ *Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
177
222
 
178
223
 
179
224
  ## License
180
- [Apache License 2.0](https://github.com/sony/model_optimization/blob/main/LICENSE.md).
225
+ MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
226
+
227
+ <a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
181
228
 
182
229
  ## References
183
230