mct-nightly 2.2.0.20241114.506__tar.gz → 2.2.0.20241115.526__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/PKG-INFO +107 -60
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/README.md +106 -59
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/mct_nightly.egg-info/PKG-INFO +107 -60
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/LICENSE.md +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/apply_activation_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/data_util.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/statistics_correction/keras_compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/data_util.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/statistics_correction/pytorch_compute_activation_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/gradual_activation_quantization.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/common/regularization_factory.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/common/util.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/verify_packages.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/setup.cfg +0 -0
- {mct-nightly-2.2.0.20241114.506 → mct-nightly-2.2.0.20241115.526}/setup.py +0 -0
@@ -1,72 +1,108 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: mct-nightly
|
3
|
-
Version: 2.2.0.
|
3
|
+
Version: 2.2.0.20241115.526
|
4
4
|
Summary: A Model Compression Toolkit for neural networks
|
5
5
|
Home-page: UNKNOWN
|
6
6
|
License: UNKNOWN
|
7
|
-
Description:
|
7
|
+
Description: <div align="center" markdown="1">
|
8
|
+
<p>
|
9
|
+
<a href="https://sony.github.io/model_optimization/" target="_blank">
|
10
|
+
<img src="/docsrc/images/mctHeader-cropped.svg" width="1000"></a>
|
11
|
+
</p>
|
12
|
+
|
13
|
+
______________________________________________________________________
|
14
|
+
|
15
|
+
</div>
|
16
|
+
<div align="center">
|
17
|
+
<p align="center">
|
18
|
+
<a href="#getting-started">Getting Started</a> •
|
19
|
+
<a href="#tutorials-and-examples">Tutorials</a> •
|
20
|
+
<a href="#supported-features">High level features and techniques</a> •
|
21
|
+
<a href="#resources">Resources</a> •
|
22
|
+
<a href="#contributions">Community</a> •
|
23
|
+
<a href="#license">License</a>
|
24
|
+
</p>
|
25
|
+
<p align="center">
|
26
|
+
<a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.1%20%7C%202.2%20%7C%202.3-blue" /></a>
|
27
|
+
<a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/TensorFlow-2.12%20%7C%202.13%20%7C%202.14%20%7C%202.15-blue" /></a>
|
28
|
+
<a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C3.10%20%7C3.11-blue" /></a>
|
29
|
+
<a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
|
30
|
+
<a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
|
31
|
+
|
32
|
+
</p>
|
33
|
+
</div>
|
34
|
+
|
35
|
+
__________________________________________________________________________________________________________
|
8
36
|
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
|
37
|
+
## Getting Started
|
38
|
+
### Quick Installation
|
39
|
+
Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
|
40
|
+
```
|
41
|
+
pip install model-compression-toolkit
|
42
|
+
```
|
43
|
+
For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
|
18
44
|
|
45
|
+
**Important note**: In order to use MCT, you’ll need to provide a floating point .pt or .keras model as an input.
|
19
46
|
|
47
|
+
### Tutorials and Examples
|
20
48
|
|
21
|
-
|
49
|
+
Our [tutorials](https://github.com/sony/model_optimization/blob/main/tutorials/README.md) section will walk you through the basics of the MCT tool, covering various compression techniques for both Keras and PyTorch models.
|
50
|
+
Access interactive notebooks for hands-on learning with popular models/tasks or move on to [Resources](#resources) section.
|
22
51
|
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
- [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
|
28
|
-
- [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
|
52
|
+
### Supported Quantization Methods</div>
|
53
|
+
MCT supports various quantization methods as appears below.
|
54
|
+
<div align="center">
|
55
|
+
<p align="center">
|
29
56
|
|
57
|
+
Quantization Method | Complexity | Computational Cost | Tutorial
|
58
|
+
-------------------- | -----------|--------------------|---------
|
59
|
+
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
60
|
+
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
61
|
+
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
30
62
|
|
31
|
-
|
63
|
+
</p>
|
64
|
+
</div>
|
32
65
|
|
33
|
-
|
66
|
+
For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
|
67
|
+
For further details, please see [Supported features and algorithms](#supported-features).
|
34
68
|
|
35
|
-
|
69
|
+
Required input:
|
70
|
+
- Floating point model - 32bit model in either .pt or .keras format
|
71
|
+
- Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
|
36
72
|
|
37
|
-
|
38
|
-
|
39
|
-
pip install model-compression-toolkit
|
40
|
-
```
|
73
|
+
<div align="center">
|
74
|
+
<p align="center">
|
41
75
|
|
42
|
-
|
76
|
+
<img src="/docsrc/images/mctDiagram_clean.svg" width="800">
|
77
|
+
</p>
|
78
|
+
</div>
|
43
79
|
|
80
|
+
### Resources
|
81
|
+
* [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
|
44
82
|
|
45
|
-
|
83
|
+
* MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
|
46
84
|
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
* [
|
52
|
-
|
85
|
+
* [Post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#ptq) | PTQ API docs
|
86
|
+
* [Gradient-based post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#gptq) | GPTQ API docs
|
87
|
+
* [Quantization-aware training](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | QAT API docs
|
88
|
+
|
89
|
+
* [Debug](https://sony.github.io/model_optimization/docs/guidelines/visualization.html) – modify optimization process or generate explainable report
|
90
|
+
|
91
|
+
* [Release notes](https://github.com/sony/model_optimization/releases)
|
53
92
|
|
54
93
|
|
55
94
|
### Supported Versions
|
56
95
|
|
57
96
|
Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
|
97
|
+
<details id="supported-versions">
|
98
|
+
<summary>Supported Versions Table</summary>
|
58
99
|
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
| Python 3.
|
63
|
-
| Python 3.
|
64
|
-
| Python 3.
|
65
|
-
| Python 3.12 | | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
100
|
+
| | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
|
101
|
+
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
102
|
+
| Python 3.9 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
|
103
|
+
| Python 3.10 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
|
104
|
+
| Python 3.11 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
|
105
|
+
| Python 3.12 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
|
70
106
|
|
71
107
|
| | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
|
72
108
|
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
@@ -74,6 +110,7 @@ Description: # Model Compression Toolkit (MCT)
|
|
74
110
|
| Python 3.10 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml) |
|
75
111
|
| Python 3.11 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml) |
|
76
112
|
|
113
|
+
</details>
|
77
114
|
|
78
115
|
## Supported Features
|
79
116
|
MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
|
@@ -91,9 +128,9 @@ Description: # Model Compression Toolkit (MCT)
|
|
91
128
|
|
92
129
|
| Quantization Method | Complexity | Computational Cost |
|
93
130
|
|-----------------------------------------------|------------|-----------------------------|
|
94
|
-
| PTQ | Low | Low (
|
95
|
-
| GPTQ (parameters fine-tuning using gradients) |
|
96
|
-
| QAT | High | High (
|
131
|
+
| PTQ | Low | Low (~CPU minutes) |
|
132
|
+
| GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) |
|
133
|
+
| QAT | High | High (~12-36 GPU hours) |
|
97
134
|
|
98
135
|
|
99
136
|
In addition, MCT supports different quantization schemes for quantizing weights and activations:
|
@@ -139,15 +176,14 @@ Description: # Model Compression Toolkit (MCT)
|
|
139
176
|
|
140
177
|
|
141
178
|
## Results
|
142
|
-
### Keras
|
143
|
-
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
|
144
|
-
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
145
|
-
|
146
|
-
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
|
147
179
|
|
148
|
-
|
180
|
+
<p align="center">
|
181
|
+
<img src="/docsrc/images/Classification.png" width="225">
|
182
|
+
<img src="/docsrc/images/SemSeg.png" width="225">
|
183
|
+
<img src="/docsrc/images/PoseEst.png" width="225">
|
184
|
+
<img src="/docsrc/images/ObjDet.png" width="225">
|
149
185
|
|
150
|
-
|
186
|
+
### Pytorch
|
151
187
|
We quantized classification networks from the torchvision library.
|
152
188
|
In the following table we present the ImageNet validation results for these models:
|
153
189
|
|
@@ -157,6 +193,14 @@ Description: # Model Compression Toolkit (MCT)
|
|
157
193
|
| ResNet-18 [3] | 69.86 | 69.63 |69.53|
|
158
194
|
| SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
|
159
195
|
|
196
|
+
### Keras
|
197
|
+
MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
|
198
|
+
Below is a graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights (X-axis), using
|
199
|
+
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
200
|
+
|
201
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
|
202
|
+
|
203
|
+
For more results, please see [1]
|
160
204
|
|
161
205
|
#### Pruning Results
|
162
206
|
|
@@ -167,23 +211,26 @@ Description: # Model Compression Toolkit (MCT)
|
|
167
211
|
| ResNet50 [2] | 75.1 | 72.4 |
|
168
212
|
| DenseNet121 [3] | 74.44 | 71.71 |
|
169
213
|
|
214
|
+
## Troubleshooting and Community
|
170
215
|
|
171
|
-
|
216
|
+
If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
|
217
|
+
for common pitfalls and some tools to improve quantized model's accuracy.
|
172
218
|
|
173
|
-
|
174
|
-
for common pitfalls and some tools to improve quantization accuracy.
|
219
|
+
Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
|
175
220
|
|
176
|
-
|
221
|
+
You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
|
177
222
|
|
178
223
|
|
179
224
|
## Contributions
|
180
225
|
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
|
181
226
|
|
182
|
-
*
|
227
|
+
*Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
|
183
228
|
|
184
229
|
|
185
230
|
## License
|
186
|
-
|
231
|
+
MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
|
232
|
+
|
233
|
+
<a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
|
187
234
|
|
188
235
|
## References
|
189
236
|
|
@@ -1,66 +1,102 @@
|
|
1
|
-
|
1
|
+
<div align="center" markdown="1">
|
2
|
+
<p>
|
3
|
+
<a href="https://sony.github.io/model_optimization/" target="_blank">
|
4
|
+
<img src="/docsrc/images/mctHeader-cropped.svg" width="1000"></a>
|
5
|
+
</p>
|
6
|
+
|
7
|
+
______________________________________________________________________
|
8
|
+
|
9
|
+
</div>
|
10
|
+
<div align="center">
|
11
|
+
<p align="center">
|
12
|
+
<a href="#getting-started">Getting Started</a> •
|
13
|
+
<a href="#tutorials-and-examples">Tutorials</a> •
|
14
|
+
<a href="#supported-features">High level features and techniques</a> •
|
15
|
+
<a href="#resources">Resources</a> •
|
16
|
+
<a href="#contributions">Community</a> •
|
17
|
+
<a href="#license">License</a>
|
18
|
+
</p>
|
19
|
+
<p align="center">
|
20
|
+
<a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/pytorch-2.1%20%7C%202.2%20%7C%202.3-blue" /></a>
|
21
|
+
<a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/TensorFlow-2.12%20%7C%202.13%20%7C%202.14%20%7C%202.15-blue" /></a>
|
22
|
+
<a href="https://sony.github.io/model_optimization#prerequisites"><img src="https://img.shields.io/badge/python-3.9%20%7C3.10%20%7C3.11-blue" /></a>
|
23
|
+
<a href="https://github.com/sony/model_optimization/releases"><img src="https://img.shields.io/github/v/release/sony/model_optimization" /></a>
|
24
|
+
<a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
|
25
|
+
|
26
|
+
</p>
|
27
|
+
</div>
|
28
|
+
|
29
|
+
__________________________________________________________________________________________________________
|
2
30
|
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
MCT is developed by researchers and engineers working at Sony Semiconductor Israel.
|
31
|
+
## Getting Started
|
32
|
+
### Quick Installation
|
33
|
+
Pip install the model compression toolkit package in a Python>=3.9 environment with PyTorch>=2.1 or Tensorflow>=2.12.
|
34
|
+
```
|
35
|
+
pip install model-compression-toolkit
|
36
|
+
```
|
37
|
+
For installing the nightly version or installing from source, refer to the [installation guide](https://github.com/sony/model_optimization/blob/main/INSTALLATION.md).
|
12
38
|
|
39
|
+
**Important note**: In order to use MCT, you’ll need to provide a floating point .pt or .keras model as an input.
|
13
40
|
|
41
|
+
### Tutorials and Examples
|
14
42
|
|
15
|
-
|
43
|
+
Our [tutorials](https://github.com/sony/model_optimization/blob/main/tutorials/README.md) section will walk you through the basics of the MCT tool, covering various compression techniques for both Keras and PyTorch models.
|
44
|
+
Access interactive notebooks for hands-on learning with popular models/tasks or move on to [Resources](#resources) section.
|
16
45
|
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
- [Contributions](https://github.com/sony/model_optimization?tab=readme-ov-file#contributions)
|
22
|
-
- [License](https://github.com/sony/model_optimization?tab=readme-ov-file#license)
|
46
|
+
### Supported Quantization Methods</div>
|
47
|
+
MCT supports various quantization methods as appears below.
|
48
|
+
<div align="center">
|
49
|
+
<p align="center">
|
23
50
|
|
51
|
+
Quantization Method | Complexity | Computational Cost | Tutorial
|
52
|
+
-------------------- | -----------|--------------------|---------
|
53
|
+
PTQ (Post Training Quantization) | Low | Low (~1-10 CPU minutes) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_post_training_quantization.ipynb"><img src="https://img.shields.io/badge/Pytorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_post-training_quantization.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
54
|
+
GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/pytorch/example_pytorch_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/PyTorch-green"/></a> <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_mobilenet_gptq.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
55
|
+
QAT (Quantization Aware Training) | High | High (~12-36 GPU hours) | <a href="https://colab.research.google.com/github/sony/model_optimization/blob/main/tutorials/notebooks/mct_features_notebooks/keras/example_keras_qat.ipynb"><img src="https://img.shields.io/badge/Keras-green"/></a>
|
24
56
|
|
25
|
-
|
57
|
+
</p>
|
58
|
+
</div>
|
26
59
|
|
27
|
-
|
60
|
+
For each flow, **Quantization core** utilizes various algorithms and hyper-parameters for optimal [hardware-aware](https://github.com/sony/model_optimization/blob/main/model_compression_toolkit/target_platform_capabilities/README.md) quantization results.
|
61
|
+
For further details, please see [Supported features and algorithms](#supported-features).
|
28
62
|
|
29
|
-
|
63
|
+
Required input:
|
64
|
+
- Floating point model - 32bit model in either .pt or .keras format
|
65
|
+
- Representative dataset - can be either provided by the user, or generated utilizing the [Data Generation](#data-generation-) capability
|
30
66
|
|
31
|
-
|
32
|
-
|
33
|
-
pip install model-compression-toolkit
|
34
|
-
```
|
67
|
+
<div align="center">
|
68
|
+
<p align="center">
|
35
69
|
|
36
|
-
|
70
|
+
<img src="/docsrc/images/mctDiagram_clean.svg" width="800">
|
71
|
+
</p>
|
72
|
+
</div>
|
37
73
|
|
74
|
+
### Resources
|
75
|
+
* [User Guide](https://sony.github.io/model_optimization/docs/index.html) contains detailed information about MCT and guides you from installation through optimizing models for your edge AI applications.
|
38
76
|
|
39
|
-
|
77
|
+
* MCT's [API Docs](https://sony.github.io/model_optimization/docs/api/api_docs/) is seperated per quantization methods:
|
40
78
|
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
* [
|
46
|
-
|
79
|
+
* [Post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#ptq) | PTQ API docs
|
80
|
+
* [Gradient-based post-training quantization](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#gptq) | GPTQ API docs
|
81
|
+
* [Quantization-aware training](https://sony.github.io/model_optimization/docs/api/api_docs/index.html#qat) | QAT API docs
|
82
|
+
|
83
|
+
* [Debug](https://sony.github.io/model_optimization/docs/guidelines/visualization.html) – modify optimization process or generate explainable report
|
84
|
+
|
85
|
+
* [Release notes](https://github.com/sony/model_optimization/releases)
|
47
86
|
|
48
87
|
|
49
88
|
### Supported Versions
|
50
89
|
|
51
90
|
Currently, MCT is being tested on various Python, Pytorch and TensorFlow versions:
|
91
|
+
<details id="supported-versions">
|
92
|
+
<summary>Supported Versions Table</summary>
|
52
93
|
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
| Python 3.
|
57
|
-
| Python 3.
|
58
|
-
| Python 3.
|
59
|
-
| Python 3.12 | | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
94
|
+
| | PyTorch 2.2 | PyTorch 2.3 | PyTorch 2.4 | PyTorch 2.5 |
|
95
|
+
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
96
|
+
| Python 3.9 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch23.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch24.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python39_pytorch25.yml) |
|
97
|
+
| Python 3.10 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch23.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch24.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_pytorch25.yml) |
|
98
|
+
| Python 3.11 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch23.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch24.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_pytorch25.yml) |
|
99
|
+
| Python 3.12 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch22.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch23.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch24.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python312_pytorch25.yml) |
|
64
100
|
|
65
101
|
| | TensorFlow 2.12 | TensorFlow 2.13 | TensorFlow 2.14 | TensorFlow 2.15 |
|
66
102
|
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
@@ -68,6 +104,7 @@ Currently, MCT is being tested on various Python, Pytorch and TensorFlow version
|
|
68
104
|
| Python 3.10 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras212.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras213.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras214.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python310_keras215.yml) |
|
69
105
|
| Python 3.11 | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras212.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras213.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras214.yml) | [](https://github.com/sony/model_optimization/actions/workflows/run_tests_python311_keras215.yml) |
|
70
106
|
|
107
|
+
</details>
|
71
108
|
|
72
109
|
## Supported Features
|
73
110
|
MCT offers a range of powerful features to optimize neural network models for efficient deployment. These supported features include:
|
@@ -85,9 +122,9 @@ MCT supports different quantization methods:
|
|
85
122
|
|
86
123
|
| Quantization Method | Complexity | Computational Cost |
|
87
124
|
|-----------------------------------------------|------------|-----------------------------|
|
88
|
-
| PTQ | Low | Low (
|
89
|
-
| GPTQ (parameters fine-tuning using gradients) |
|
90
|
-
| QAT | High | High (
|
125
|
+
| PTQ | Low | Low (~CPU minutes) |
|
126
|
+
| GPTQ (parameters fine-tuning using gradients) | Moderate | Moderate (~1-3 GPU hours) |
|
127
|
+
| QAT | High | High (~12-36 GPU hours) |
|
91
128
|
|
92
129
|
|
93
130
|
In addition, MCT supports different quantization schemes for quantizing weights and activations:
|
@@ -133,15 +170,14 @@ For more details, we highly recommend visiting our project website where experim
|
|
133
170
|
|
134
171
|
|
135
172
|
## Results
|
136
|
-
### Keras
|
137
|
-
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using
|
138
|
-
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
139
|
-
|
140
|
-
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
|
141
173
|
|
142
|
-
|
174
|
+
<p align="center">
|
175
|
+
<img src="/docsrc/images/Classification.png" width="225">
|
176
|
+
<img src="/docsrc/images/SemSeg.png" width="225">
|
177
|
+
<img src="/docsrc/images/PoseEst.png" width="225">
|
178
|
+
<img src="/docsrc/images/ObjDet.png" width="225">
|
143
179
|
|
144
|
-
### Pytorch
|
180
|
+
### Pytorch
|
145
181
|
We quantized classification networks from the torchvision library.
|
146
182
|
In the following table we present the ImageNet validation results for these models:
|
147
183
|
|
@@ -151,6 +187,14 @@ In the following table we present the ImageNet validation results for these mode
|
|
151
187
|
| ResNet-18 [3] | 69.86 | 69.63 |69.53|
|
152
188
|
| SqueezeNet 1.1 [3] | 58.128 | 57.678 ||
|
153
189
|
|
190
|
+
### Keras
|
191
|
+
MCT can quantize an existing 32-bit floating-point model to an 8-bit fixed-point (or less) model without compromising accuracy.
|
192
|
+
Below is a graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights (X-axis), using
|
193
|
+
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.
|
194
|
+
|
195
|
+
<img src="https://github.com/sony/model_optimization/raw/main/docsrc/images/mbv2_accuracy_graph.png">
|
196
|
+
|
197
|
+
For more results, please see [1]
|
154
198
|
|
155
199
|
#### Pruning Results
|
156
200
|
|
@@ -161,23 +205,26 @@ Results for applying pruning to reduce the parameters of the following models by
|
|
161
205
|
| ResNet50 [2] | 75.1 | 72.4 |
|
162
206
|
| DenseNet121 [3] | 74.44 | 71.71 |
|
163
207
|
|
208
|
+
## Troubleshooting and Community
|
164
209
|
|
165
|
-
|
210
|
+
If you encountered large accuracy degradation with MCT, check out the [Quantization Troubleshooting](https://github.com/sony/model_optimization/tree/main/quantization_troubleshooting.md)
|
211
|
+
for common pitfalls and some tools to improve quantized model's accuracy.
|
166
212
|
|
167
|
-
|
168
|
-
for common pitfalls and some tools to improve quantization accuracy.
|
213
|
+
Check out the [FAQ](https://github.com/sony/model_optimization/tree/main/FAQ.md) for common issues.
|
169
214
|
|
170
|
-
|
215
|
+
You are welcome to ask questions and get support on our [issues section](https://github.com/sony/model_optimization/issues) and manage community discussions under [discussions section](https://github.com/sony/model_optimization/discussions).
|
171
216
|
|
172
217
|
|
173
218
|
## Contributions
|
174
219
|
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.
|
175
220
|
|
176
|
-
*
|
221
|
+
*Checkout our [Contribution guide](https://github.com/sony/model_optimization/blob/main/CONTRIBUTING.md) for more details.
|
177
222
|
|
178
223
|
|
179
224
|
## License
|
180
|
-
|
225
|
+
MCT is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
|
226
|
+
|
227
|
+
<a href="https://github.com/sony/model_optimization/blob/main/LICENSE.md"><img src="https://img.shields.io/badge/license-Apache%202.0-blue" /></a>
|
181
228
|
|
182
229
|
## References
|
183
230
|
|