mct-nightly 2.2.0.20241012.448__tar.gz → 2.2.0.20241018.449__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (572) hide show
  1. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/PKG-INFO +1 -1
  2. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/mct_nightly.egg-info/SOURCES.txt +9 -1
  4. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/__init__.py +1 -1
  5. mct-nightly-2.2.0.20241012.448/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py → mct-nightly-2.2.0.20241018.449/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py +3 -13
  6. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +5 -126
  7. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +4 -121
  8. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +7 -6
  9. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +4 -119
  10. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +5 -95
  11. mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py +20 -0
  12. mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py +22 -0
  13. mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py +127 -0
  14. mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py +129 -0
  15. mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py +148 -0
  16. mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py +122 -0
  17. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +12 -10
  18. mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +108 -0
  19. mct-nightly-2.2.0.20241018.449/tests_pytest/pytorch/gptq/__init__.py +14 -0
  20. mct-nightly-2.2.0.20241018.449/tests_pytest/pytorch/trainable_infrastructure/__init__.py +14 -0
  21. mct-nightly-2.2.0.20241012.448/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -48
  22. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/LICENSE.md +0 -0
  23. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/README.md +0 -0
  24. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/mct_nightly.egg-info/dependency_links.txt +0 -0
  25. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/mct_nightly.egg-info/requires.txt +0 -0
  26. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/mct_nightly.egg-info/top_level.txt +0 -0
  27. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/constants.py +0 -0
  28. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/__init__.py +0 -0
  29. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/analyzer.py +0 -0
  30. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/__init__.py +0 -0
  31. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  32. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  33. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  34. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  35. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  36. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  37. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  38. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  39. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  40. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  41. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/framework_info.py +0 -0
  42. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  43. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  44. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  45. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  46. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  47. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  48. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  49. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  50. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  51. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  52. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  53. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  54. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  55. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  56. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  57. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  58. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  59. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  60. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  61. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
  62. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  63. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  64. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  65. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  66. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  67. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  68. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  69. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  70. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  71. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  72. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  73. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  74. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  75. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  76. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  77. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  78. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  79. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  80. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  81. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  82. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  83. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  84. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  85. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  86. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  87. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  88. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  89. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  90. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  91. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  92. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  93. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  94. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/model_collector.py +0 -0
  95. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/model_validation.py +0 -0
  96. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  97. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  98. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  99. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  100. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  101. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  102. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  103. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  104. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  105. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  106. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  107. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  108. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  109. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  110. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  111. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  112. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  113. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  114. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  115. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  116. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  117. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  118. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  119. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  120. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  121. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  122. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  123. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  124. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  125. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  126. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  127. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  128. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  129. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  130. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  131. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  132. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  133. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  134. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  135. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  136. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  137. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  138. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  139. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  140. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  141. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  142. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  143. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  144. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  145. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  146. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  147. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  148. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  149. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  150. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  151. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  152. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  153. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  154. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  155. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  156. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  157. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  158. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  159. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  160. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  161. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  162. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  163. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  164. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  165. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  166. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/user_info.py +0 -0
  167. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  168. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  169. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  170. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  171. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  172. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/__init__.py +0 -0
  173. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  174. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  175. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  176. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  177. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  178. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  179. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  180. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/constants.py +0 -0
  181. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  182. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  183. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  184. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  185. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  186. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  187. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  188. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  189. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  190. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  191. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  192. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  193. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  194. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  195. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  196. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  197. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  198. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  199. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  200. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  201. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  202. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  203. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  204. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  205. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  206. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  207. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  208. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  209. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  210. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  211. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  212. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  213. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  214. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  215. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  216. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  217. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  218. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  219. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  220. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  221. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  222. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  223. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  224. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  225. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  226. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  227. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  228. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  229. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  230. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  231. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  232. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  233. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  234. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  235. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  236. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  237. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  238. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  239. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  240. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  241. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  242. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  243. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
  244. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  245. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  246. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  247. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  248. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  249. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  250. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  251. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  252. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  253. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  254. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  255. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  256. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
  257. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  258. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  259. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  260. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  261. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  262. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  263. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  264. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  265. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  266. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +0 -0
  267. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  268. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  269. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  270. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  271. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  272. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  273. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  274. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  275. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  276. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  277. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  278. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  279. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  280. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  281. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  282. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  283. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  284. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  285. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  286. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  287. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  288. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
  289. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  290. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  291. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  292. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  293. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  294. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  295. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  296. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/core/runner.py +0 -0
  297. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/__init__.py +0 -0
  298. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  299. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  300. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  301. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  302. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  303. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  304. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  305. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  306. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  307. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  308. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  309. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  310. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  311. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  312. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  313. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  314. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  315. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  316. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  317. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  318. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  319. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  320. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  321. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  322. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  323. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  324. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  325. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  326. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  327. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  328. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  329. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  330. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  331. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  332. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  333. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
  334. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/defaultdict.py +0 -0
  335. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/__init__.py +0 -0
  336. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  337. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  338. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  339. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  340. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  341. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  342. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  343. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  344. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  345. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  346. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  347. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  348. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  349. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  350. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  351. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  352. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  353. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  354. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  355. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  356. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  357. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  358. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  359. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  360. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  361. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  362. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  363. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  364. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  365. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  366. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  367. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/__init__.py +0 -0
  368. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  369. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  370. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  371. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  372. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  373. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  374. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  375. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  376. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  377. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  378. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  379. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  380. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  381. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  382. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  383. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  384. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  385. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  386. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  387. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  388. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  389. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  390. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  391. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  392. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  393. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  394. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  395. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  396. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  397. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  398. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  399. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/gradual_activation_quantization.py +0 -0
  400. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  401. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  402. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  403. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  404. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  405. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  406. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  407. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  408. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  409. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/gptq/runner.py +0 -0
  410. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/logger.py +0 -0
  411. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/metadata.py +0 -0
  412. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/pruning/__init__.py +0 -0
  413. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  414. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  415. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  416. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  417. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/ptq/__init__.py +0 -0
  418. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  419. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  420. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  421. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  422. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/ptq/runner.py +0 -0
  423. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/__init__.py +0 -0
  424. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/common/__init__.py +0 -0
  425. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  426. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  427. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  428. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  429. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  430. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  431. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  432. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  433. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  434. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  435. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  436. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  437. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  438. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  439. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  440. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  441. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  442. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  443. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  444. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  445. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  446. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  447. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  448. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  449. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  450. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  451. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  452. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  453. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  454. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  455. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  456. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  457. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  458. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  459. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  460. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  461. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  462. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  463. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  464. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  465. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  466. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  467. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  468. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  469. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  470. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  471. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  472. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  473. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  474. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  475. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  476. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  477. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  478. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  479. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  480. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  481. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  482. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  483. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  484. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  485. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  486. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  487. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  488. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  489. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  490. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  491. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  492. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  493. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
  494. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +0 -0
  495. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
  496. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -0
  497. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  498. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  499. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  500. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  501. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  502. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  503. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  504. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  505. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  506. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  507. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  508. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  509. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  510. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  511. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  512. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  513. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  514. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  515. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  516. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  517. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  518. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  519. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  520. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  521. {mct-nightly-2.2.0.20241012.448/model_compression_toolkit/trainable_infrastructure/pytorch → mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/keras}/activation_quantizers/lsq/__init__.py +0 -0
  522. {mct-nightly-2.2.0.20241012.448/model_compression_toolkit/trainable_infrastructure/pytorch → mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/keras}/activation_quantizers/ste/__init__.py +0 -0
  523. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  524. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  525. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  526. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  527. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  528. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  529. {mct-nightly-2.2.0.20241012.448/tests_pytest → mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq}/__init__.py +0 -0
  530. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  531. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  532. {mct-nightly-2.2.0.20241012.448/tests_pytest/pytorch → mct-nightly-2.2.0.20241018.449/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste}/__init__.py +0 -0
  533. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  534. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  535. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  536. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  537. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  538. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/trainable_infrastructure/pytorch/util.py +0 -0
  539. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/verify_packages.py +0 -0
  540. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/__init__.py +0 -0
  541. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  542. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/constants.py +0 -0
  543. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  544. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  545. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  546. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  547. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  548. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  549. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  550. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  551. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  552. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  553. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  554. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  555. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  556. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  557. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  558. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  559. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  560. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  561. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  562. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  563. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  564. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  565. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  566. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/setup.cfg +0 -0
  567. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/setup.py +0 -0
  568. {mct-nightly-2.2.0.20241012.448/tests_pytest/pytorch/gptq → mct-nightly-2.2.0.20241018.449/tests_pytest}/__init__.py +0 -0
  569. {mct-nightly-2.2.0.20241012.448/tests_pytest/pytorch/trainable_infrastructure → mct-nightly-2.2.0.20241018.449/tests_pytest/pytorch}/__init__.py +0 -0
  570. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/tests_pytest/pytorch/gptq/test_annealing_cfg.py +0 -0
  571. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/tests_pytest/pytorch/gptq/test_gradual_act_quantization.py +0 -0
  572. {mct-nightly-2.2.0.20241012.448 → mct-nightly-2.2.0.20241018.449}/tests_pytest/pytorch/trainable_infrastructure/test_linear_annealing.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241012.448
3
+ Version: 2.2.0.20241018.449
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20241012.448
3
+ Version: 2.2.0.20241018.449
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -411,7 +411,7 @@ model_compression_toolkit/qat/common/qat_config.py
411
411
  model_compression_toolkit/qat/keras/__init__.py
412
412
  model_compression_toolkit/qat/keras/quantization_facade.py
413
413
  model_compression_toolkit/qat/keras/quantizer/__init__.py
414
- model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py
414
+ model_compression_toolkit/qat/keras/quantizer/base_keras_qat_weight_quantizer.py
415
415
  model_compression_toolkit/qat/keras/quantizer/quant_utils.py
416
416
  model_compression_toolkit/qat/keras/quantizer/quantization_builder.py
417
417
  model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py
@@ -514,6 +514,14 @@ model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py
514
514
  model_compression_toolkit/trainable_infrastructure/keras/load_model.py
515
515
  model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py
516
516
  model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py
517
+ model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/__init__.py
518
+ model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/base_activation_quantizer.py
519
+ model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/__init__.py
520
+ model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/symmetric_lsq.py
521
+ model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/lsq/uniform_lsq.py
522
+ model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/__init__.py
523
+ model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/symmetric_ste.py
524
+ model_compression_toolkit/trainable_infrastructure/keras/activation_quantizers/ste/uniform_ste.py
517
525
  model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py
518
526
  model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py
519
527
  model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20241012.000448"
30
+ __version__ = "2.2.0.20241018.000449"
@@ -22,24 +22,14 @@ from model_compression_toolkit.trainable_infrastructure import TrainableQuantize
22
22
 
23
23
  if FOUND_TF:
24
24
 
25
- class BaseKerasQATTrainableQuantizer(BaseKerasTrainableQuantizer):
25
+ class BaseKerasQATWeightTrainableQuantizer(BaseKerasTrainableQuantizer):
26
26
  """
27
27
  A base class for trainable Keras quantizer for QAT.
28
28
  """
29
-
30
- def __init__(self,
31
- quantization_config: Union[TrainableQuantizerWeightsConfig, TrainableQuantizerActivationConfig]):
32
- """
33
- Initializes BaseKerasQATTrainableQuantizer object.
34
-
35
- Args:
36
- quantization_config: quantizer config class contains all the information about a quantizer configuration.
37
- """
38
-
39
- super().__init__(quantization_config)
29
+ pass
40
30
 
41
31
  else: # pragma: no cover
42
- class BaseKerasQATTrainableQuantizer(BaseKerasTrainableQuantizer):
32
+ class BaseKerasQATWeightTrainableQuantizer(BaseKerasTrainableQuantizer):
43
33
  def __init__(self,
44
34
  quantization_config: Union[TrainableQuantizerWeightsConfig, TrainableQuantizerActivationConfig]):
45
35
 
@@ -28,47 +28,18 @@ from mct_quantizers import QuantizationTarget, mark_quantizer
28
28
  from model_compression_toolkit.qat.common import THRESHOLD_TENSOR
29
29
  from model_compression_toolkit import constants as C
30
30
 
31
- from model_compression_toolkit.qat.keras.quantizer.base_keras_qat_quantizer import BaseKerasQATTrainableQuantizer
32
- from model_compression_toolkit.trainable_infrastructure import TrainableQuantizerWeightsConfig, \
33
- TrainableQuantizerActivationConfig
34
- from mct_quantizers.keras.quantizers import WeightsPOTInferableQuantizer, WeightsSymmetricInferableQuantizer, \
35
- ActivationPOTInferableQuantizer, ActivationSymmetricInferableQuantizer
31
+ from model_compression_toolkit.qat.keras.quantizer.base_keras_qat_weight_quantizer import BaseKerasQATWeightTrainableQuantizer
32
+ from model_compression_toolkit.trainable_infrastructure import TrainableQuantizerWeightsConfig, TrainableQuantizerActivationConfig
33
+ from mct_quantizers.keras.quantizers import WeightsPOTInferableQuantizer, WeightsSymmetricInferableQuantizer, ActivationPOTInferableQuantizer, ActivationSymmetricInferableQuantizer
36
34
  from model_compression_toolkit.trainable_infrastructure.common.base_trainable_quantizer import VariableGroup
37
35
  from model_compression_toolkit.qat.keras.quantizer.quant_utils import ste_round, grad_scale
38
-
39
-
40
- def symmetric_lsq_quantizer(x: tf.Tensor,
41
- thresholds: tf.Tensor,
42
- num_bits: int,
43
- sign: bool,
44
- min_int: int,
45
- max_int:int,
46
- scale_factor: float) -> tf.Tensor:
47
- """
48
- Symmetric quantizer according to LSQ algorithm: https://arxiv.org/pdf/1902.08153.pdf
49
- Args:
50
- x: input to quantize
51
- thresholds: thresholds of quantization levels
52
- num_bits: number of bits for quantization
53
- sign: whether x is signed or not
54
- min_int: min clipping integer value
55
- max_int: max clipping integer value
56
- scale_factor: grad scale of LSQ algorithm
57
- Returns:
58
- A quantized tensor
59
- """
60
- delta = thresholds / (2 ** (num_bits - int(sign)))
61
- delta_scaled = grad_scale(delta, scale_factor)
62
- rounded = ste_round(x / delta_scaled)
63
- clipped = tf.math.minimum(tf.math.maximum(rounded, min_int), max_int)
64
- quantized = delta_scaled * clipped
65
- return quantized
36
+ from model_compression_toolkit.trainable_infrastructure.keras.quantizer_utils import symmetric_lsq_quantizer
66
37
 
67
38
 
68
39
  @mark_quantizer(quantization_target=QuantizationTarget.Weights,
69
40
  quantization_method=[QuantizationMethod.POWER_OF_TWO, QuantizationMethod.SYMMETRIC],
70
41
  identifier=TrainingMethod.LSQ)
71
- class LSQWeightQATQuantizer(BaseKerasQATTrainableQuantizer):
42
+ class LSQWeightQATQuantizer(BaseKerasQATWeightTrainableQuantizer):
72
43
  """
73
44
  Trainable constrained quantizer to quantize layer's weights.
74
45
  """
@@ -159,95 +130,3 @@ class LSQWeightQATQuantizer(BaseKerasQATTrainableQuantizer):
159
130
  input_rank=len(self.threshold_shape))
160
131
 
161
132
 
162
- @mark_quantizer(quantization_target=QuantizationTarget.Activation,
163
- quantization_method=[QuantizationMethod.POWER_OF_TWO, QuantizationMethod.SYMMETRIC],
164
- identifier=TrainingMethod.LSQ)
165
- class LSQActivationQATQuantizer(BaseKerasQATTrainableQuantizer):
166
- """
167
- Trainable constrained quantizer to quantize layer activations.
168
- """
169
-
170
- def __init__(self, quantization_config: TrainableQuantizerActivationConfig):
171
- """
172
- Initialize a LSQActivationQATQuantizer object with parameters to use
173
- for the quantization.
174
-
175
- Args:
176
- quantization_config: trainable quantizer config class
177
- """
178
- super().__init__(quantization_config)
179
- self.power_of_two = quantization_config.activation_quantization_method == QuantizationMethod.POWER_OF_TWO
180
- self.threshold_values = float(quantization_config.activation_quantization_params[C.THRESHOLD])
181
- self.threshold_shape = np.asarray(self.threshold_values).shape
182
- self.sign = quantization_config.activation_quantization_params[SIGNED]
183
- self.num_bits = quantization_config.activation_n_bits
184
- n_pos_bits = self.num_bits - int(self.sign)
185
- self.min_int = -int(self.sign) * (2 ** n_pos_bits)
186
- self.max_int = (2 ** n_pos_bits) - 1
187
- if self.power_of_two:
188
- self.threshold_values = np.power(2.0, np.ceil(np.log2(np.maximum(self.threshold_values, C.MIN_THRESHOLD))))
189
-
190
-
191
- def initialize_quantization(self,
192
- tensor_shape: TensorShape,
193
- name: str,
194
- layer: KerasTrainableQuantizationWrapper):
195
- """
196
- Add quantizer parameters to the quantizer parameters dictionary
197
-
198
- Args:
199
- tensor_shape: tensor shape of the quantized tensor.
200
- name: Tensor name.
201
- layer: Layer to quantize.
202
- """
203
- ptq_threshold_tensor = layer.add_weight(
204
- name + THRESHOLD_TENSOR,
205
- shape=(),
206
- initializer=tf.keras.initializers.Constant(1.0),
207
- trainable=True)
208
- ptq_threshold_tensor.assign(self.threshold_values)
209
-
210
- # save the quantizer added parameters for later calculations
211
- self.add_quantizer_variable(THRESHOLD_TENSOR, ptq_threshold_tensor, VariableGroup.QPARAMS)
212
-
213
- def __call__(self,
214
- inputs: tf.Tensor,
215
- training: bool):
216
- """
217
- Quantize a tensor.
218
- Args:
219
- inputs: Input tensor to quantize.
220
- training: Whether the graph is in training mode.
221
-
222
- Returns:
223
- The quantized tensor.
224
- """
225
-
226
- thresholds = self.get_quantizer_variable(THRESHOLD_TENSOR)
227
- n_channels = inputs.shape[-1]
228
- scale_factor = 1.0 / np.sqrt(self.max_int * n_channels)
229
- q_tensor = symmetric_lsq_quantizer(inputs, thresholds, self.num_bits, self.sign, self.min_int, self.max_int, scale_factor)
230
- return q_tensor
231
-
232
- def convert2inferable(self) -> Union[ActivationPOTInferableQuantizer, ActivationSymmetricInferableQuantizer]:
233
- """
234
- Convert quantizer to inferable quantizer.
235
-
236
- Returns:
237
- BaseKerasInferableQuantizer object.
238
- """
239
-
240
- if self.power_of_two:
241
- thresholds = 2 ** np.ceil(np.log2(self.get_quantizer_variable(THRESHOLD_TENSOR).numpy()))
242
- return ActivationPOTInferableQuantizer(num_bits=self.num_bits,
243
- # In activation quantization is per-tensor only - thus we pass
244
- # the threshold as a list with a len of 1
245
- threshold=[thresholds],
246
- signed=self.sign)
247
- else:
248
- thresholds = self.get_quantizer_variable(THRESHOLD_TENSOR).numpy()
249
- return ActivationSymmetricInferableQuantizer(num_bits=self.num_bits,
250
- # In activation quantization is per-tensor only - thus we
251
- # pass the threshold as a list with a len of 1
252
- threshold=[thresholds],
253
- signed=self.sign)
@@ -16,6 +16,8 @@ import numpy as np
16
16
  import tensorflow as tf
17
17
  from tensorflow.python.framework.tensor_shape import TensorShape
18
18
  from model_compression_toolkit.constants import RANGE_MIN, RANGE_MAX
19
+ from model_compression_toolkit.qat.keras.quantizer.base_keras_qat_weight_quantizer import \
20
+ BaseKerasQATWeightTrainableQuantizer
19
21
  from model_compression_toolkit.trainable_infrastructure.common.constants import FQ_MIN, FQ_MAX
20
22
  from model_compression_toolkit.trainable_infrastructure import KerasTrainableQuantizationWrapper
21
23
  from model_compression_toolkit.trainable_infrastructure import TrainingMethod
@@ -26,47 +28,18 @@ from mct_quantizers.keras.quantizers import \
26
28
 
27
29
  from model_compression_toolkit import constants as C
28
30
 
29
- from model_compression_toolkit.qat.keras.quantizer.base_keras_qat_quantizer import BaseKerasQATTrainableQuantizer
30
31
  from model_compression_toolkit.trainable_infrastructure import TrainableQuantizerWeightsConfig, \
31
32
  TrainableQuantizerActivationConfig
32
33
  from model_compression_toolkit.trainable_infrastructure.common.base_trainable_quantizer import VariableGroup
33
34
  from model_compression_toolkit.core.common.quantization.quantizers.quantizers_helpers import fix_range_to_include_zero
34
35
  from model_compression_toolkit.qat.keras.quantizer.quant_utils import ste_round, grad_scale, adjust_range_to_include_zero
35
-
36
-
37
- def uniform_lsq_quantizer(x: tf.Tensor,
38
- min_range: tf.Tensor,
39
- max_range: tf.Tensor,
40
- num_bits: int,
41
- min_int: int,
42
- max_int:int,
43
- scale_factor: float) -> tf.Tensor:
44
- """
45
- Uniform quantizer according to LSQ algorithm: https://arxiv.org/pdf/1902.08153.pdf
46
- Args:
47
- x: input to quantize
48
- min_range: min range of quantization values
49
- max_range: min range of quantization values
50
- num_bits: number of bits for quantization
51
- min_int: min clipping integer value
52
- max_int: max clipping integer value
53
- scale_factor: grad scale of LSQ algorithm
54
- Returns:
55
- A quantized tensor
56
- """
57
- min_range, max_range = adjust_range_to_include_zero(min_range, max_range, num_bits)
58
- delta = (max_range - min_range) / (2 ** num_bits - 1)
59
- delta_scaled = grad_scale(delta, scale_factor)
60
- rounded = ste_round((x-min_range) / delta_scaled)
61
- clipped = tf.math.minimum(tf.math.maximum(rounded, min_int), max_int)
62
- quantized = delta_scaled * clipped + min_range
63
- return quantized
36
+ from model_compression_toolkit.trainable_infrastructure.keras.quantizer_utils import uniform_lsq_quantizer
64
37
 
65
38
 
66
39
  @mark_quantizer(quantization_target=QuantizationTarget.Weights,
67
40
  quantization_method=[QuantizationMethod.UNIFORM],
68
41
  identifier=TrainingMethod.LSQ)
69
- class LSQUniformWeightQATQuantizer(BaseKerasQATTrainableQuantizer):
42
+ class LSQUniformWeightQATQuantizer(BaseKerasQATWeightTrainableQuantizer):
70
43
  """
71
44
  Trainable constrained quantizer to quantize layer's weights.
72
45
  """
@@ -158,93 +131,3 @@ class LSQUniformWeightQATQuantizer(BaseKerasQATTrainableQuantizer):
158
131
  channel_axis=self.channel_axis,
159
132
  input_rank=len(self.min_max_shape))
160
133
 
161
-
162
- @mark_quantizer(quantization_target=QuantizationTarget.Activation,
163
- quantization_method=[QuantizationMethod.UNIFORM],
164
- identifier=TrainingMethod.LSQ)
165
- class LSQUniformActivationQATQuantizer(BaseKerasQATTrainableQuantizer):
166
- """
167
- Trainable constrained quantizer to quantize layer activations.
168
- """
169
-
170
- def __init__(self, quantization_config: TrainableQuantizerActivationConfig):
171
- """
172
- Initialize a LSQUniformActivationQATQuantizer object with parameters to use
173
- for the quantization.
174
-
175
- Args:
176
- quantization_config: trainable quantizer config class
177
- """
178
- super().__init__(quantization_config)
179
-
180
- self.num_bits = quantization_config.activation_n_bits
181
- self.min_range = np.array(quantization_config.activation_quantization_params[C.RANGE_MIN])
182
- self.max_range = np.array(quantization_config.activation_quantization_params[C.RANGE_MAX])
183
- self.min_int = 0
184
- self.max_int = 2**self.num_bits - 1
185
-
186
- def initialize_quantization(self,
187
- tensor_shape: TensorShape,
188
- name: str,
189
- layer: KerasTrainableQuantizationWrapper):
190
- """
191
- Add quantizer parameters to the quantizer parameters dictionary
192
-
193
- Args:
194
- tensor_shape: tensor shape of the quantized tensor.
195
- name: Tensor name.
196
- layer: Layer to quantize.
197
- """
198
- fq_min = layer.add_weight(
199
- name + FQ_MIN,
200
- shape=(),
201
- initializer=tf.keras.initializers.Constant(-1.0),
202
- trainable=True)
203
- fq_min.assign(self.min_range)
204
-
205
- fq_max = layer.add_weight(
206
- name + FQ_MAX,
207
- shape=(),
208
- initializer=tf.keras.initializers.Constant(1.0),
209
- trainable=True)
210
- fq_max.assign(self.max_range)
211
-
212
- # save the quantizer added parameters for later calculations
213
- self.add_quantizer_variable(FQ_MIN, fq_min, VariableGroup.QPARAMS)
214
- self.add_quantizer_variable(FQ_MAX, fq_max, VariableGroup.QPARAMS)
215
-
216
- def __call__(self,
217
- inputs: tf.Tensor,
218
- training: bool):
219
- """
220
- Quantize a tensor.
221
- Args:
222
- inputs: Input tensor to quantize.
223
- training: Whether the graph is in training mode.
224
-
225
- Returns:
226
- The quantized tensor.
227
- """
228
-
229
- min_range = self.get_quantizer_variable(FQ_MIN)
230
- max_range = self.get_quantizer_variable(FQ_MAX)
231
- n_channels = inputs.shape[-1]
232
- scale_factor = 1.0 / np.sqrt(self.max_int * n_channels)
233
- q_tensor = uniform_lsq_quantizer(inputs, min_range, max_range, self.num_bits, self.min_int, self.max_int, scale_factor)
234
- return q_tensor
235
-
236
- def convert2inferable(self) -> BaseKerasInferableQuantizer:
237
- """
238
- Convert quantizer to inferable quantizer.
239
-
240
- Returns:
241
- BaseKerasInferableQuantizer object.
242
- """
243
- min_range, max_range = fix_range_to_include_zero(self.get_quantizer_variable(FQ_MIN).numpy(),
244
- self.get_quantizer_variable(FQ_MAX).numpy(),
245
- self.num_bits)
246
- return ActivationUniformInferableQuantizer(num_bits=self.num_bits,
247
- # In activation quantization is per-tensor only - thus we pass
248
- # the min/max as lists with a len of 1
249
- min_range=[min_range],
250
- max_range=[max_range])
@@ -15,17 +15,18 @@
15
15
  from typing import Tuple, Dict, List, Callable
16
16
 
17
17
  from model_compression_toolkit.core import common
18
- from model_compression_toolkit.core.common.framework_info import FrameworkInfo
19
- from model_compression_toolkit.core.keras.default_framework_info import DEFAULT_KERAS_INFO
20
18
  from model_compression_toolkit.logger import Logger
21
19
  from model_compression_toolkit.qat.common.qat_config import QATConfig
22
- from model_compression_toolkit.qat.keras.quantizer.base_keras_qat_quantizer import BaseKerasQATTrainableQuantizer
23
20
  from mct_quantizers import QuantizationTarget, KerasActivationQuantizationHolder
21
+ from model_compression_toolkit.qat.keras.quantizer.base_keras_qat_weight_quantizer import \
22
+ BaseKerasQATWeightTrainableQuantizer
24
23
  from model_compression_toolkit.trainable_infrastructure.common.get_quantizer_config import \
25
24
  get_trainable_quantizer_weights_config, get_trainable_quantizer_activation_config, \
26
25
  get_trainable_quantizer_quantization_candidates
27
26
  from model_compression_toolkit.trainable_infrastructure.common.get_quantizers import \
28
27
  get_trainable_quantizer_class
28
+ from model_compression_toolkit.trainable_infrastructure.keras.activation_quantizers import \
29
+ BaseKerasActivationTrainableQuantizer
29
30
 
30
31
 
31
32
  def get_activation_quantizer_holder(n: common.BaseNode,
@@ -55,7 +56,7 @@ def get_activation_quantizer_holder(n: common.BaseNode,
55
56
  def quantization_builder(n: common.BaseNode,
56
57
  qat_config: QATConfig,
57
58
  kernel_attr: str = None,
58
- ) -> Tuple[Dict[str, BaseKerasQATTrainableQuantizer], List[BaseKerasQATTrainableQuantizer]]:
59
+ ) -> Tuple[Dict[str, BaseKerasQATWeightTrainableQuantizer], List[BaseKerasActivationTrainableQuantizer]]:
59
60
  """
60
61
  Build quantizers for a node according to its quantization configuration.
61
62
 
@@ -82,7 +83,7 @@ def quantization_builder(n: common.BaseNode,
82
83
  quantizer_class = get_trainable_quantizer_class(QuantizationTarget.Weights,
83
84
  qat_config.weight_training_method,
84
85
  quant_method,
85
- BaseKerasQATTrainableQuantizer)
86
+ BaseKerasQATWeightTrainableQuantizer)
86
87
 
87
88
  weight_quantizers.update({kernel_attr: quantizer_class(get_trainable_quantizer_weights_config(n,
88
89
  attr_name=kernel_attr,
@@ -98,7 +99,7 @@ def quantization_builder(n: common.BaseNode,
98
99
  quantizer_class = get_trainable_quantizer_class(QuantizationTarget.Activation,
99
100
  qat_config.activation_training_method,
100
101
  quant_method,
101
- BaseKerasQATTrainableQuantizer)
102
+ BaseKerasActivationTrainableQuantizer)
102
103
 
103
104
  activation_quantizers = [quantizer_class(get_trainable_quantizer_activation_config(n, aq_cand),
104
105
  **qat_config.activation_quantizer_params_override)] * len(output_shapes)
@@ -18,7 +18,6 @@ from typing import Union
18
18
  import numpy as np
19
19
  import tensorflow as tf
20
20
  from tensorflow.python.framework.tensor_shape import TensorShape
21
- from model_compression_toolkit.constants import SIGNED
22
21
  from model_compression_toolkit.trainable_infrastructure.common.constants import FQ_MIN, FQ_MAX
23
22
 
24
23
  from model_compression_toolkit.trainable_infrastructure import TrainingMethod
@@ -29,18 +28,16 @@ from mct_quantizers import QuantizationTarget, mark_quantizer
29
28
  from model_compression_toolkit.qat.common import THRESHOLD_TENSOR
30
29
  from model_compression_toolkit import constants as C
31
30
 
32
- from model_compression_toolkit.qat.keras.quantizer.base_keras_qat_quantizer import BaseKerasQATTrainableQuantizer
33
- from model_compression_toolkit.trainable_infrastructure import TrainableQuantizerWeightsConfig, \
34
- TrainableQuantizerActivationConfig
35
- from mct_quantizers.keras.quantizers import WeightsPOTInferableQuantizer, WeightsSymmetricInferableQuantizer, \
36
- ActivationPOTInferableQuantizer, ActivationSymmetricInferableQuantizer
31
+ from model_compression_toolkit.qat.keras.quantizer.base_keras_qat_weight_quantizer import BaseKerasQATWeightTrainableQuantizer
32
+ from model_compression_toolkit.trainable_infrastructure import TrainableQuantizerWeightsConfig
33
+ from mct_quantizers.keras.quantizers import WeightsPOTInferableQuantizer, WeightsSymmetricInferableQuantizer
37
34
  from model_compression_toolkit.trainable_infrastructure.common.base_trainable_quantizer import VariableGroup
38
35
 
39
36
 
40
37
  @mark_quantizer(quantization_target=QuantizationTarget.Weights,
41
38
  quantization_method=[QuantizationMethod.POWER_OF_TWO, QuantizationMethod.SYMMETRIC],
42
39
  identifier=TrainingMethod.STE)
43
- class STEWeightQATQuantizer(BaseKerasQATTrainableQuantizer):
40
+ class STEWeightQATQuantizer(BaseKerasQATWeightTrainableQuantizer):
44
41
  """
45
42
  Trainable constrained quantizer to quantize a layer inputs.
46
43
  """
@@ -171,115 +168,3 @@ class STEWeightQATQuantizer(BaseKerasQATTrainableQuantizer):
171
168
  input_rank=len(self.threshold_shape))
172
169
 
173
170
 
174
- @mark_quantizer(quantization_target=QuantizationTarget.Activation,
175
- quantization_method=[QuantizationMethod.POWER_OF_TWO, QuantizationMethod.SYMMETRIC],
176
- identifier=TrainingMethod.STE)
177
- class STEActivationQATQuantizer(BaseKerasQATTrainableQuantizer):
178
- """
179
- Trainable constrained quantizer to quantize a layer outputs.
180
- """
181
-
182
- def __init__(self, quantization_config: TrainableQuantizerActivationConfig):
183
- """
184
- Initialize a STEActivationQATQuantizer object with parameters to use
185
- for the quantization.
186
-
187
- Args:
188
- quantization_config: trainable quantizer config class
189
- """
190
- super().__init__(quantization_config)
191
- self.power_of_two = quantization_config.activation_quantization_method == QuantizationMethod.POWER_OF_TWO
192
- self.threshold_values = quantization_config.activation_quantization_params[C.THRESHOLD]
193
- self.threshold_shape = np.asarray(self.threshold_values).shape
194
- self.np_threshold_values = float(self.threshold_values)
195
- self.signed = quantization_config.activation_quantization_params[SIGNED]
196
- if self.power_of_two:
197
- self.np_threshold_values = np.power(2.0,
198
- np.ceil(np.log2(np.maximum(self.np_threshold_values, C.MIN_THRESHOLD))))
199
- self.num_bits = quantization_config.activation_n_bits
200
- delta = self.np_threshold_values / np.power(2.0, self.num_bits - int(self.signed))
201
- min_int = -int(self.signed) * (2 ** (self.num_bits - int(self.signed)))
202
- max_int = (2 ** (self.num_bits - int(self.signed))) - 1
203
- self.min = delta * min_int
204
- self.max = delta * max_int
205
-
206
- def initialize_quantization(self,
207
- tensor_shape: TensorShape,
208
- name: str,
209
- layer: KerasTrainableQuantizationWrapper):
210
- """
211
- Add quantizer parameters to the quantizer parameters dictionary
212
-
213
- Args:
214
- tensor_shape: tensor shape of the quantized tensor.
215
- name: Tensor name.
216
- layer: Layer to quantize.
217
- """
218
- ptq_threshold_tensor = layer.add_weight(
219
- name + THRESHOLD_TENSOR,
220
- shape=(),
221
- initializer=tf.keras.initializers.Constant(1.0),
222
- trainable=False)
223
- ptq_threshold_tensor.assign(self.np_threshold_values)
224
-
225
- fq_min = layer.add_weight(
226
- name + FQ_MIN,
227
- shape=(),
228
- initializer=tf.keras.initializers.Constant(-1.0),
229
- trainable=False)
230
- fq_min.assign(self.min)
231
-
232
- fq_max = layer.add_weight(
233
- name + FQ_MAX,
234
- shape=(),
235
- initializer=tf.keras.initializers.Constant(1.0),
236
- trainable=False)
237
- fq_max.assign(self.max)
238
-
239
- # save the quantizer added parameters for later calculations
240
- self.add_quantizer_variable(THRESHOLD_TENSOR, ptq_threshold_tensor, VariableGroup.QPARAMS)
241
- self.add_quantizer_variable(FQ_MIN, fq_min, VariableGroup.QPARAMS)
242
- self.add_quantizer_variable(FQ_MAX, fq_max, VariableGroup.QPARAMS)
243
-
244
-
245
- def __call__(self,
246
- inputs: tf.Tensor,
247
- training: bool):
248
- """
249
- Quantize a tensor.
250
- Args:
251
- inputs: Input tensor to quantize.
252
- training: Whether the graph is in training mode.
253
-
254
- Returns:
255
- The quantized tensor.
256
- """
257
-
258
- _min = self.get_quantizer_variable(FQ_MIN)
259
- _max = self.get_quantizer_variable(FQ_MAX)
260
- q_tensor = tf.quantization.fake_quant_with_min_max_vars(inputs, _min, _max,
261
- num_bits=self.num_bits)
262
-
263
- return q_tensor
264
-
265
- def convert2inferable(self) -> Union[ActivationPOTInferableQuantizer, ActivationSymmetricInferableQuantizer]:
266
- """
267
- Convert quantizer to inferable quantizer.
268
-
269
- Returns:
270
- BaseKerasInferableQuantizer object.
271
- """
272
-
273
- if self.power_of_two:
274
- pot_threshold = 2 ** np.ceil(np.log2(self.get_quantizer_variable(THRESHOLD_TENSOR)))
275
- return ActivationPOTInferableQuantizer(num_bits=self.num_bits,
276
- # In activation quantization is per-tensor only - thus we pass
277
- # the threshold as a list with a len of 1
278
- threshold=[pot_threshold],
279
- signed=self.signed)
280
- else:
281
- return ActivationSymmetricInferableQuantizer(num_bits=self.num_bits,
282
- # In activation quantization is per-tensor only - thus we
283
- # pass the threshold as a list with a len of 1
284
- threshold=[self.get_quantizer_variable(THRESHOLD_TENSOR).numpy()],
285
- signed=self.signed)