mct-nightly 2.2.0.20240930.532__tar.gz → 2.2.0.20241002.500__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/PKG-INFO +1 -1
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/mct_nightly.egg-info/SOURCES.txt +1 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/model_collector.py +1 -1
- mct-nightly-2.2.0.20241002.500/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py +231 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +3 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/LICENSE.md +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/README.md +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/gradual_activation_quantization.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/trainable_infrastructure/pytorch/util.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/verify_packages.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/setup.cfg +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/setup.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/tests_pytest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/tests_pytest/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/tests_pytest/pytorch/gptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/tests_pytest/pytorch/gptq/test_annealing_cfg.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/tests_pytest/pytorch/gptq/test_gradual_act_quantization.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/tests_pytest/pytorch/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/tests_pytest/pytorch/trainable_infrastructure/test_linear_annealing.py +0 -0
{mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/mct_nightly.egg-info/SOURCES.txt
RENAMED
@@ -258,6 +258,7 @@ model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_
|
|
258
258
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py
|
259
259
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py
|
260
260
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py
|
261
|
+
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scaled_dot_product_attention.py
|
261
262
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py
|
262
263
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py
|
263
264
|
model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py
|
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.
|
30
|
+
__version__ = "2.2.0.20241002.000500"
|
@@ -158,7 +158,7 @@ class ModelCollector:
|
|
158
158
|
for td, sc in zip(tensor_data, self.stats_containers_list):
|
159
159
|
if isinstance(sc, (list, tuple)):
|
160
160
|
if not isinstance(td, (list, tuple)):
|
161
|
-
Logger.critical(
|
161
|
+
Logger.critical(f"\'tensor_data\' is of type {type(td)} but must be of the same type as \'stats_containers_list\', which is of type {type(sc)}") # pragma: no cover
|
162
162
|
if len(sc) != len(td):
|
163
163
|
Logger.critical('\'tensor_data\' and \'stats_containers_list\' must have matching lengths') # pragma: no cover
|
164
164
|
for tdi, sci in zip(td, sc):
|
@@ -0,0 +1,231 @@
|
|
1
|
+
# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import torch.nn as nn
|
17
|
+
import torch
|
18
|
+
import math
|
19
|
+
from copy import copy
|
20
|
+
import numpy as np
|
21
|
+
from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode
|
22
|
+
from model_compression_toolkit.core.common import BaseSubstitution
|
23
|
+
from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher
|
24
|
+
from model_compression_toolkit.core.common.graph.base_graph import Graph, BaseNode, OutTensor
|
25
|
+
from model_compression_toolkit.core.pytorch.constants import DIM
|
26
|
+
from model_compression_toolkit.core.pytorch.pytorch_device_config import get_working_device
|
27
|
+
|
28
|
+
|
29
|
+
class ScaledDotProductDecomposition(BaseSubstitution):
|
30
|
+
"""
|
31
|
+
Decompose torch.nn.scale_dot_product into its base operators:
|
32
|
+
Transpose (over k)
|
33
|
+
MatMul(over q and transposed k)
|
34
|
+
Mul (for scaling)
|
35
|
+
Add (for masking. optional operation, used in cases that attn_mask ig given)
|
36
|
+
Dropout
|
37
|
+
Softmax
|
38
|
+
Matmul.
|
39
|
+
"""
|
40
|
+
|
41
|
+
def __init__(self):
|
42
|
+
"""
|
43
|
+
Matches scaled_dot_product_attention node.
|
44
|
+
"""
|
45
|
+
super().__init__(matcher_instance=NodeOperationMatcher(nn.functional.scaled_dot_product_attention))
|
46
|
+
|
47
|
+
def _get_input_by_name(self, attention_node: FunctionalNode, input_name: str,
|
48
|
+
input_index: int, default_value: any) -> any:
|
49
|
+
"""
|
50
|
+
Search for attention_node input value in op_call_kwargs (using input_name) and op_call_args (using input_index).
|
51
|
+
In case the input is not given, returns its default_value.
|
52
|
+
|
53
|
+
"""
|
54
|
+
if input_name in attention_node.op_call_kwargs:
|
55
|
+
return attention_node.op_call_kwargs[input_name]
|
56
|
+
elif len(attention_node.op_call_args) > input_index: # input order: [attn_mask, dropout_p, is_causal]
|
57
|
+
return attention_node.op_call_args[input_index]
|
58
|
+
return default_value
|
59
|
+
|
60
|
+
def _get_attention_input_nodes(self, graph: Graph, attention_node: FunctionalNode) -> dict:
|
61
|
+
q, k, v = 0, 1, 2
|
62
|
+
prev_nodes = graph.get_prev_nodes(attention_node, sink_index_sorted=True)
|
63
|
+
q_node, k_node, v_node = prev_nodes[q], prev_nodes[k], prev_nodes[v]
|
64
|
+
return {"q": q_node, "k": k_node, "v": v_node}
|
65
|
+
|
66
|
+
def _get_transpose_k_node(self, attention_node_name: str, key_node: BaseNode) -> BaseNode:
|
67
|
+
input_shape, output_shape = copy(key_node.output_shape[0]), copy(key_node.output_shape[0])
|
68
|
+
output_shape[-2], output_shape[-1] = input_shape[-1], input_shape[-2]
|
69
|
+
transpose_node = FunctionalNode(name=f"{attention_node_name}_{key_node.name}_transpose",
|
70
|
+
framework_attr={},
|
71
|
+
input_shape=input_shape,
|
72
|
+
output_shape=output_shape,
|
73
|
+
weights={},
|
74
|
+
layer_class=torch.transpose,
|
75
|
+
op_call_args=[-1, -2], # axes to transpose
|
76
|
+
op_call_kwargs={},
|
77
|
+
functional_op=torch.transpose)
|
78
|
+
return transpose_node
|
79
|
+
|
80
|
+
def _get_scale_node(self, attention_node: FunctionalNode, q_node: BaseNode, matmul_node: BaseNode) -> FunctionalNode:
|
81
|
+
"""
|
82
|
+
:return: multiplication node that represents multiplication by the scale factor
|
83
|
+
"""
|
84
|
+
scale_name = f'{attention_node.name}_scale'
|
85
|
+
q_embd_axis = -1
|
86
|
+
input_scale = self._get_input_by_name(attention_node, "scale", 3, None)
|
87
|
+
scale_factor = input_scale if input_scale else (1 / math.sqrt(q_node.output_shape[0][q_embd_axis]))
|
88
|
+
scale_node = FunctionalNode(name=scale_name,
|
89
|
+
framework_attr={},
|
90
|
+
input_shape=(matmul_node.output_shape),
|
91
|
+
output_shape=matmul_node.output_shape,
|
92
|
+
weights={},
|
93
|
+
layer_class=torch.mul,
|
94
|
+
op_call_args=[scale_factor],
|
95
|
+
op_call_kwargs={},
|
96
|
+
functional_op=torch.mul)
|
97
|
+
return scale_node
|
98
|
+
|
99
|
+
def _get_matmul_node(self, attention_node_name: str, q_node: BaseNode, transposed_k_node: BaseNode) -> BaseNode:
|
100
|
+
matmul1_output_shape = copy(q_node.output_shape[0])
|
101
|
+
matmul1_output_shape[-2] = q_node.output_shape[0][-2]
|
102
|
+
matmul1_output_shape[-1] = transposed_k_node.output_shape[-1]
|
103
|
+
matmul_name = f'{attention_node_name}_matmul1'
|
104
|
+
return FunctionalNode(name=matmul_name,
|
105
|
+
framework_attr={},
|
106
|
+
input_shape=(tuple(q_node.output_shape[0]), tuple(transposed_k_node.output_shape)),
|
107
|
+
output_shape=tuple(matmul1_output_shape),
|
108
|
+
weights={},
|
109
|
+
layer_class=torch.matmul,
|
110
|
+
op_call_args=[],
|
111
|
+
op_call_kwargs={},
|
112
|
+
functional_op=torch.matmul)
|
113
|
+
|
114
|
+
def _get_mask_node(self, attention_node: FunctionalNode, scale_node: FunctionalNode) -> FunctionalNode:
|
115
|
+
"""
|
116
|
+
:return: Add operator node with the mask tensor as input. In case there is no mask tensor, returns None.
|
117
|
+
"""
|
118
|
+
attention_mask_tensor = self._get_attention_mask_tensor(attention_node)
|
119
|
+
if attention_mask_tensor is None:
|
120
|
+
return None
|
121
|
+
mask_node_name = f'{attention_node.name}_mask'
|
122
|
+
return FunctionalNode(name=mask_node_name,
|
123
|
+
framework_attr={},
|
124
|
+
input_shape=(scale_node.output_shape),
|
125
|
+
output_shape=scale_node.output_shape,
|
126
|
+
weights={},
|
127
|
+
layer_class=torch.add,
|
128
|
+
op_call_args=[],
|
129
|
+
op_call_kwargs={'other': attention_mask_tensor},
|
130
|
+
functional_op=torch.add)
|
131
|
+
|
132
|
+
def _get_softmax_node(self, attention_node_name: str, in_out_shape: tuple) -> BaseNode:
|
133
|
+
softmax_name = f'{attention_node_name}_softmax'
|
134
|
+
return BaseNode(name=softmax_name,
|
135
|
+
framework_attr={DIM: -1},
|
136
|
+
input_shape=in_out_shape,
|
137
|
+
output_shape=in_out_shape,
|
138
|
+
weights={},
|
139
|
+
layer_class=nn.Softmax)
|
140
|
+
|
141
|
+
def _get_matmul2_node(self, attention_node_name: str, softmax_node: BaseNode, v_node: BaseNode) -> FunctionalNode:
|
142
|
+
matmul2_output_shape = list(copy(softmax_node.output_shape))
|
143
|
+
matmul2_output_shape[-2] = softmax_node.output_shape[-2]
|
144
|
+
matmul2_output_shape[-1] = v_node.output_shape[0][-1]
|
145
|
+
matmul2_name = f'{attention_node_name}_matmul2'
|
146
|
+
return FunctionalNode(name=matmul2_name,
|
147
|
+
framework_attr={},
|
148
|
+
input_shape=(tuple(softmax_node.output_shape), tuple(v_node.output_shape[0])),
|
149
|
+
output_shape=tuple(matmul2_output_shape),
|
150
|
+
weights={},
|
151
|
+
layer_class=torch.matmul,
|
152
|
+
op_call_args=[],
|
153
|
+
op_call_kwargs={},
|
154
|
+
functional_op=torch.matmul)
|
155
|
+
|
156
|
+
def _get_attention_mask_tensor(self, attention_node: FunctionalNode) -> torch.Tensor:
|
157
|
+
"""
|
158
|
+
:return: mask tensor given as part of attention node input.
|
159
|
+
Since MCT doesn't support infinite values, we don't support is_causal (torch.nn.scale_dot_product_attention
|
160
|
+
argument) and boolean mask tensor, as they both require -inf values.
|
161
|
+
"""
|
162
|
+
device = get_working_device()
|
163
|
+
is_causal = self._get_input_by_name(attention_node, "is_causal", 2, False)
|
164
|
+
if is_causal:
|
165
|
+
raise NotImplementedError("scaled_dot_product_attention is_causal feature is not implemented.")
|
166
|
+
input_weights = list(attention_node.weights.values())
|
167
|
+
attn_mask = input_weights[0] if len(input_weights) > 0 else None
|
168
|
+
if attn_mask is not None and (attn_mask.dtype == "bool"):
|
169
|
+
raise NotImplementedError(
|
170
|
+
"scaled_dot_product_attention attn_mask is of type boolean, which is not supported.")
|
171
|
+
if attn_mask is not None and (not np.isfinite(attn_mask).all()):
|
172
|
+
raise NotImplementedError(
|
173
|
+
"scaled_dot_product_attention attn_mask contains infinite value, which is not supported.")
|
174
|
+
return torch.from_numpy(attn_mask).to(device) if attn_mask is not None else None
|
175
|
+
|
176
|
+
def _get_dropout_node(self, attention_node: FunctionalNode, in_out_shape: tuple) -> BaseNode:
|
177
|
+
dropout_p = attention_node.op_call_kwargs.get('dropout_p', 0)
|
178
|
+
dropout_name = f'{attention_node.name}_dropout'
|
179
|
+
return BaseNode(name=dropout_name,
|
180
|
+
framework_attr={"p": dropout_p},
|
181
|
+
input_shape=in_out_shape,
|
182
|
+
output_shape=in_out_shape,
|
183
|
+
weights={},
|
184
|
+
layer_class=nn.Dropout)
|
185
|
+
|
186
|
+
def substitute(self, graph: Graph, attention_node: FunctionalNode) -> Graph:
|
187
|
+
"""
|
188
|
+
Removes a scaled_dot_product_attention node from the graph, and replaces it with a compatible graph that
|
189
|
+
consists of:
|
190
|
+
Transpose (over k)
|
191
|
+
MatMul(over q and transposed k)
|
192
|
+
Mul (for scaling)
|
193
|
+
Add (for masking. optional operation, used in cases that attn_mask ig given)
|
194
|
+
Dropout
|
195
|
+
Softmax
|
196
|
+
Matmul.
|
197
|
+
:param graph: A Graph to apply substitution on
|
198
|
+
:param attention_node: the node to replace
|
199
|
+
:return: A graph after the substitution
|
200
|
+
"""
|
201
|
+
print("In scale_dot_product_attention substitution@@@@@@@@")
|
202
|
+
input_nodes = self._get_attention_input_nodes(graph, attention_node)
|
203
|
+
q_node, k_node, v_node = input_nodes["q"], input_nodes["k"], input_nodes["v"]
|
204
|
+
transpose_k_node = self._get_transpose_k_node(attention_node.name, k_node)
|
205
|
+
matmul_node = self._get_matmul_node(attention_node.name, q_node, transpose_k_node)
|
206
|
+
scale_node = self._get_scale_node(attention_node, q_node, matmul_node)
|
207
|
+
mask_node = self._get_mask_node(attention_node, scale_node)
|
208
|
+
softmax_node = self._get_softmax_node(attention_node.name, matmul_node.output_shape)
|
209
|
+
dropout_node = self._get_dropout_node(attention_node, softmax_node.output_shape)
|
210
|
+
matmul2_node = self._get_matmul2_node(attention_node.name, softmax_node, v_node)
|
211
|
+
|
212
|
+
graph.add_node_with_in_edges(transpose_k_node, [k_node])
|
213
|
+
graph.add_node_with_in_edges(matmul_node, [q_node, transpose_k_node])
|
214
|
+
graph.add_node_with_in_edges(scale_node, [matmul_node])
|
215
|
+
if mask_node:
|
216
|
+
graph.add_node_with_in_edges(mask_node, [scale_node])
|
217
|
+
graph.add_node_with_in_edges(softmax_node, [mask_node if mask_node else scale_node])
|
218
|
+
graph.add_node_with_in_edges(dropout_node, [softmax_node])
|
219
|
+
graph.add_node_with_in_edges(matmul2_node, [dropout_node if dropout_node else softmax_node, v_node])
|
220
|
+
|
221
|
+
graph_outputs = graph.get_outputs()
|
222
|
+
for i, g_out in enumerate(graph_outputs):
|
223
|
+
if g_out.node == attention_node:
|
224
|
+
graph_outputs[i] = OutTensor(node=matmul2_node, node_out_index=g_out.node_out_index)
|
225
|
+
|
226
|
+
graph.reconnect_out_edges(current_node=attention_node, new_node=matmul2_node)
|
227
|
+
graph.remove_edge(q_node, attention_node)
|
228
|
+
graph.remove_edge(k_node, attention_node)
|
229
|
+
graph.remove_edge(v_node, attention_node)
|
230
|
+
graph.remove_node(attention_node, new_graph_outputs=graph_outputs)
|
231
|
+
return graph
|
@@ -53,6 +53,8 @@ from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.li
|
|
53
53
|
pytorch_linear_collapsing
|
54
54
|
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.multi_head_attention_decomposition \
|
55
55
|
import MultiHeadAttentionDecomposition
|
56
|
+
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.scaled_dot_product_attention import \
|
57
|
+
ScaledDotProductDecomposition
|
56
58
|
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.transform_function_call_method import \
|
57
59
|
TransformFunctionCallMethod
|
58
60
|
from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.const_holder_conv import \
|
@@ -237,6 +239,7 @@ class PytorchImplementation(FrameworkImplementation):
|
|
237
239
|
"""
|
238
240
|
return [ReshapeWithStaticShapes(),
|
239
241
|
MultiHeadAttentionDecomposition(),
|
242
|
+
ScaledDotProductDecomposition(),
|
240
243
|
TransformFunctionCallMethod(),
|
241
244
|
FunctionalConvSubstitution(fw_info),
|
242
245
|
FunctionalBatchNorm(),
|
File without changes
|
File without changes
|
File without changes
|
{mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/mct_nightly.egg-info/requires.txt
RENAMED
File without changes
|
{mct-nightly-2.2.0.20240930.532 → mct-nightly-2.2.0.20241002.500}/mct_nightly.egg-info/top_level.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|