mct-nightly 2.2.0.20240924.500__tar.gz → 2.2.0.20240926.452__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/PKG-INFO +1 -1
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/PKG-INFO +1 -1
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/__init__.py +1 -1
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +4 -6
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +14 -1
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +3 -1
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +62 -10
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +10 -5
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +3 -1
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +2 -2
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/LICENSE.md +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/README.md +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/SOURCES.txt +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/dependency_links.txt +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/requires.txt +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/top_level.txt +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/constants.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/analyzer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/framework_info.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/edge.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/function.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/memory_computation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/model_collector.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/model_validation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/user_info.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/common.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/runner.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/constants.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/enums.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/defaultdict.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/gradual_activation_quantization.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/runner.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/logger.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/metadata.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/pruning/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/runner.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/common/qat_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/util.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/verify_packages.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/constants.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/setup.cfg +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/setup.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/gptq/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/gptq/test_annealing_cfg.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/gptq/test_gradual_act_quantization.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/trainable_infrastructure/__init__.py +0 -0
- {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/trainable_infrastructure/test_linear_annealing.py +0 -0
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
|
|
27
27
|
from model_compression_toolkit import pruning
|
28
28
|
from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
|
29
29
|
|
30
|
-
__version__ = "2.2.0.
|
30
|
+
__version__ = "2.2.0.20240926.000452"
|
@@ -258,12 +258,10 @@ class HessianInfoService:
|
|
258
258
|
f"{hessian_scores_request.target_nodes}.")
|
259
259
|
|
260
260
|
# Replace node in reused target nodes with a representing node from the 'reuse group'.
|
261
|
-
|
262
|
-
if
|
263
|
-
|
264
|
-
|
265
|
-
if rep_node not in hessian_scores_request.target_nodes:
|
266
|
-
hessian_scores_request.target_nodes.append(rep_node)
|
261
|
+
hessian_scores_request.target_nodes = [
|
262
|
+
self._get_representing_of_reuse_group(node) if node.reuse else node
|
263
|
+
for node in hessian_scores_request.target_nodes
|
264
|
+
]
|
267
265
|
|
268
266
|
# Ensure the saved info has the required number of approximations
|
269
267
|
self._populate_saved_info_to_size(hessian_scores_request, required_size, batch_size)
|
@@ -231,6 +231,7 @@ class PytorchModel(torch.nn.Module):
|
|
231
231
|
self.return_float_outputs = return_float_outputs
|
232
232
|
self.wrapper = wrapper
|
233
233
|
self.get_activation_quantizer_holder = get_activation_quantizer_holder_fn
|
234
|
+
self.reuse_groups = {}
|
234
235
|
self._add_modules()
|
235
236
|
|
236
237
|
# todo: Move to parent class BaseModelBuilder
|
@@ -288,7 +289,19 @@ class PytorchModel(torch.nn.Module):
|
|
288
289
|
Build and add the modules and functional nodes from node_sort list as attributes to PytorchModel
|
289
290
|
"""
|
290
291
|
for node in self.node_sort:
|
291
|
-
|
292
|
+
if node.reuse:
|
293
|
+
# If the node is reused, retrieve the original module
|
294
|
+
if node.reuse_group not in self.reuse_groups:
|
295
|
+
Logger.critical(f"Reuse group {node.reuse_group} not found for node {node.name}")
|
296
|
+
|
297
|
+
node_op = self.reuse_groups[node.reuse_group]
|
298
|
+
else:
|
299
|
+
# If it's not reused, create a new module
|
300
|
+
node_op = self.wrap(node)
|
301
|
+
if node.reuse_group:
|
302
|
+
# Store the module for future reuse
|
303
|
+
self.reuse_groups[node.reuse_group] = node_op
|
304
|
+
|
292
305
|
if isinstance(node, FunctionalNode):
|
293
306
|
# for functional layers
|
294
307
|
setattr(self, node.name, node_op)
|
@@ -80,7 +80,9 @@ class FunctionalConvSubstitution(common.BaseSubstitution):
|
|
80
80
|
output_shape=func_node.output_shape,
|
81
81
|
weights={KERNEL: weight} if bias is None else {KERNEL: weight, BIAS: bias},
|
82
82
|
layer_class=new_layer,
|
83
|
-
has_activation=func_node.has_activation
|
83
|
+
has_activation=func_node.has_activation,
|
84
|
+
reuse=func_node.reuse,
|
85
|
+
reuse_group=func_node.reuse_group)
|
84
86
|
graph.add_node(new_node)
|
85
87
|
graph.reconnect_out_edges(current_node=func_node, new_node=new_node)
|
86
88
|
graph.reconnect_in_edges(current_node=func_node, new_node=new_node)
|
@@ -30,8 +30,7 @@ from model_compression_toolkit.core.pytorch.reader.node_holders import DummyPlac
|
|
30
30
|
from model_compression_toolkit.logger import Logger
|
31
31
|
|
32
32
|
|
33
|
-
def _extract_parameters_and_buffers(module: Union[torch.nn.Module, GraphModule],
|
34
|
-
to_numpy: Callable) -> Dict[str, np.ndarray]:
|
33
|
+
def _extract_parameters_and_buffers(module: Union[torch.nn.Module, GraphModule]) -> Dict[str, np.ndarray]:
|
35
34
|
"""
|
36
35
|
Extract parameters & buffers from input module to a dictionary.
|
37
36
|
Args:
|
@@ -41,8 +40,8 @@ def _extract_parameters_and_buffers(module: Union[torch.nn.Module, GraphModule],
|
|
41
40
|
Dictionary containing module parameters and buffers by name.
|
42
41
|
"""
|
43
42
|
|
44
|
-
named_parameters = {name:
|
45
|
-
named_buffers = {name:
|
43
|
+
named_parameters = {name: parameter for name, parameter in module.named_parameters()}
|
44
|
+
named_buffers = {name: buffer for name, buffer in module.named_buffers()}
|
46
45
|
|
47
46
|
return {**named_parameters, **named_buffers}
|
48
47
|
|
@@ -97,14 +96,12 @@ def _build_input_alloc_and_call_args(n: Node, input_tensors_in_node_kwargs: Dict
|
|
97
96
|
return op_call_args, tensor_input_alloc
|
98
97
|
|
99
98
|
|
100
|
-
def _extract_torch_layer_data(node_module: torch.nn.Module,
|
101
|
-
to_numpy: Callable) -> Tuple[Any, Dict[str, np.ndarray], Dict]:
|
99
|
+
def _extract_torch_layer_data(node_module: torch.nn.Module) -> Tuple[Any, Dict[str, np.ndarray], Dict]:
|
102
100
|
"""
|
103
101
|
Extract required data from a non-functional node to rebuild the PyTorch layer.
|
104
102
|
|
105
103
|
Args:
|
106
104
|
node_module: Torch layer, such as nn.Conv2d, nn.Linear, etc.
|
107
|
-
to_numpy: Function to convert framework's tensor to a Numpy array.
|
108
105
|
|
109
106
|
Returns:
|
110
107
|
Node layer class.
|
@@ -124,7 +121,7 @@ def _extract_torch_layer_data(node_module: torch.nn.Module,
|
|
124
121
|
framework_attr[BIAS] = False if node_module.bias is None else True
|
125
122
|
|
126
123
|
# Extract layer weights and named buffers.
|
127
|
-
weights = {n: w for n, w in _extract_parameters_and_buffers(node_module
|
124
|
+
weights = {n: w for n, w in _extract_parameters_and_buffers(node_module).items() if len(w.shape) > 0}
|
128
125
|
return node_type, weights, framework_attr
|
129
126
|
|
130
127
|
|
@@ -181,8 +178,11 @@ def nodes_builder(model: GraphModule,
|
|
181
178
|
consts_dict = {}
|
182
179
|
used_consts = set()
|
183
180
|
|
181
|
+
# Dictionary to track seen targets and their corresponding nodes to mark reused nodes
|
182
|
+
seen_targets = {}
|
183
|
+
|
184
184
|
# Init parameters & buffers dictionary of the entire model. We later extract the constants values from this dictionary.
|
185
|
-
model_parameters_and_buffers = _extract_parameters_and_buffers(model
|
185
|
+
model_parameters_and_buffers = _extract_parameters_and_buffers(model)
|
186
186
|
|
187
187
|
for node in model.graph.nodes:
|
188
188
|
|
@@ -195,7 +195,7 @@ def nodes_builder(model: GraphModule,
|
|
195
195
|
|
196
196
|
if node.target in module_dict.keys():
|
197
197
|
# PyTorch module node, such as nn.Conv2d or nn.Linear.
|
198
|
-
node_type, weights, framework_attr = _extract_torch_layer_data(module_dict[node.target]
|
198
|
+
node_type, weights, framework_attr = _extract_torch_layer_data(module_dict[node.target])
|
199
199
|
|
200
200
|
elif node.op == CALL_FUNCTION:
|
201
201
|
# Node is a function that handle a parameter\buffer in the model.
|
@@ -249,6 +249,31 @@ def nodes_builder(model: GraphModule,
|
|
249
249
|
# Extract input and output shapes of the node.
|
250
250
|
input_shape, output_shape = _extract_input_and_output_shapes(node)
|
251
251
|
|
252
|
+
# Check if this node's target has been seen before
|
253
|
+
reuse = False
|
254
|
+
reuse_group = None
|
255
|
+
node_group_key = create_reuse_group(node.target, weights)
|
256
|
+
# We mark nodes as reused only if there are multiple nodes in the graph with same
|
257
|
+
# 'target' and it has some weights.
|
258
|
+
if node_group_key in seen_targets and len(weights) > 0:
|
259
|
+
reuse = True
|
260
|
+
reuse_group = node_group_key
|
261
|
+
# Update the 'base/main' node with the reuse group as all other nodes in its group.
|
262
|
+
fx_node_2_graph_node[seen_targets[node_group_key]].reuse_group = reuse_group
|
263
|
+
else:
|
264
|
+
seen_targets[node_group_key] = node
|
265
|
+
|
266
|
+
# Convert weights to numpy arrays after reuse marking
|
267
|
+
# We delay this conversion to preserve the original tensor instances during the reuse identification process.
|
268
|
+
# This is crucial for correctly identifying identical weight instances in reused functional layers.
|
269
|
+
# By keeping the original PyTorch tensors until this point, we ensure that:
|
270
|
+
# 1. Reused layers with the same weight instances are correctly marked as reused.
|
271
|
+
# 2. The instance-based weight signature generation works as intended, using the memory
|
272
|
+
# addresses of the original tensors.
|
273
|
+
# Only after all reuse marking is complete do we convert to numpy arrays.
|
274
|
+
for weight_name, weight_value in weights.items():
|
275
|
+
weights[weight_name] = to_numpy(weight_value)
|
276
|
+
|
252
277
|
# Initiate graph nodes.
|
253
278
|
if node.op in [CALL_METHOD, CALL_FUNCTION]:
|
254
279
|
graph_node_type = FunctionalNode
|
@@ -300,6 +325,8 @@ def nodes_builder(model: GraphModule,
|
|
300
325
|
weights=weights,
|
301
326
|
layer_class=node_type,
|
302
327
|
has_activation=node_has_activation,
|
328
|
+
reuse=reuse,
|
329
|
+
reuse_group=reuse_group,
|
303
330
|
**kwargs)
|
304
331
|
|
305
332
|
# Generate graph inputs list.
|
@@ -365,3 +392,28 @@ def edges_builder(model: GraphModule,
|
|
365
392
|
Edge(fx_node_2_graph_node[node], fx_node_2_graph_node[out_node], src_index, dst_index))
|
366
393
|
|
367
394
|
return edges
|
395
|
+
|
396
|
+
|
397
|
+
def create_reuse_group(target: Any, weights: Dict[str, Any]) -> str:
|
398
|
+
"""
|
399
|
+
Combine target and weights to create a unique reuse group identifier.
|
400
|
+
We consider the weights as part of the group identifier because they are not part of
|
401
|
+
the module in functional layers, but if a functional layer is using the same weights multiple
|
402
|
+
times it is considered to be reused.
|
403
|
+
|
404
|
+
This function creates a unique string identifier for a reuse group by combining
|
405
|
+
the target (typically a layer or operation name) with the weights IDs.
|
406
|
+
|
407
|
+
Args:
|
408
|
+
target (Any): The target of the node, typically a string or callable representing
|
409
|
+
a layer or operation.
|
410
|
+
weights (Dict[str, Any]): A dictionary of weight names to weight values.
|
411
|
+
The values can be any type (typically tensors or arrays).
|
412
|
+
|
413
|
+
Returns:
|
414
|
+
str: A unique string identifier for the reuse group.
|
415
|
+
"""
|
416
|
+
if not weights:
|
417
|
+
return str(target)
|
418
|
+
weight_ids = tuple(sorted(id(weight) for weight in weights.values()))
|
419
|
+
return f"{target}_{weight_ids}"
|
@@ -12,6 +12,8 @@
|
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
|
+
import copy
|
16
|
+
|
15
17
|
import time
|
16
18
|
from typing import Callable, Any, Tuple, List, Union
|
17
19
|
|
@@ -179,8 +181,11 @@ if FOUND_TORCH and FOUND_TORCHVISION:
|
|
179
181
|
# get the model device
|
180
182
|
device = get_working_device()
|
181
183
|
|
184
|
+
# copy model for data generation
|
185
|
+
model_for_data_gen = copy.deepcopy(model)
|
186
|
+
|
182
187
|
# get a static graph representation of the model using torch.fx
|
183
|
-
fx_model = symbolic_trace(
|
188
|
+
fx_model = symbolic_trace(model_for_data_gen)
|
184
189
|
|
185
190
|
# Get Data Generation functions and classes
|
186
191
|
image_pipeline, normalization, bn_layer_weighting_fn, bn_alignment_loss_fn, output_loss_fn, \
|
@@ -208,23 +213,23 @@ if FOUND_TORCH and FOUND_TORCHVISION:
|
|
208
213
|
scheduler = scheduler_get_fn(data_generation_config.n_iter)
|
209
214
|
|
210
215
|
# Set the current model
|
211
|
-
set_model(
|
216
|
+
set_model(model_for_data_gen)
|
212
217
|
|
213
218
|
# Create an activation extractor object to extract activations from the model
|
214
219
|
activation_extractor = PytorchActivationExtractor(
|
215
|
-
|
220
|
+
model_for_data_gen,
|
216
221
|
fx_model,
|
217
222
|
data_generation_config.bn_layer_types,
|
218
223
|
data_generation_config.last_layer_types)
|
219
224
|
|
220
225
|
# Create an orig_bn_stats_holder object to hold original BatchNorm statistics
|
221
|
-
orig_bn_stats_holder = PytorchOriginalBNStatsHolder(
|
226
|
+
orig_bn_stats_holder = PytorchOriginalBNStatsHolder(model_for_data_gen, data_generation_config.bn_layer_types)
|
222
227
|
if orig_bn_stats_holder.get_num_bn_layers() == 0:
|
223
228
|
Logger.critical(
|
224
229
|
f'Data generation requires a model with at least one BatchNorm layer.') # pragma: no cover
|
225
230
|
|
226
231
|
# Create an ImagesOptimizationHandler object for handling optimization
|
227
|
-
all_imgs_opt_handler = PytorchImagesOptimizationHandler(model=
|
232
|
+
all_imgs_opt_handler = PytorchImagesOptimizationHandler(model=model_for_data_gen,
|
228
233
|
data_gen_batch_size=data_generation_config.data_gen_batch_size,
|
229
234
|
init_dataset=init_dataset,
|
230
235
|
optimizer=data_generation_config.optimizer,
|
@@ -207,7 +207,9 @@ def generate_tp_model(default_config: OpQuantizationConfig,
|
|
207
207
|
base_config=const_config_input16_per_tensor)
|
208
208
|
|
209
209
|
qpreserving_const_config = const_config.clone_and_edit(enable_activation_quantization=False,
|
210
|
-
quantization_preserving=True
|
210
|
+
quantization_preserving=True,
|
211
|
+
default_weight_attr_config=const_config.default_weight_attr_config.clone_and_edit(
|
212
|
+
weights_per_channel_threshold=False))
|
211
213
|
qpreserving_const_config_options = tp.QuantizationConfigOptions([qpreserving_const_config])
|
212
214
|
|
213
215
|
# Create a TargetPlatformModel and set its default quantization config.
|
@@ -19,7 +19,7 @@ import torch
|
|
19
19
|
from torch import add, sub, mul, div, divide, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, \
|
20
20
|
chunk, unbind, topk, gather, equal, transpose, permute, argmax, squeeze, multiply, subtract
|
21
21
|
from torch.nn import Conv2d, Linear, ConvTranspose2d, MaxPool2d
|
22
|
-
from torch.nn import Dropout, Flatten, Hardtanh
|
22
|
+
from torch.nn import Dropout, Flatten, Hardtanh
|
23
23
|
from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, LeakyReLU
|
24
24
|
from torch.nn.functional import relu, relu6, prelu, silu, hardtanh, hardswish, leaky_relu
|
25
25
|
|
@@ -87,7 +87,7 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
|
|
87
87
|
squeeze,
|
88
88
|
permute,
|
89
89
|
transpose])
|
90
|
-
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [gather])
|
90
|
+
tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [gather, torch.Tensor.expand])
|
91
91
|
tp.OperationsSetToLayers(OPSET_MERGE_OPS,
|
92
92
|
[torch.stack, torch.cat, torch.concat, torch.concatenate])
|
93
93
|
|
File without changes
|
File without changes
|
{mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/SOURCES.txt
RENAMED
File without changes
|
File without changes
|
{mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/requires.txt
RENAMED
File without changes
|
{mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/top_level.txt
RENAMED
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|