mct-nightly 2.2.0.20240924.500__tar.gz → 2.2.0.20240926.452__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (562) hide show
  1. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/PKG-INFO +1 -1
  2. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/PKG-INFO +1 -1
  3. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/__init__.py +1 -1
  4. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/hessian/hessian_info_service.py +4 -6
  5. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py +14 -1
  6. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/const_holder_conv.py +3 -1
  7. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/reader/graph_builders.py +62 -10
  8. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/pytorch_data_generation.py +10 -5
  9. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tp_model.py +3 -1
  10. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_pytorch.py +2 -2
  11. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/LICENSE.md +0 -0
  12. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/README.md +0 -0
  13. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/SOURCES.txt +0 -0
  14. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/dependency_links.txt +0 -0
  15. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/requires.txt +0 -0
  16. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/mct_nightly.egg-info/top_level.txt +0 -0
  17. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/constants.py +0 -0
  18. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/__init__.py +0 -0
  19. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/analyzer.py +0 -0
  20. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/__init__.py +0 -0
  21. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/back2framework/__init__.py +0 -0
  22. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/back2framework/base_model_builder.py +0 -0
  23. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/base_substitutions.py +0 -0
  24. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/__init__.py +0 -0
  25. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/base_collector.py +0 -0
  26. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/histogram_collector.py +0 -0
  27. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/mean_collector.py +0 -0
  28. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/min_max_per_channel_collector.py +0 -0
  29. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/collectors/statistics_collector.py +0 -0
  30. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/framework_implementation.py +0 -0
  31. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/framework_info.py +0 -0
  32. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/fusion/__init__.py +0 -0
  33. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/fusion/graph_fuser.py +0 -0
  34. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/fusion/layer_fusing.py +0 -0
  35. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/__init__.py +0 -0
  36. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/base_graph.py +0 -0
  37. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/base_node.py +0 -0
  38. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/edge.py +0 -0
  39. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/functional_node.py +0 -0
  40. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/graph_matchers.py +0 -0
  41. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/graph_searches.py +0 -0
  42. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/__init__.py +0 -0
  43. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/bipartite_graph.py +0 -0
  44. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/compute_graph_max_cut.py +0 -0
  45. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/cut.py +0 -0
  46. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/max_cut_astar.py +0 -0
  47. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/memory_element.py +0 -0
  48. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/memory_graph/memory_graph.py +0 -0
  49. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/graph/virtual_activation_weights_node.py +0 -0
  50. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/hessian/__init__.py +0 -0
  51. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/hessian/hessian_info_utils.py +0 -0
  52. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/hessian/hessian_scores_calculator.py +0 -0
  53. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/hessian/hessian_scores_request.py +0 -0
  54. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/__init__.py +0 -0
  55. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/base_graph_filter.py +0 -0
  56. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/base_matcher.py +0 -0
  57. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/edge_matcher.py +0 -0
  58. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/function.py +0 -0
  59. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/node_matcher.py +0 -0
  60. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/matchers/walk_matcher.py +0 -0
  61. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/memory_computation.py +0 -0
  62. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/__init__.py +0 -0
  63. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/bit_width_setter.py +0 -0
  64. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/configurable_quant_id.py +0 -0
  65. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/configurable_quantizer_utils.py +0 -0
  66. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/distance_weighting.py +0 -0
  67. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_candidates_filter.py +0 -0
  68. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_quantization_config.py +0 -0
  69. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_facade.py +0 -0
  70. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/mixed_precision_search_manager.py +0 -0
  71. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/__init__.py +0 -0
  72. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization.py +0 -0
  73. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/resource_utilization_data.py +0 -0
  74. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_aggregation_methods.py +0 -0
  75. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_functions_mapping.py +0 -0
  76. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/resource_utilization_tools/ru_methods.py +0 -0
  77. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/search_methods/__init__.py +0 -0
  78. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/search_methods/linear_programming.py +0 -0
  79. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/sensitivity_evaluation.py +0 -0
  80. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/set_layer_to_bitwidth.py +0 -0
  81. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/mixed_precision/solution_refinement_procedure.py +0 -0
  82. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/model_builder_mode.py +0 -0
  83. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/model_collector.py +0 -0
  84. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/model_validation.py +0 -0
  85. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/network_editors/__init__.py +0 -0
  86. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/network_editors/actions.py +0 -0
  87. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/network_editors/edit_network.py +0 -0
  88. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/network_editors/node_filters.py +0 -0
  89. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/node_prior_info.py +0 -0
  90. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/__init__.py +0 -0
  91. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/channels_grouping.py +0 -0
  92. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/greedy_mask_calculator.py +0 -0
  93. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/importance_metrics/__init__.py +0 -0
  94. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/importance_metrics/base_importance_metric.py +0 -0
  95. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/importance_metrics/importance_metric_factory.py +0 -0
  96. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/importance_metrics/lfh_importance_metric.py +0 -0
  97. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/mask/__init__.py +0 -0
  98. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/mask/per_channel_mask.py +0 -0
  99. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/mask/per_simd_group_mask.py +0 -0
  100. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/memory_calculator.py +0 -0
  101. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/prune_graph.py +0 -0
  102. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/pruner.py +0 -0
  103. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/pruning_config.py +0 -0
  104. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/pruning_framework_implementation.py +0 -0
  105. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/pruning_info.py +0 -0
  106. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/pruning/pruning_section.py +0 -0
  107. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/__init__.py +0 -0
  108. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/bit_width_config.py +0 -0
  109. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/candidate_node_quantization_config.py +0 -0
  110. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/core_config.py +0 -0
  111. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/debug_config.py +0 -0
  112. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/filter_nodes_candidates.py +0 -0
  113. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/node_quantization_config.py +0 -0
  114. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_config.py +0 -0
  115. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_fn_selection.py +0 -0
  116. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_fn_selection.py +0 -0
  117. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/__init__.py +0 -0
  118. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/error_functions.py +0 -0
  119. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/lut_kmeans_params.py +0 -0
  120. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/outlier_filter.py +0 -0
  121. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/power_of_two_selection.py +0 -0
  122. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_activations_computation.py +0 -0
  123. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_computation.py +0 -0
  124. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_search.py +0 -0
  125. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/qparams_weights_computation.py +0 -0
  126. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/symmetric_selection.py +0 -0
  127. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantization_params_generation/uniform_selection.py +0 -0
  128. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantize_graph_weights.py +0 -0
  129. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantize_node.py +0 -0
  130. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantizers/__init__.py +0 -0
  131. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantizers/lut_kmeans_quantizer.py +0 -0
  132. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantizers/quantizers_helpers.py +0 -0
  133. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/quantizers/uniform_quantizers.py +0 -0
  134. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/quantization/set_node_quantization_config.py +0 -0
  135. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/similarity_analyzer.py +0 -0
  136. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/statistics_correction/__init__.py +0 -0
  137. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/statistics_correction/apply_bias_correction_to_graph.py +0 -0
  138. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/statistics_correction/apply_second_moment_correction_to_graph.py +0 -0
  139. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/statistics_correction/compute_bias_correction_of_graph.py +0 -0
  140. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/statistics_correction/statistics_correction.py +0 -0
  141. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/__init__.py +0 -0
  142. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/apply_substitutions.py +0 -0
  143. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/batchnorm_folding.py +0 -0
  144. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/batchnorm_reconstruction.py +0 -0
  145. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/batchnorm_refusing.py +0 -0
  146. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/linear_collapsing.py +0 -0
  147. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/linear_collapsing_substitution.py +0 -0
  148. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/remove_identity.py +0 -0
  149. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/residual_collapsing.py +0 -0
  150. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/scale_equalization.py +0 -0
  151. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/shift_negative_activation.py +0 -0
  152. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/softmax_shift.py +0 -0
  153. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/virtual_activation_weights_composition.py +0 -0
  154. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/substitutions/weights_activation_split.py +0 -0
  155. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/user_info.py +0 -0
  156. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/visualization/__init__.py +0 -0
  157. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/visualization/final_config_visualizer.py +0 -0
  158. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/visualization/nn_visualizer.py +0 -0
  159. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/common/visualization/tensorboard_writer.py +0 -0
  160. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/graph_prep_runner.py +0 -0
  161. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/__init__.py +0 -0
  162. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/__init__.py +0 -0
  163. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/factory_model_builder.py +0 -0
  164. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/float_model_builder.py +0 -0
  165. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/instance_builder.py +0 -0
  166. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/keras_model_builder.py +0 -0
  167. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/mixed_precision_model_builder.py +0 -0
  168. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/back2framework/quantized_model_builder.py +0 -0
  169. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/constants.py +0 -0
  170. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/custom_layer_validation.py +0 -0
  171. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/default_framework_info.py +0 -0
  172. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/__init__.py +0 -0
  173. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/__init__.py +0 -0
  174. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/activation_decomposition.py +0 -0
  175. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  176. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  177. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  178. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  179. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/conv_funcs_to_layer.py +0 -0
  180. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/dwconv_to_conv.py +0 -0
  181. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/input_scaling.py +0 -0
  182. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  183. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/matmul_substitution.py +0 -0
  184. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  185. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  186. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/remove_identity.py +0 -0
  187. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  188. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/scale_equalization.py +0 -0
  189. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/separableconv_decomposition.py +0 -0
  190. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  191. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/sigmoid_mul_to_swish.py +0 -0
  192. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/softmax_shift.py +0 -0
  193. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  194. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  195. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/hessian/__init__.py +0 -0
  196. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/hessian/activation_hessian_scores_calculator_keras.py +0 -0
  197. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/hessian/hessian_scores_calculator_keras.py +0 -0
  198. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/hessian/weights_hessian_scores_calculator_keras.py +0 -0
  199. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/keras_implementation.py +0 -0
  200. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/keras_model_validation.py +0 -0
  201. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/keras_node_prior_info.py +0 -0
  202. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/mixed_precision/__init__.py +0 -0
  203. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/mixed_precision/configurable_activation_quantizer.py +0 -0
  204. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/mixed_precision/configurable_weights_quantizer.py +0 -0
  205. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/pruning/__init__.py +0 -0
  206. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/pruning/pruning_keras_implementation.py +0 -0
  207. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/quantizer/__init__.py +0 -0
  208. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/quantizer/base_quantizer.py +0 -0
  209. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/quantizer/fake_quant_builder.py +0 -0
  210. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/quantizer/lut_fake_quant.py +0 -0
  211. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/__init__.py +0 -0
  212. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/common.py +0 -0
  213. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/connectivity_handler.py +0 -0
  214. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/nested_model/__init__.py +0 -0
  215. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/nested_model/edges_merger.py +0 -0
  216. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/nested_model/nested_model_handler.py +0 -0
  217. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/nested_model/nodes_merger.py +0 -0
  218. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/nested_model/outputs_merger.py +0 -0
  219. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/node_builder.py +0 -0
  220. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/reader/reader.py +0 -0
  221. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/resource_utilization_data_facade.py +0 -0
  222. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/statistics_correction/__init__.py +0 -0
  223. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/statistics_correction/apply_second_moment_correction.py +0 -0
  224. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/tf_tensor_numpy.py +0 -0
  225. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/keras/visualization/__init__.py +0 -0
  226. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/__init__.py +0 -0
  227. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/__init__.py +0 -0
  228. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/factory_model_builder.py +0 -0
  229. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/float_model_builder.py +0 -0
  230. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/instance_builder.py +0 -0
  231. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/mixed_precision_model_builder.py +0 -0
  232. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/__init__.py +0 -0
  233. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/quantized_layer_wrapper.py +0 -0
  234. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/quantization_wrapper/wrapper_quantize_config.py +0 -0
  235. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/back2framework/quantized_model_builder.py +0 -0
  236. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/constants.py +0 -0
  237. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/default_framework_info.py +0 -0
  238. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/__init__.py +0 -0
  239. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/__init__.py +0 -0
  240. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_folding.py +0 -0
  241. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_reconstruction.py +0 -0
  242. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/batchnorm_refusing.py +0 -0
  243. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/concat_threshold_update.py +0 -0
  244. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_batch_norm.py +0 -0
  245. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/functional_layer_norm.py +0 -0
  246. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/linear_collapsing.py +0 -0
  247. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/multi_head_attention_decomposition.py +0 -0
  248. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/relu_bound_to_power_of_2.py +0 -0
  249. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/remove_identity.py +0 -0
  250. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/reshape_with_static_shapes.py +0 -0
  251. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/residual_collapsing.py +0 -0
  252. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/scale_equalization.py +0 -0
  253. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/shift_negative_activation.py +0 -0
  254. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/softmax_shift.py +0 -0
  255. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/transform_function_call_method.py +0 -0
  256. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/virtual_activation_weights_composition.py +0 -0
  257. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/weights_activation_split.py +0 -0
  258. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/hessian/__init__.py +0 -0
  259. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/hessian/activation_hessian_scores_calculator_pytorch.py +0 -0
  260. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/hessian/hessian_scores_calculator_pytorch.py +0 -0
  261. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/hessian/weights_hessian_scores_calculator_pytorch.py +0 -0
  262. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/mixed_precision/__init__.py +0 -0
  263. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_activation_quantizer.py +0 -0
  264. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/mixed_precision/configurable_weights_quantizer.py +0 -0
  265. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/pruning/__init__.py +0 -0
  266. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/pruning/pruning_pytorch_implementation.py +0 -0
  267. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/pytorch_device_config.py +0 -0
  268. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/pytorch_implementation.py +0 -0
  269. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/pytorch_node_prior_info.py +0 -0
  270. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/quantizer/__init__.py +0 -0
  271. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/quantizer/fake_quant_builder.py +0 -0
  272. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/quantizer/lut_fake_quant.py +0 -0
  273. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/reader/__init__.py +0 -0
  274. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/reader/node_holders.py +0 -0
  275. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/reader/reader.py +0 -0
  276. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/resource_utilization_data_facade.py +0 -0
  277. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/statistics_correction/__init__.py +0 -0
  278. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/statistics_correction/apply_second_moment_correction.py +0 -0
  279. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/pytorch/utils.py +0 -0
  280. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/quantization_prep_runner.py +0 -0
  281. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/core/runner.py +0 -0
  282. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/__init__.py +0 -0
  283. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/__init__.py +0 -0
  284. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/constants.py +0 -0
  285. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/data_generation.py +0 -0
  286. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/data_generation_config.py +0 -0
  287. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/enums.py +0 -0
  288. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/image_pipeline.py +0 -0
  289. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/model_info_exctractors.py +0 -0
  290. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/common/optimization_utils.py +0 -0
  291. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/__init__.py +0 -0
  292. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/constants.py +0 -0
  293. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/image_operations.py +0 -0
  294. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/image_pipeline.py +0 -0
  295. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/keras_data_generation.py +0 -0
  296. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/model_info_exctractors.py +0 -0
  297. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/__init__.py +0 -0
  298. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/batchnorm_alignment_functions.py +0 -0
  299. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/bn_layer_weighting_functions.py +0 -0
  300. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/image_initilization.py +0 -0
  301. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/lr_scheduler.py +0 -0
  302. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/output_loss_functions.py +0 -0
  303. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_functions/scheduler_step_functions.py +0 -0
  304. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/keras/optimization_utils.py +0 -0
  305. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/__init__.py +0 -0
  306. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/constants.py +0 -0
  307. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/image_operations.py +0 -0
  308. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/image_pipeline.py +0 -0
  309. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/model_info_exctractors.py +0 -0
  310. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/__init__.py +0 -0
  311. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/batchnorm_alignment_functions.py +0 -0
  312. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/bn_layer_weighting_functions.py +0 -0
  313. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/image_initilization.py +0 -0
  314. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/lr_scheduler.py +0 -0
  315. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/output_loss_functions.py +0 -0
  316. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_functions/scheduler_step_functions.py +0 -0
  317. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/data_generation/pytorch/optimization_utils.py +0 -0
  318. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/defaultdict.py +0 -0
  319. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/__init__.py +0 -0
  320. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/__init__.py +0 -0
  321. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/__init__.py +0 -0
  322. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/exporter.py +0 -0
  323. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/fw_agonstic/quantization_format.py +0 -0
  324. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/__init__.py +0 -0
  325. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/base_keras_exporter.py +0 -0
  326. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/export_serialization_format.py +0 -0
  327. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_keras_exporter.py +0 -0
  328. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/fakely_quant_tflite_exporter.py +0 -0
  329. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/int8_tflite_exporter.py +0 -0
  330. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/keras_export_facade.py +0 -0
  331. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/keras/mctq_keras_exporter.py +0 -0
  332. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/__init__.py +0 -0
  333. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/base_pytorch_exporter.py +0 -0
  334. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/export_serialization_format.py +0 -0
  335. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_onnx_pytorch_exporter.py +0 -0
  336. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/fakely_quant_torchscript_pytorch_exporter.py +0 -0
  337. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_exporter/pytorch/pytorch_export_facade.py +0 -0
  338. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/__init__.py +0 -0
  339. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/__init__.py +0 -0
  340. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/fw_agnostic/get_inferable_quantizers.py +0 -0
  341. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/keras/__init__.py +0 -0
  342. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/keras/builder/__init__.py +0 -0
  343. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/keras/builder/fully_quantized_model_builder.py +0 -0
  344. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/keras/builder/node_to_quantizer.py +0 -0
  345. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/keras/validate_layer.py +0 -0
  346. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/pytorch/__init__.py +0 -0
  347. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/__init__.py +0 -0
  348. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/fully_quantized_model_builder.py +0 -0
  349. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/pytorch/builder/node_to_quantizer.py +0 -0
  350. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/exporter/model_wrapper/pytorch/validate_layer.py +0 -0
  351. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/__init__.py +0 -0
  352. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/__init__.py +0 -0
  353. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/gptq_config.py +0 -0
  354. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/gptq_constants.py +0 -0
  355. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/gptq_framework_implementation.py +0 -0
  356. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/gptq_graph.py +0 -0
  357. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/common/gptq_training.py +0 -0
  358. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/__init__.py +0 -0
  359. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/gptq_keras_implementation.py +0 -0
  360. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/gptq_loss.py +0 -0
  361. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/gptq_training.py +0 -0
  362. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/graph_info.py +0 -0
  363. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantization_facade.py +0 -0
  364. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/__init__.py +0 -0
  365. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/base_keras_gptq_quantizer.py +0 -0
  366. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/quant_utils.py +0 -0
  367. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/quantization_builder.py +0 -0
  368. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/regularization_factory.py +0 -0
  369. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/__init__.py +0 -0
  370. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  371. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  372. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  373. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/__init__.py +0 -0
  374. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  375. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/__init__.py +0 -0
  376. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/gptq_loss.py +0 -0
  377. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/gptq_pytorch_implementation.py +0 -0
  378. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/gptq_training.py +0 -0
  379. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/graph_info.py +0 -0
  380. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantization_facade.py +0 -0
  381. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/__init__.py +0 -0
  382. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/base_pytorch_gptq_quantizer.py +0 -0
  383. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/gradual_activation_quantization.py +0 -0
  384. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/quant_utils.py +0 -0
  385. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/quantization_builder.py +0 -0
  386. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/regularization_factory.py +0 -0
  387. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/__init__.py +0 -0
  388. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/soft_quantizer_reg.py +0 -0
  389. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/symmetric_soft_quantizer.py +0 -0
  390. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/soft_rounding/uniform_soft_quantizer.py +0 -0
  391. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  392. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  393. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/gptq/runner.py +0 -0
  394. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/logger.py +0 -0
  395. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/metadata.py +0 -0
  396. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/pruning/__init__.py +0 -0
  397. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/pruning/keras/__init__.py +0 -0
  398. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/pruning/keras/pruning_facade.py +0 -0
  399. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/pruning/pytorch/__init__.py +0 -0
  400. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/pruning/pytorch/pruning_facade.py +0 -0
  401. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/__init__.py +0 -0
  402. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/keras/__init__.py +0 -0
  403. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/keras/quantization_facade.py +0 -0
  404. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/pytorch/__init__.py +0 -0
  405. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/pytorch/quantization_facade.py +0 -0
  406. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/ptq/runner.py +0 -0
  407. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/__init__.py +0 -0
  408. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/common/__init__.py +0 -0
  409. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/common/qat_config.py +0 -0
  410. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/__init__.py +0 -0
  411. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantization_facade.py +0 -0
  412. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/__init__.py +0 -0
  413. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/base_keras_qat_quantizer.py +0 -0
  414. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/lsq/__init__.py +0 -0
  415. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/lsq/symmetric_lsq.py +0 -0
  416. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/lsq/uniform_lsq.py +0 -0
  417. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/quant_utils.py +0 -0
  418. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/quantization_builder.py +0 -0
  419. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/__init__.py +0 -0
  420. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/symmetric_ste.py +0 -0
  421. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/keras/quantizer/ste_rounding/uniform_ste.py +0 -0
  422. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/__init__.py +0 -0
  423. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantization_facade.py +0 -0
  424. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/__init__.py +0 -0
  425. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/base_pytorch_qat_weight_quantizer.py +0 -0
  426. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/lsq/__init__.py +0 -0
  427. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/lsq/symmetric_lsq.py +0 -0
  428. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/lsq/uniform_lsq.py +0 -0
  429. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/quantization_builder.py +0 -0
  430. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/__init__.py +0 -0
  431. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/symmetric_ste.py +0 -0
  432. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/qat/pytorch/quantizer/ste_rounding/uniform_ste.py +0 -0
  433. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/__init__.py +0 -0
  434. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/constants.py +0 -0
  435. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/immutable.py +0 -0
  436. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/__init__.py +0 -0
  437. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/current_tp_model.py +0 -0
  438. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/fusing.py +0 -0
  439. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/op_quantization_config.py +0 -0
  440. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/operators.py +0 -0
  441. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model.py +0 -0
  442. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/target_platform_model_component.py +0 -0
  443. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/__init__.py +0 -0
  444. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/attribute_filter.py +0 -0
  445. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/current_tpc.py +0 -0
  446. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/layer_filter_params.py +0 -0
  447. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/operations_to_layers.py +0 -0
  448. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities.py +0 -0
  449. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/target_platform/targetplatform2framework/target_platform_capabilities_component.py +0 -0
  450. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/__init__.py +0 -0
  451. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/get_target_platform_capabilities.py +0 -0
  452. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/__init__.py +0 -0
  453. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/latest/__init__.py +0 -0
  454. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/target_platform_capabilities.py +0 -0
  455. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/__init__.py +0 -0
  456. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tp_model.py +0 -0
  457. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_keras.py +0 -0
  458. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1/tpc_pytorch.py +0 -0
  459. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/__init__.py +0 -0
  460. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tp_model.py +0 -0
  461. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_keras.py +0 -0
  462. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_lut/tpc_pytorch.py +0 -0
  463. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/__init__.py +0 -0
  464. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tp_model.py +0 -0
  465. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_keras.py +0 -0
  466. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v1_pot/tpc_pytorch.py +0 -0
  467. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/__init__.py +0 -0
  468. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tp_model.py +0 -0
  469. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_keras.py +0 -0
  470. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2/tpc_pytorch.py +0 -0
  471. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/__init__.py +0 -0
  472. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tp_model.py +0 -0
  473. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_keras.py +0 -0
  474. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v2_lut/tpc_pytorch.py +0 -0
  475. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/__init__.py +0 -0
  476. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tp_model.py +0 -0
  477. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_keras.py +0 -0
  478. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3/tpc_pytorch.py +0 -0
  479. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/__init__.py +0 -0
  480. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tp_model.py +0 -0
  481. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_keras.py +0 -0
  482. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v3_lut/tpc_pytorch.py +0 -0
  483. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/__init__.py +0 -0
  484. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/imx500_tpc/v4/tpc_keras.py +0 -0
  485. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/__init__.py +0 -0
  486. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/latest/__init__.py +0 -0
  487. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/target_platform_capabilities.py +0 -0
  488. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/__init__.py +0 -0
  489. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tp_model.py +0 -0
  490. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_keras.py +0 -0
  491. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/qnnpack_tpc/v1/tpc_pytorch.py +0 -0
  492. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/__init__.py +0 -0
  493. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/latest/__init__.py +0 -0
  494. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/target_platform_capabilities.py +0 -0
  495. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/__init__.py +0 -0
  496. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tp_model.py +0 -0
  497. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_keras.py +0 -0
  498. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/target_platform_capabilities/tpc_models/tflite_tpc/v1/tpc_pytorch.py +0 -0
  499. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/__init__.py +0 -0
  500. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/__init__.py +0 -0
  501. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/base_trainable_quantizer.py +0 -0
  502. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/constants.py +0 -0
  503. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/get_quantizer_config.py +0 -0
  504. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/get_quantizers.py +0 -0
  505. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/quant_utils.py +0 -0
  506. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/trainable_quantizer_config.py +0 -0
  507. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/common/training_method.py +0 -0
  508. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/__init__.py +0 -0
  509. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/base_keras_quantizer.py +0 -0
  510. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/config_serialization.py +0 -0
  511. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/load_model.py +0 -0
  512. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/quantize_wrapper.py +0 -0
  513. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/keras/quantizer_utils.py +0 -0
  514. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/__init__.py +0 -0
  515. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/__init__.py +0 -0
  516. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/base_activation_quantizer.py +0 -0
  517. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/__init__.py +0 -0
  518. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/symmetric_lsq.py +0 -0
  519. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/lsq/uniform_lsq.py +0 -0
  520. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/__init__.py +0 -0
  521. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/symmetric_ste.py +0 -0
  522. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/activation_quantizers/ste/uniform_ste.py +0 -0
  523. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/annealing_schedulers.py +0 -0
  524. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/base_pytorch_quantizer.py +0 -0
  525. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/quantizer_utils.py +0 -0
  526. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/trainable_infrastructure/pytorch/util.py +0 -0
  527. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/verify_packages.py +0 -0
  528. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/__init__.py +0 -0
  529. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/__init__.py +0 -0
  530. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/constants.py +0 -0
  531. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/core_report_generator.py +0 -0
  532. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/dataset_utils.py +0 -0
  533. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/framework_report_utils.py +0 -0
  534. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/model_analyzer.py +0 -0
  535. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/model_folding_utils.py +0 -0
  536. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/similarity_calculator.py +0 -0
  537. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/similarity_functions.py +0 -0
  538. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/tensorboard_utils.py +0 -0
  539. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/common/xquant_config.py +0 -0
  540. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/__init__.py +0 -0
  541. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/dataset_utils.py +0 -0
  542. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/facade_xquant_report.py +0 -0
  543. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/keras_report_utils.py +0 -0
  544. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/model_analyzer.py +0 -0
  545. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/similarity_functions.py +0 -0
  546. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/keras/tensorboard_utils.py +0 -0
  547. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/__init__.py +0 -0
  548. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/dataset_utils.py +0 -0
  549. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/facade_xquant_report.py +0 -0
  550. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/model_analyzer.py +0 -0
  551. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/pytorch_report_utils.py +0 -0
  552. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/similarity_functions.py +0 -0
  553. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/model_compression_toolkit/xquant/pytorch/tensorboard_utils.py +0 -0
  554. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/setup.cfg +0 -0
  555. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/setup.py +0 -0
  556. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/__init__.py +0 -0
  557. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/__init__.py +0 -0
  558. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/gptq/__init__.py +0 -0
  559. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/gptq/test_annealing_cfg.py +0 -0
  560. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/gptq/test_gradual_act_quantization.py +0 -0
  561. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/trainable_infrastructure/__init__.py +0 -0
  562. {mct-nightly-2.2.0.20240924.500 → mct-nightly-2.2.0.20240926.452}/tests_pytest/pytorch/trainable_infrastructure/test_linear_annealing.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20240924.500
3
+ Version: 2.2.0.20240926.452
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mct-nightly
3
- Version: 2.2.0.20240924.500
3
+ Version: 2.2.0.20240926.452
4
4
  Summary: A Model Compression Toolkit for neural networks
5
5
  Home-page: UNKNOWN
6
6
  License: UNKNOWN
@@ -27,4 +27,4 @@ from model_compression_toolkit import data_generation
27
27
  from model_compression_toolkit import pruning
28
28
  from model_compression_toolkit.trainable_infrastructure.keras.load_model import keras_load_quantized_model
29
29
 
30
- __version__ = "2.2.0.20240924.000500"
30
+ __version__ = "2.2.0.20240926.000452"
@@ -258,12 +258,10 @@ class HessianInfoService:
258
258
  f"{hessian_scores_request.target_nodes}.")
259
259
 
260
260
  # Replace node in reused target nodes with a representing node from the 'reuse group'.
261
- for n in hessian_scores_request.target_nodes:
262
- if n.reuse_group:
263
- rep_node = self._get_representing_of_reuse_group(n)
264
- hessian_scores_request.target_nodes.remove(n)
265
- if rep_node not in hessian_scores_request.target_nodes:
266
- hessian_scores_request.target_nodes.append(rep_node)
261
+ hessian_scores_request.target_nodes = [
262
+ self._get_representing_of_reuse_group(node) if node.reuse else node
263
+ for node in hessian_scores_request.target_nodes
264
+ ]
267
265
 
268
266
  # Ensure the saved info has the required number of approximations
269
267
  self._populate_saved_info_to_size(hessian_scores_request, required_size, batch_size)
@@ -231,6 +231,7 @@ class PytorchModel(torch.nn.Module):
231
231
  self.return_float_outputs = return_float_outputs
232
232
  self.wrapper = wrapper
233
233
  self.get_activation_quantizer_holder = get_activation_quantizer_holder_fn
234
+ self.reuse_groups = {}
234
235
  self._add_modules()
235
236
 
236
237
  # todo: Move to parent class BaseModelBuilder
@@ -288,7 +289,19 @@ class PytorchModel(torch.nn.Module):
288
289
  Build and add the modules and functional nodes from node_sort list as attributes to PytorchModel
289
290
  """
290
291
  for node in self.node_sort:
291
- node_op = self.wrap(node)
292
+ if node.reuse:
293
+ # If the node is reused, retrieve the original module
294
+ if node.reuse_group not in self.reuse_groups:
295
+ Logger.critical(f"Reuse group {node.reuse_group} not found for node {node.name}")
296
+
297
+ node_op = self.reuse_groups[node.reuse_group]
298
+ else:
299
+ # If it's not reused, create a new module
300
+ node_op = self.wrap(node)
301
+ if node.reuse_group:
302
+ # Store the module for future reuse
303
+ self.reuse_groups[node.reuse_group] = node_op
304
+
292
305
  if isinstance(node, FunctionalNode):
293
306
  # for functional layers
294
307
  setattr(self, node.name, node_op)
@@ -80,7 +80,9 @@ class FunctionalConvSubstitution(common.BaseSubstitution):
80
80
  output_shape=func_node.output_shape,
81
81
  weights={KERNEL: weight} if bias is None else {KERNEL: weight, BIAS: bias},
82
82
  layer_class=new_layer,
83
- has_activation=func_node.has_activation)
83
+ has_activation=func_node.has_activation,
84
+ reuse=func_node.reuse,
85
+ reuse_group=func_node.reuse_group)
84
86
  graph.add_node(new_node)
85
87
  graph.reconnect_out_edges(current_node=func_node, new_node=new_node)
86
88
  graph.reconnect_in_edges(current_node=func_node, new_node=new_node)
@@ -30,8 +30,7 @@ from model_compression_toolkit.core.pytorch.reader.node_holders import DummyPlac
30
30
  from model_compression_toolkit.logger import Logger
31
31
 
32
32
 
33
- def _extract_parameters_and_buffers(module: Union[torch.nn.Module, GraphModule],
34
- to_numpy: Callable) -> Dict[str, np.ndarray]:
33
+ def _extract_parameters_and_buffers(module: Union[torch.nn.Module, GraphModule]) -> Dict[str, np.ndarray]:
35
34
  """
36
35
  Extract parameters & buffers from input module to a dictionary.
37
36
  Args:
@@ -41,8 +40,8 @@ def _extract_parameters_and_buffers(module: Union[torch.nn.Module, GraphModule],
41
40
  Dictionary containing module parameters and buffers by name.
42
41
  """
43
42
 
44
- named_parameters = {name: to_numpy(parameter) for name, parameter in module.named_parameters()}
45
- named_buffers = {name: to_numpy(buffer) for name, buffer in module.named_buffers()}
43
+ named_parameters = {name: parameter for name, parameter in module.named_parameters()}
44
+ named_buffers = {name: buffer for name, buffer in module.named_buffers()}
46
45
 
47
46
  return {**named_parameters, **named_buffers}
48
47
 
@@ -97,14 +96,12 @@ def _build_input_alloc_and_call_args(n: Node, input_tensors_in_node_kwargs: Dict
97
96
  return op_call_args, tensor_input_alloc
98
97
 
99
98
 
100
- def _extract_torch_layer_data(node_module: torch.nn.Module,
101
- to_numpy: Callable) -> Tuple[Any, Dict[str, np.ndarray], Dict]:
99
+ def _extract_torch_layer_data(node_module: torch.nn.Module) -> Tuple[Any, Dict[str, np.ndarray], Dict]:
102
100
  """
103
101
  Extract required data from a non-functional node to rebuild the PyTorch layer.
104
102
 
105
103
  Args:
106
104
  node_module: Torch layer, such as nn.Conv2d, nn.Linear, etc.
107
- to_numpy: Function to convert framework's tensor to a Numpy array.
108
105
 
109
106
  Returns:
110
107
  Node layer class.
@@ -124,7 +121,7 @@ def _extract_torch_layer_data(node_module: torch.nn.Module,
124
121
  framework_attr[BIAS] = False if node_module.bias is None else True
125
122
 
126
123
  # Extract layer weights and named buffers.
127
- weights = {n: w for n, w in _extract_parameters_and_buffers(node_module, to_numpy).items() if len(w.shape) > 0}
124
+ weights = {n: w for n, w in _extract_parameters_and_buffers(node_module).items() if len(w.shape) > 0}
128
125
  return node_type, weights, framework_attr
129
126
 
130
127
 
@@ -181,8 +178,11 @@ def nodes_builder(model: GraphModule,
181
178
  consts_dict = {}
182
179
  used_consts = set()
183
180
 
181
+ # Dictionary to track seen targets and their corresponding nodes to mark reused nodes
182
+ seen_targets = {}
183
+
184
184
  # Init parameters & buffers dictionary of the entire model. We later extract the constants values from this dictionary.
185
- model_parameters_and_buffers = _extract_parameters_and_buffers(model, to_numpy)
185
+ model_parameters_and_buffers = _extract_parameters_and_buffers(model)
186
186
 
187
187
  for node in model.graph.nodes:
188
188
 
@@ -195,7 +195,7 @@ def nodes_builder(model: GraphModule,
195
195
 
196
196
  if node.target in module_dict.keys():
197
197
  # PyTorch module node, such as nn.Conv2d or nn.Linear.
198
- node_type, weights, framework_attr = _extract_torch_layer_data(module_dict[node.target], to_numpy)
198
+ node_type, weights, framework_attr = _extract_torch_layer_data(module_dict[node.target])
199
199
 
200
200
  elif node.op == CALL_FUNCTION:
201
201
  # Node is a function that handle a parameter\buffer in the model.
@@ -249,6 +249,31 @@ def nodes_builder(model: GraphModule,
249
249
  # Extract input and output shapes of the node.
250
250
  input_shape, output_shape = _extract_input_and_output_shapes(node)
251
251
 
252
+ # Check if this node's target has been seen before
253
+ reuse = False
254
+ reuse_group = None
255
+ node_group_key = create_reuse_group(node.target, weights)
256
+ # We mark nodes as reused only if there are multiple nodes in the graph with same
257
+ # 'target' and it has some weights.
258
+ if node_group_key in seen_targets and len(weights) > 0:
259
+ reuse = True
260
+ reuse_group = node_group_key
261
+ # Update the 'base/main' node with the reuse group as all other nodes in its group.
262
+ fx_node_2_graph_node[seen_targets[node_group_key]].reuse_group = reuse_group
263
+ else:
264
+ seen_targets[node_group_key] = node
265
+
266
+ # Convert weights to numpy arrays after reuse marking
267
+ # We delay this conversion to preserve the original tensor instances during the reuse identification process.
268
+ # This is crucial for correctly identifying identical weight instances in reused functional layers.
269
+ # By keeping the original PyTorch tensors until this point, we ensure that:
270
+ # 1. Reused layers with the same weight instances are correctly marked as reused.
271
+ # 2. The instance-based weight signature generation works as intended, using the memory
272
+ # addresses of the original tensors.
273
+ # Only after all reuse marking is complete do we convert to numpy arrays.
274
+ for weight_name, weight_value in weights.items():
275
+ weights[weight_name] = to_numpy(weight_value)
276
+
252
277
  # Initiate graph nodes.
253
278
  if node.op in [CALL_METHOD, CALL_FUNCTION]:
254
279
  graph_node_type = FunctionalNode
@@ -300,6 +325,8 @@ def nodes_builder(model: GraphModule,
300
325
  weights=weights,
301
326
  layer_class=node_type,
302
327
  has_activation=node_has_activation,
328
+ reuse=reuse,
329
+ reuse_group=reuse_group,
303
330
  **kwargs)
304
331
 
305
332
  # Generate graph inputs list.
@@ -365,3 +392,28 @@ def edges_builder(model: GraphModule,
365
392
  Edge(fx_node_2_graph_node[node], fx_node_2_graph_node[out_node], src_index, dst_index))
366
393
 
367
394
  return edges
395
+
396
+
397
+ def create_reuse_group(target: Any, weights: Dict[str, Any]) -> str:
398
+ """
399
+ Combine target and weights to create a unique reuse group identifier.
400
+ We consider the weights as part of the group identifier because they are not part of
401
+ the module in functional layers, but if a functional layer is using the same weights multiple
402
+ times it is considered to be reused.
403
+
404
+ This function creates a unique string identifier for a reuse group by combining
405
+ the target (typically a layer or operation name) with the weights IDs.
406
+
407
+ Args:
408
+ target (Any): The target of the node, typically a string or callable representing
409
+ a layer or operation.
410
+ weights (Dict[str, Any]): A dictionary of weight names to weight values.
411
+ The values can be any type (typically tensors or arrays).
412
+
413
+ Returns:
414
+ str: A unique string identifier for the reuse group.
415
+ """
416
+ if not weights:
417
+ return str(target)
418
+ weight_ids = tuple(sorted(id(weight) for weight in weights.values()))
419
+ return f"{target}_{weight_ids}"
@@ -12,6 +12,8 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ==============================================================================
15
+ import copy
16
+
15
17
  import time
16
18
  from typing import Callable, Any, Tuple, List, Union
17
19
 
@@ -179,8 +181,11 @@ if FOUND_TORCH and FOUND_TORCHVISION:
179
181
  # get the model device
180
182
  device = get_working_device()
181
183
 
184
+ # copy model for data generation
185
+ model_for_data_gen = copy.deepcopy(model)
186
+
182
187
  # get a static graph representation of the model using torch.fx
183
- fx_model = symbolic_trace(model)
188
+ fx_model = symbolic_trace(model_for_data_gen)
184
189
 
185
190
  # Get Data Generation functions and classes
186
191
  image_pipeline, normalization, bn_layer_weighting_fn, bn_alignment_loss_fn, output_loss_fn, \
@@ -208,23 +213,23 @@ if FOUND_TORCH and FOUND_TORCHVISION:
208
213
  scheduler = scheduler_get_fn(data_generation_config.n_iter)
209
214
 
210
215
  # Set the current model
211
- set_model(model)
216
+ set_model(model_for_data_gen)
212
217
 
213
218
  # Create an activation extractor object to extract activations from the model
214
219
  activation_extractor = PytorchActivationExtractor(
215
- model,
220
+ model_for_data_gen,
216
221
  fx_model,
217
222
  data_generation_config.bn_layer_types,
218
223
  data_generation_config.last_layer_types)
219
224
 
220
225
  # Create an orig_bn_stats_holder object to hold original BatchNorm statistics
221
- orig_bn_stats_holder = PytorchOriginalBNStatsHolder(model, data_generation_config.bn_layer_types)
226
+ orig_bn_stats_holder = PytorchOriginalBNStatsHolder(model_for_data_gen, data_generation_config.bn_layer_types)
222
227
  if orig_bn_stats_holder.get_num_bn_layers() == 0:
223
228
  Logger.critical(
224
229
  f'Data generation requires a model with at least one BatchNorm layer.') # pragma: no cover
225
230
 
226
231
  # Create an ImagesOptimizationHandler object for handling optimization
227
- all_imgs_opt_handler = PytorchImagesOptimizationHandler(model=model,
232
+ all_imgs_opt_handler = PytorchImagesOptimizationHandler(model=model_for_data_gen,
228
233
  data_gen_batch_size=data_generation_config.data_gen_batch_size,
229
234
  init_dataset=init_dataset,
230
235
  optimizer=data_generation_config.optimizer,
@@ -207,7 +207,9 @@ def generate_tp_model(default_config: OpQuantizationConfig,
207
207
  base_config=const_config_input16_per_tensor)
208
208
 
209
209
  qpreserving_const_config = const_config.clone_and_edit(enable_activation_quantization=False,
210
- quantization_preserving=True)
210
+ quantization_preserving=True,
211
+ default_weight_attr_config=const_config.default_weight_attr_config.clone_and_edit(
212
+ weights_per_channel_threshold=False))
211
213
  qpreserving_const_config_options = tp.QuantizationConfigOptions([qpreserving_const_config])
212
214
 
213
215
  # Create a TargetPlatformModel and set its default quantization config.
@@ -19,7 +19,7 @@ import torch
19
19
  from torch import add, sub, mul, div, divide, flatten, reshape, split, unsqueeze, dropout, sigmoid, tanh, \
20
20
  chunk, unbind, topk, gather, equal, transpose, permute, argmax, squeeze, multiply, subtract
21
21
  from torch.nn import Conv2d, Linear, ConvTranspose2d, MaxPool2d
22
- from torch.nn import Dropout, Flatten, Hardtanh, Identity
22
+ from torch.nn import Dropout, Flatten, Hardtanh
23
23
  from torch.nn import ReLU, ReLU6, PReLU, SiLU, Sigmoid, Tanh, Hardswish, LeakyReLU
24
24
  from torch.nn.functional import relu, relu6, prelu, silu, hardtanh, hardswish, leaky_relu
25
25
 
@@ -87,7 +87,7 @@ def generate_pytorch_tpc(name: str, tp_model: tp.TargetPlatformModel):
87
87
  squeeze,
88
88
  permute,
89
89
  transpose])
90
- tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [gather])
90
+ tp.OperationsSetToLayers(OPSET_DIMENSION_MANIPULATION_OPS_WITH_WEIGHTS, [gather, torch.Tensor.expand])
91
91
  tp.OperationsSetToLayers(OPSET_MERGE_OPS,
92
92
  [torch.stack, torch.cat, torch.concat, torch.concatenate])
93
93